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Abstract—Post-silicon debug is widely acknowledged as a
bottleneck in SoC design methodology. A major challenge
during post-silicon debug is the limited observability of internal
signals. Existing approaches try to select a small set of beneficial
trace signals that can maximize observability. Unfortunately,
these techniques do not consider design constraints such
as routability of the selected signals or routing congestion.
Therefore, in reality, it may not be possible to route the
selected signals. We propose a layout-aware signal selection
algorithm that takes into account both observability and
routing congestion. Our experimental results demonstrate that
our proposed approach can select routing friendly trace signals
with negligible impact on observability.
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I. INTRODUCTION

Validation and debug are significant contributors in terms
of cost (time) in the development cycle of System-on-Chip
(SoC) designs. With rapid increase in design complexity, the
percentage of time spent on validation is growing with each
new generation of products. It is no longer possible to cap-
ture all bugs during pre-silicon validation. Thus, post-silicon
debug has become extremely critical and indispensable part
of the design cycle.

SoC designs are validated using netlist simulations at the
pre-silicon stage. Although, debug at the simulation stage
is difficult due to millions of internal signals, the validation
engineers may iteratively choose any set of internal signals
besides the inputs and the outputs. In other words, simula-
tion provides complete observability of internal signals for
debug. Despite rigorous validation at the pre-silicon stage,
some bugs slip into silicon. Post-silicon debug techniques
are used to pin point and root cause such bugs.

Post-silicon-debug has a major constraint in terms of
number of signals which may be observed. Unlike netlist
simulation based debug at pre-silicon stage, in post-silicon
debug only the signals either connected to the I/O pins or
debug devices can be observed. To improve observability of
internal signals, trace buffers are widely used in integrated
circuits. The trace buffers store the values of selected signals
for a number of cycles at runtime, and the values may be
read during debug. The area constraint in trace buffer limits
the number of signals that can be observed. Thus, limited
observability is a major challenge in the post-silicon debug.

As the number of signals which may be observed in
post-silicon debug is limited, it is imperative to choose the

signals that maximize restorability. Restorability of a signal
is representative of the number of unobserved signals that
may be reconstructed, if the given signal is observed.

A wide variety of contemporary solutions exist ranging
from extremely fast metric-based restorability evaluation [1],
[5], [9], [10], to simulation-based highly accurate approach
[3] and even a hybrid approach [8]. However, all the current
approaches overlook the design constraints such as routing
congestion. Signal selection is typically done in the final
stages of the design cycle when most of the routing is frozen.
Hence, although a designer may get the best possible set of
signals from restorability perspective, it may not be possible
to route them. One may argue that selection of the signals
at an earlier stage may resolve the routability issue, but due
to the dynamics in netlist changes over the design cycle it
may not be possible to select the signals at an earlier stage.

Striking a right balance between the restorability and
routability is a major challenge. We propose prioritizing the
signals which are near the trace buffer in an effort to reduce
the Manhattan distance (wire-length). Our algorithm can be
used in tandem with the previously proposed algorithms for
layout-aware signal selection towards post-silicon debug. For
example, two different signals S1 and S2 may provide same
restorability. However, it may be easier to connect to the
signal which is near the trace buffer.

Consider an illustrative example in Figure 1. Assume that
a designer may trace at most 2 signals. For simplicity, as-
sume that only one level of metal is allowed and each white
space block may accommodate a maximum of 2 vertical
routes due to routing constraints. Assume that signals X and
Y are pre-routed and signal selection is to be done at this
stage among signals R, S and T. The trigger block triggers
the trace buffer to start tracing the signals. In the figure,
gray represents an area which is blocked for any further
routing. In this case, the existing signal selection algorithm
may select R and S, if they provide higher restorability
compared to (R,T) and (S,T). However, it is not possible
to route both the signals due to the congestion constraint.
Thus the signal T, which is not as good as R or S in terms of
the restorability needs to be chosen. It may be noted that as
the distance between two connected cells (signals) increases,
the probability of hitting a blockage gets higher and higher.
Hence, it is better to give priority to the signals which are
near the trace buffer. Of course, it is also important to ensure



that routability improvement does not introduce significant
penalty on observability (restorability).

A specific scenario would be to choose between two
signals with equal restorability. Existing signal selection
algorithms randomly select one of them. However, it is
better to choose the signal closer to the trace buffer in such
a scenario. Our experimental results demonstrate that the
proposed approach can significantly improve the routability
with minor impact on the restorability.

Figure 1. Illustration of importance of congestion
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The rest of the paper is organized as follows. Section II
outlines the related work. Section III describes our layout-
aware signal selection algorithm. Section IV presents the
experimental results. Finally, Section V concludes the paper.

II. RELATED WORK

Signal selection algorithms can be classified into three
categories: (i) metric-based, (ii) simulation-based and
(iii) hybrid of metric- and simulation-based techniques.
The metric-based algorithms compute restorability of
untraced signals for a given signal and try to maximize
the restorability by adding signals to the trace selection.
Restorability or restoration ratio (RR) is defined as the ratio
of the total number of signal states that can be restored
over the total number of selected signal states. Following
equation defines restoration ratio:

No. of Restored Signal States + No. of Selected Signal States
No. of Selected Signal States

A. Signal selection for post-silicon debug

There are various approaches for metric-based signal
selection [1], [5], [9], [10]. Basu and Mishra [1] improved
signal selection by providing emphasis on selecting ben-
eficial neighbors. Although metric-based algorithms have
an advantage of being extremely fast compared to the
simulation-based, their restoration performance is not good.
Simulation-based trace signal selection starts with all the
signals as observable, and then iteratively eliminates state
signals which have minimum impact on the restoration ratio

on removal [3]. Simulation-based methods provide higher
state restoration ratio, but have a longer runtime. Li and
Davoodi [8] used a hybrid of the metric- and simulation-
based signal selection to come up with trace signals. Hybrid
approach first identifies top candidates using metric evalua-
tion and then uses simulation to accurately evaluate the state
restoration ratio for each candidate.

B. Layout-aware Approaches

Due to ever-increasing complexity of SoC designs, layout
friendliness has been looked at by various researchers.
Layout-awareness has been used as a key criteria in scan-
chain reordering [4], fault pattern generation [7] and memory
BIST synthesis [6]. However, layout has not been considered
in the context of signal selection for integrated circuits.

III. LAYOUT-AWARE SIGNAL SELECTION

Figure 2 provides an overview of our proposed layout-
aware signal selection.

Figure 2. Layout-aware signal selection flow
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The basic idea of our algorithm is that the normalized
Manhattan distance values from the flip-flops (signals) to
the trace buffer are computed, and then used with signal
selection parameters like restorability (or visibility) to either
eliminate or add a flip-flop into the set of flip-flops selected
for the trace buffer. It is important to note that our algorithm
can be used on top of any existing signal selection procedure.

In the remainder of this section, we describe two im-
portant components of our framework: distance calculation
and layout-aware signal selection. First, we describe how
to compute normalized Manhattan distance of flip-flops
from the trace buffer. Next, we describe how to introduce
layout awareness in two different signal selection techniques:
metric- and simulation-based approaches.



Algorithm 1: Layout-aware Metric-based Selection
Inputs : normalized Manhattan distance ndist[], design

netlist, trace buffer width w
Output: selected signals
Load the Circuit; Let finalRR be 0;1

Let {T} : Set of all flip-flops in the design;2

Let {SS} : Set of selected signals = φ;3

Let rw be the routing weight of the signal under4

consideration;
for rw → 0 to 1; rw+ = 0.1 do5

Let {S} : Set of all selected flip-flops = φ;6

while w greater than number of elements in {S}7

do
Max Restoration Ratio: maxRR = 0;8

Let j: Index to the element to be added in the9

current iteration = 0;
for i← 1 to number of elements in {T} do10

Let {V } ← {S}
⋃
ith FF in {T} ;11

Let rrv = srr(V );12

/* Evaluate selection */
rr = rw ∗ (1− ndisti) + (1− rw) ∗ rrv;13

if rr > maxRR then14

j = i;maxRR = rr;15

end16

end17

{T} = {T} - jth element;18

{S} = {S}
⋃

jth element;/* Add signal19

as selected */
end20

if finalRR < srr(S) then21

SS ← S; finalRR← srr(S);22

end23

end24

Return: {SS} is the set of selected signals

A. Manhattan Distance Calculation

One of the major challenges in placing and routing a
design is the routing congestion. Routing congestion is
defined as the percentage of tracks blocked of the total tracks
available for routing. Many metrics provide an evaluation
criteria for layout congestion. Euclidean distance, Manhattan
distance, and total wire-length may be used as a repre-
sentative of the congestion in the design. Collection and
interpretation of congestion information is non-trivial with
the present tools.

Using exact wire-length may be compute intensive.
Therefore, wire-length estimation techniques such as half-
perimeter wire-length, squared-Euclidean distance, mini-
mum Steiner-tree wire-length, minimum spanning tree wire-
length or complete-graph wire-length may be used [2].
We use wire-length estimate as the congestion criteria. All
prospective selected flip-flops need to connect to the trace

Algorithm 2: Layout-aware Simulation-based Selection
Inputs : normalized Manhattan distance ndist[], trace

buffer width w, simulation function to get
state restoration ratio (SRR) fsrr()

Output: selected signals
Load the Circuit;1

Let {T} : Set of all flip-flops in the design;2

while w< number of elements in {T} do3

Let j: Index to the element to be eliminated in this4

iteration = 0;
/* Calculate simulation-based

restoration ratio (SRR) of {T}
*/

Let ϑ = fsrr(T );5

Let ν be the change in SRR= 1000000;6

for i← 1 to number of elements in T do7

/* Create a new set by removing
ith Signal. */

Let {V } ← {T} − {ith FF} ;8

/* Evaluate δSRR & scale with
routing weight */

Let νi = (1− ndisti) ∗ (ϑ− fsrr(V ));9

/* Keep note of element with
least reduction in overall SRR

*/
if νi < ν then10

j = i11

end12

end13

/* Remove element with least impact
on SRR */

{T} = {T} - jth element;14

end15

Return: {T}

buffer in a star fashion, with the trace buffer at the center.
Hence, half-perimeter wire-length is best suited for this
purpose. Half-perimeter wire-length of any two connected
nodes is equal to the Manhattan distance between them.

Manhattan distance (MD) is defined as the sum of the
absolute values of differences in the X and Y coordinate
values of any two points. MD = (|xtb − xi|+ |ytb − yi|).

For layout-awareness, the total Manhattan distances of
all the selected flip-flops to the trace buffer need to be
minimized. Total Manhattan Distance(TMD) is given by
following equation:

TMD =
∑TraceBufferSize

i=1 (|xtb − xi|+ |ytb − yi|)

We use normalized Manhattan distance as a layout-
awareness metric for different signals. Manhattan distance
(from the trace buffer) to all the prospective signals is calcu-



lated and normalized with respect to the farthest prospective
signal.

Maximum Manhattan distance, among all prospective flip-
flops from the trace buffer can be computed as:

MDmax = max(MDi)

Similarly, normalized Manhattan distance is computed as:

ndisti =MDi/MDmax

Normalized Manhattan distance is used in signal selection
algorithms to prioritize signals based on the proximity to the
trace buffer.

B. Metric-based approach

Algorithm 1 shows the key steps of applying our approach
on top of metric-based signal selection. It tries to maximize
restoration ratio, while adding new signals to trace buffer,
until the trace buffer gets full. The algorithm is modified
to evaluate the combined impact of restoration ratio and
normalized Manhattan distance. Separate weight is used
for the restoration ratio and normalized Manhattan distance
(ndist). The weight is then varied from 0 to 1 at step size
of 0.1.

The algorithm has two nested loops. Within the while
loop in step 7, a temporary set of signals (V) is created by
adding ith element of set {T} to set of selected signals. This
set is created to evaluate the effectiveness of the ith signal.
Each time while loop in step 7 is invoked it generates a set
of selected signals for the given routing weight (rw). The
for loop in step 5 evaluates the sets of selected signals, for
different values of rw, generated by the internal while loop.
Step 13 and Step 14 decide if a signal is to be added to a
set of selected signals or not. Finally, the algorithm returns
the set of signals which would be best from both restoration
ratio and Manhattan distance perspective. Steps 5 and 13
are the the additional steps, over default metric-based signal
selection, required for layout-aware signal selection.

C. Simulation-based approach

Simulation-based signal selection uses iterative elimina-
tion of less beneficial signals. In every iteration, simulation
is used to determine the impact of eliminating a signal
from the remaining signals. Signal with minimal impact on
the restoration ratio is eliminated every cycle. Elimination
continues until the number of elements in the observable
set is equal to the trace buffer capacity. Layout awareness
is added by scaling the visibility of the flip-flops, based on
their normalized Manhattan distance from the trace buffer.
Signal with the minimum impact on visibility, and minimum
reduction in Manhattan distance is eliminated.

Algorithm 2 shows the key steps of applying our approach
on top of simulation-based signal selection. Steps 1 and 2 in
Algorithm 2 are initialization steps. Step 2 marks all the flip-
flops as selected and puts them in set {T}. The while loop

in step 3 eliminates the elements in {T} until the number of
elements remaining are equal to the width of trace buffer.
Step 5 calculates the visibility based on the signals in {T}.
Step 7 iterates over the whole set in {T}, and creates a
new set {V} with just one element removed from {T}. The
visibility is calculated for each set {V} and scaled with the
routing values. The signal to be eliminated is the one for
which set {{T} - “element”} has minimal impact on the
visibility compared to set {T} alone. Set {T} is updated by
eliminating the signal. At the end of the while loop in step 3,
set {T} has the required selected signals, and is returned by
the algorithm. Step 9 is the step for layout-awareness over
the default simulation-based signal selection.

IV. EXPERIMENTS

The section describes the experimental setup and presents
the experimental results.

A. Experimental Setup

ISCAS’89 benchmarks were used for the evaluation. To
emulate the layout availability, the layout was first generated
by modifying the Verilog description. We added a trace
buffer of a given width and connected it to random internal
nets of the design. Random internal nets were chosen to
avoid biasing the layout for any signals. We used Cadence
Encounter Digital Implementation tool (EDI) to synthesize
and generate layout for the modified Verilog design. A
design exchange format (DEF) file was dumped from the
design synthesis tool. Manhattan distance for each of the
flip-flops to the trace buffer was tabulated using the coordi-
nates in the DEF. Signals were selected giving more weight
to the flip-flops near the trace buffer. Final restoration ratio
was then computed for the selected signals.

We compared the total Manhattan distance of all the
selected signals from the trace buffer between existing
algorithms and our proposed layout-aware signal selection.

B. Comparison with Metric-based Approach

Table I compares our approach with existing metric-based
signal selection [1]. The first column in the table specifies the
benchmark used for evaluation. We selected 32 trace signals.
Restoration ratio from the existing approach and our layout-
aware approach are specified in second and third columns,
respectively. Degradation in the restoration ratio is provided
in fourth column. The fifth and sixth columns provide the
total Manhattan distance of all the selected signals with the
existing approach and our approach, respectively. It is im-
portant to note that the existing approaches did not consider
layout and therefore we computed the Manhattan distance
numbers for the signals selected by existing approaches.

The results show that the Manhattan distance can be
significantly reduced with minor impact on restoration ratio.
For a trace buffer width of 32, Table I shows an average 32%
(peak 55%) improvement in the Manhattan distance across



Table I
COMPARISON WITH METRIC-BASED RESTORATION RATIO

Benchmark
Restoration Ratio Manhattan Distance

Basu & Layout- % Basu & Layout- %
Mishra [1] aware change Mishra [1] aware change

s9234* 2.66 1.63 -38.72 12324.6 8346.6 -32.28
s13207* 8.30 6.18 -25.54 18366.6 8347.8 -54.55
s35932 35.00 24.92 -28.80 27594.0 19600.8 -28.97
s38584 20.00 23.81 +19.05 21869.4 13146.6 -39.89
Average 16.49 14.14 -14.28 20038.7 13629.0 -31.99
*Restoration ratio not provided in [1] and had to be generated

different benchmarks, with an average 14% penalty on the
restoration ratio.

Two important scenarios can be observed in the results:
i) Manhattan distance improves at the cost of restoration
ratio, and ii) both Manhattan distance and restoration ratio
improve. The first scenario is expected as the algorithm
deliberately chooses signals near the trace buffer, although
they may not provide the best restorability.

The second case is counter-intuitive and is seen for
s38584. Our analysis revealed that in the existing approach,
while selecting signals, forward and backward restoration is
done just once. However, for calculating the final restoration
ratio, forward and backward restoration is done multiple
times till all the values saturate. During iterative addi-
tion of signals to the trace buffer, a signal may indicate
higher restoration ratio. However, with multiple forward and
backward restoration cycles in the final restoration ratio
calculation, a signal which was not so good during the
selection may show a higher restoration ratio value. In other
words, the probability calculation during signal selection is
not identical to the restoration calculation. Therefore, the
existing approach does not select the best possible signals in
each iteration. For these benchmarks, the perturbation caused
by layout awareness, in fact, enabled the selection of better
signals.

Another case was observed for trace buffer width 8 (not
shown in the table) where Manhattan distance improves,
but the restoration ratio remains constant. Although, by
choosing a different set of signals the restoration ratio does
not change, but the Manhattan distance significantly comes
down. This is due to the fact that two signals can be equally
beneficial from restoration perspective but one has less
Manhattan distance from the trace buffer compared to the
other. Our approach has chosen the one with least distance
whereas the existing approach has randomly chosen one of
them, which happens to have higher Manhattan distance.

It may not be desirable to have a good Manhattan distance
at the cost of a very high degradation in the restoration
ratio. Designers may choose a value better suited for the
restoration ratio in such a case. The priority for Manhattan
distance can be reduced in such a case, by choosing low

values of routing weight. For example, Figure 3 provides
detailed data points for s9234 benchmark. Figure 3 presents
restoration ratio values corresponding to the routing weights.
It shows that the restoration ratio comes down while the
Manhattan distance is reduced through signal selection. In
this case, for buffer width of 32, designers may choose a
lower routing weight (0.1) to get a minimal impact on the
restoration ratio.

Figure 3. Restoration Ratio for s9234

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0 0.2 0.4 0.6 0.8 1

R
e

st
o

ra
ti

o
n

 R
at

io
 

Routing Weight  

n=32

C. Comparison with Simulation-based Approach

Table II provides data for the analysis of benchmarks
using simulation-based signal selection [3]. The columns
used in Table II are same as that used in Table I. For a trace
buffer width of 32, the algorithm shows an average 31.9%
improvement in the Manhattan distance, with an average
18.95% penalty on the restoration ratio.

V. CONCLUSION

Post-silicon validation and debug are critical components
of the SoC design methodology. It is important to select ben-
eficial signals for debug while considering the design con-
straints like routability. Existing approaches, though efficient
at identifying good signals, overlook the design constraints,



Table II
COMPARISON WITH SIMULATION-BASED RESTORATION RATIO

Benchmark
Restoration Ratio Manhattan Distance

Chatterjee Layout- % change Chatterjee Layout- % change
et al. [3] aware et al. [3] aware

s9234 4.18 2.56 -38.76 13860.6 13449.6 -2.97
s13207* 9.47 8.56 -9.61 22164.6 13764.0 -37.90
s35932 43.13 34.39 -20.26 14109.0 12153.6 -13.86
s38584 27.00 22.39 -17.07 38292.0 20853.0 -45.54
Average 20.95 16.98 -18.95 22106.6 15055.1 -31.90
*Restoration ratio not provided in [3] and had to be generated

thereby selecting some signals which may not be routable.
We developed techniques to incorporate layout-awareness
in the existing approaches towards identification of signals
which are not only beneficial from the debug perspective
but also from a routing perspective. Our technique further
gives designer freedom to customize the weight for layout-
awareness to suit the design needs. Our approach can be
applied on top of the existing signal selection techniques
such as metric-based [1] and simulation-based approach
[3]. Experimental results demonstrated that our approach
can select layout-friendly signals with minor impact on
restorability.
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