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Abstract—Branch-and-bound approaches are promising in pruning
infeasible search space during the resource constrained scheduling (RCS).
However, such heuristic approaches only compare the estimated upper

and lower bounds of an incomplete schedule to the length of the best
feasible schedule at that iteration. This paper proposes an efficient
pruning technique which can identify the fruitless search space based

on the detailed structural scheduling information of the obtained best
feasible schedule. The proactive nature of our pruning technique enables
the pruning of the space which cannot be identified by the state-of-the-
art branch-and-bound techniques. The experimental results demonstrate

that our approach can drastically (up to two orders-of-magnitude) reduce
the overall RCS time under a wide variety of resource constraints.

I. INTRODUCTION

High-Level Synthesis (HLS) enables rapid generation of RTL

hardware designs to satisfy performance, cost, area and power re-

quirements [1]. In HLS, Electronic System Level (ESL) behavior

descriptions are converted into Data Flow Graphs (DFGs), which

are used as the intermediate representation by HLS algorithms. HLS

involves two major tasks: scheduling and allocation. Scheduling

refers to the assignment of operations to control steps (c-steps), and

allocation binds the computation operations in DFGs to hardware

resources. Currently, the scheduling problem is a major challenge

in HLS, because it needs to make the trade-off among various

constraints and explore a large number of possible alternatives to

find an optimal or near-optimal design. In this paper, we focus

on HLS under resource constraints, called Resource Constrained

Scheduling (RCS). Given a DFG and a pre-defined set of functional

or non-functional resources with specified overheads, RCS tries to

find a schedule with minimum overall c-steps. Essentially, RCS is a

scheduling problem with constraints of computation precedence and

resource limits [9].

Since RCS is a NP-Complete problem, instead of enumerating

all possible solutions, various approaches [3], [14] are proposed to

efficiently prune infeasible or inferior candidates during the RCS

search. Branch-and-bound (B&B) approaches [3] are widely used in

existing RCS approaches to prune the search space. The B&B meth-

ods update the upper bound information of the schedule dynamically

when encountering a better design candidate during the search. It

utilizes such information to prune the inferior candidates which is

worse than the best candidate obtained so far. Although the existing

B&B algorithms are efficient in pruning the search space, they only

investigate the upper and lower bound information of the scheduling

to guide the search. In fact, its performance can be significantly

improved by further pruning the search space using other potential

avenues besides the upper and lower bounds.

In this paper, we propose an efficient algorithm for the RCS

problem based on B&B methods, which investigate the DFG structure
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information of the up-to-date optimal scheduling. By comparing the

scheduling time of partial operations, our approach can discard the

incomplete schedules whose estimated lower-bound length equals

to the length of the up-to-date optimal schedule. Therefore it can

prune the search space in a proactive manner. Moreover, due to early

detection of fruitless search, our approach can efficiently avoid deep

recursive search that leads to drastic reduction in scheduling time.

This paper is organized as follows. Section II introduces the

related work of RCS. Section III presents the related background and

motivates the need for structure-aware pruning. Section IV proposes

our approach which considers the structure information of the pruning

techniques in detail. Section V presents our experimental results.

Finally, Section VI concludes the paper.

II. RELATED WORKS

Unlike non-optimal HLS heuristic methods (e.g., list scheduling

[3], force directed scheduling [5]) which can achieve near-optimal

schedules with less overhead, this paper focuses on how to quickly

obtain an optimal RCS result in HLS. As an early popular approach,

Integer Linear Programming (ILP) models [2], [6], [7] are widely

used in HLS scheduling. However, the number of variables in ILP

models increases very fast with the size of DFGs. Therefore, solving

tight resource constrained problems using ILP models may need

prohibitively long time.

The execution interval analysis approach is another widely inves-

tigated approach for HLS scheduling. The basic idea is to perform

the lower bound estimation before real scheduling. Since it can prune

inferior designs, the overall scheduling time can be reduced. In [4],

Ohm et al. presented a comprehensive technique for lower bound esti-

mation. Shen and Jong [8] proposed a stepwise refinement algorithm

for resource estimation based on execution interval analysis. Their

approach can handle loop folding and conditional branches at the

same time. Therefore it can produce a tight bound quickly. However,

most of these methods can only give near-optimal solutions rather an

optimal one.

To achieve an optimal resource constrained HLS schedule, an

obvious and time-consuming way would be to enumerate all the

possible designs. To effectively avoid unnecessary searching during

scheduling, Narasimhan and Ramanujam [3] presented a B&B ap-

proach called BULB using both lower- and upper-bound information

to prune the search space. Consequently, the overall scheduling time

can be drastically reduced. It is important to note that, in [3],

the lower-bound cost of the subproblem cannot be added to the

partial schedule, which may lead to worse lower-bound values of

the complete problem. Hansen and Singh [13] proposed an efficient

B&B approach to reduce the scheduling time under multi-resource

constraints. In [14], Wu et al. presented a novel in-place search

algorithm based on a systematic offspring generation algorithm,



which requires only a constant storage space during the traversal

of the search tree.

Our approach is inspired by the work of [3], which can efficiently

prune the search space in a B&B manner. To the best of our

knowledge, our approach is the first attempt to utilize the structure

information of the best schedule searched so far to prune the search

space. A comparison between the BULB method [3] and our approach

is presented in Section V.

III. BACKGROUND AND MOTIVATION

A. Graph-Based Notations of RCS Problem

RCS employs DFGs (Data Flow Graphs) to describe the depen-

dence of operations. A DFG is a DAG (Directed Acyclic Graph)

G= (V,E), where V is a set of vertices (nodes) designating functional

operations with different types, E is a set of directed edges describing

operation dependencies between nodes. For any two nodes vi,v j ∈V ,

〈vi, v j〉 ∈E indicates that the operation of vi must complete before the

start of the operation of v j. Consider the example DFG in Figure 1

that consists of 5 nodes and 4 directed edges. In a DFG, each vi

is tied with an operation opi, and type(opi) indicates the type of

functional unit that will be occupied by opi. delay(opi) is used to

denote time delay of opi. An operation without any predecessors is

an input operation, and an operation without any successors is an

output operation.
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Fig. 1. An example of an HLS DFG

In RCS, the start time of an operation is regarded as the first

c-step of its execution. The As-Soon-As-Possible (ASAP) notation

estimates the start time of operation opi. Since resource constraints

cannot be taken into account before the real scheduling, in most

approaches, ASAP(opi) estimates the earliest c-step when opi can be

started under the precedence constraints. Alternatively, the As-Late-

As-Possible time of operation opi, denoted by ALAP(opi) estimates

the latest c-step when the operation opi can be started. The notation

[ASAP(opi),ALAP(opi)], which is introduced in [3], indicates the

execution intervals of operation opi.

Besides basic graph notations, various graph theory notations are

used to enable the RCS analysis. In this paper, we use Gr to

represent the transpose graph of G by reversing all edge orientation.

G′ = (V ′,E ′) is a sub-graph of G = (V,E) if both V ′ ⊆ V and

E ′ ⊆ E. The sub-graph including nodes vi and all its direct and

indirect predecessors is denoted by Gpre(vi). The sub-graph with vi

as its source node is denoted as G(vi). The length of a path in a

DFG indicates the number of nodes along the path. The weighted

length of a path is the sum of operation delays of the nodes along

the path, while the delay is determined by the type of nodes. The

path in G with the longest length is called its critical path and the

weighted path with the longest length is called weighted critical path.

We use CPw(G) to denote the length of the weighted critical path

of G, and CPl(G) for the length of the critical path of G. During

the recursive B&B search of G, the scheduling order ρ(G) of all

operations is determined by the length of weighted critical path

CPw(G(vi)) 1 ≤ i ≤ N in a non-ascending manner. As an example

shown in Figure 1, either ρ1(G) = <v1, v2, v3, v4, v5> or ρ2(G)
= <v1, v2, v4, v3, v5> can be a candidate of scheduling orders

for G, since CPw(G(v1)) = 4, CPw(G(v2)) = 4, CPw(G(v4)) = 3,

CPw(G(v3)) = 3, and CPw(G(v5)) = 1.

Level is an important notion to describe the structure of the RCS.

In a DFG, the level of a node v, denoted by Level(v), indicates the

longest length from input nodes to v, that is, Level(v) =CPl(Gpre(v)).
For the example in Figure 1, the nodes are partitioned into 3 levels,

and the level of v5 is 3. When the level information of each node is

fixed before the scheduling, we mark each node with an index from

small level to large level. For a node v, Ll(v) and Lh(v) denote the

smallest and largest indices of the nodes within the same level of v

respectively. For example, the DFG in Figure 1 is already marked

using the level information. For the nodes v1 and v2, we can get

Ll(v1) = Ll(v2) = 1 and Lh(v1) = Lh(v2) = 3.

B. Scheduling Based on ASAP and ALAP

In RCS, c-step is the basic time unit. An operation will occupy a

specific number of continuous c-steps for execution on corresponding

functional unit during the scheduling. A feasible scheduling for a

DFG tries to dispatch operations under the operation dependence

constraints posed by the DFG and the limited resources by the im-

plementation requirement. As described in Definition 3.1, a schedule

for a given DFG is an assignment function S which dispatches each

operation opi at c-step S(opi) ∈ Z+. Let S be a feasible schedule,

its length le(S) is the largest finished time of all the operations, i.e.,

le(S) = max{S(opi)+delay(opi) | opi ∈ V}. A schedule is optimal

if it is the up-to-date best with smallest length during the scheduling

exploration. Among all possible schedules, the schedule with minimal

length is regarded as the global optimal schedule.

Definition 3.1: Let G = (V,E) be a DFG of a behavior specifi-

cation, and OP be the set of operations corresponding to V , where

|V | = |OP| = N. Assuming that the target implementation supplies

M types of functions, Σ = {π1, ...,πM}, and num(πi) indicates the

number of functional units of type πi (1 ≤ i ≤ M). A function

S : OP → Z+ is a feasible schedule of G, iff it satisfies all the

following conditions:

(1) If 〈opi,op j〉 ∈ E where 1≤ i, j ≤ N, then S(opi)+delay(opi) ≤
S(op j) holds.

(2) For any time t and any operation of type π j , |{opi | type(opi) =
π j ∧ ([S(opi), S(opi)+delay(opi)]

⋂
[t, t]) 6= /0}| ≤ num(π j).

Here condition (1) gives the precedence constraint posed by given

DFG, and condition (2) indicates the resource constraints during the

scheduling of DFG operations. We use (opi,S(opi)) to denote the

scheduling pair for operation opi. For example, the binary relation

{(op1,1), (op2,2), (op3,2), (op4,4), (op5,6)} is a feasible schedule

with length 7 for the DFG in Figure 1. And the binary relation

{(op1,1), (op2,2), (op3,1), (op4,3), (op5,5)} is an optimal schedule

with length 5.

C. Motivation

Based on the permutation of c-steps on the [ASAP,ALAP] of all

operations, B&B approaches [3], [13] can prune useless search space

effectively. Besides [ASAP,ALAP] intervals which restrict the search

space of each operation, B&B approach uses other two important data

structures to prune infeasible schedules: i) the optimal schedule Sopt

which keeps the up-to-date optimal schedule, and ii) current schedule

S which holds current (incomplete) schedule.

Figure 2a) illustrates how the B&B search makes the pruning.

Since it is impossible to determine the optimal schedule length before



all the enumerations are done, to restrict search space, the upper

bound and lower bound of the optimal schedule are estimated. We

use ω to record the upper-bound length of Sopt . Initially, ω equals to

the length of a feasible schedule determined using the list scheduling

approach. Then ω decreases dynamically when a faster feasible

schedule is found during the RCS exploration. GlobalLow is the

lower bound length of Sopt , which is calculated using the approach

proposed in [10]. In Figure 2, optimal indicates the length of the

global optimal schedule, which is in the range [GlobalLow, ω]. The
current schedule S, which is an incomplete enumeration, also has two

bound estimations. We use lower and upper to denote the lower-

bound estimate and upper-bound estimate for S respectively. Note

that ω is the length of a complete schedule Sopt , but in S, not all the

operations are scheduled. Therefore, the lower and upper of S also

can be considered as the lower-bound and upper-bound respectively

for the schedules which have the same c-steps on each scheduled

operations of S. In the B&B approach, if lower is larger than ω, the

dispatching of the unscheduled operations will not continue, since

optimal should be in the range [GlobalLow,ω]. However, if upper

is smaller than ω, a schedule which is better than Sopt is found.

Consequently, Sopt will be replaced by the new schedule.

lower

upper

optS

S

optS

ω

a) Traditional branch−and−bound approach b) Structure−aware pruning approach

GlobalLow Cut

last op scheduled

S

optimal

Fig. 2. Pruning scenarios in B&B approach

From the above discussion, we can find that in B&B approach, the

lower, upper and ω are the three main factors involved in pruning

the useless search space. The pruning performance highly depends

on the estimation algorithms for the factors lower, upper and the

value of ω. However, the other useful information of the Sopt has

not been fully investigated. For example, the structural scheduling

information of Sopt has not been exploited by the pruning strategies

of B&B approach. Figure 2b) shows the basic idea of the structure-

aware pruning. In this figure, each black dot represents a functional

operation, and the arrowed line indicates the dispatching order. Since

the Sopt contains the useful scheduling exploration information, by

comparing partial operations (i.e., the operations on a cut, which

will be introduced in Definition 4.1) between Sopt and S, the further

search of optimal schedule based on S can be terminated under some

condition. For example, let ρ1(G) of the design shown in Figure 1

be the operation searching order, and assume that Sopt = {(op1,1),
(op2,2), (op3,1), (op4,3), (op5,5)} is the best schedule searched

so far. If only the operations op1, op2, op3 have been dispatched

in the current schedule S such that S(op1) = 1, S(op2) = 2, and

S(op3) = 2, the subsequent recursive search of the current schedule

can be terminated. This is because that op1, op2, and op3 form a

cut of G which enables the level-bound pruning heuristic proposed in

Section IV-A. This is extremely useful when ω∈ [lower,upper], since
it extends the pruning capability of the traditional B&B approaches.

Furthermore, it also can be used to stop the fruitless search earlier,

which can prevent the deep recursive search in a proactive manner.

IV. STRUCTURE-AWARE PRUNING

Section III-C described the limitations of traditional B&B heuris-

tics and motivated the need for efficient structure-aware pruning

techniques to significantly improve the pruning performance. This

section first presents our level-bound pruning heuristics that can

utilize structural details. Next, we present our RCS algorithm using

the proposed heuristics.

A. Level-Bound Pruning Heuristics

To further improve the pruning performance, we proposed a novel

structure-aware pruning technique called level-bound heuristic which

fully utilizes the precedence relation information of DFG operations.
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Fig. 3. Comparison of Two Schedules

Figure 3 depicts the basic idea of our level-bound pruning method,

where a) presents an optimal schedule searched so far of a DFG G,

and b) shows an incomplete schedule of G. Each node in the figures

is marked with a number, which indicates the dispatch time of the

corresponding operation. Suppose that in S the nodes of levels lower

than or equal to level X have been scheduled and the other nodes

(i.e., in levels larger than X) have not been determined. For traditional

B&B approaches, they only compares the value between le(Sopt) and
the value of both the lower and upper of S for pruning. Note that, in

Figure 3, the dispatching time of all Sopt ’s operations in the Xth level

is better than the one of S. Such structural scheduling information

(i.e., the c-steps of partial operations and corresponding operation

precedence relations) can be used to prune the search space.

Definition 4.1: For a given DFG G, a cut is an edge set EG =
{e1, ...,en} where all the following conditions hold:

1) For each edge ei (1 < i ≤ n), there exists a path from some

source node (i.e., a node without any incoming edges) to ei.

2) For each source node in Gr, there exists a path from the source

node to some e ∈ EG.

For a given cut, Pre(CUT ) denotes its precedent node set;

Imme(CUT ) denotes the adjacent input nodes of the edges in the

cut; and Post(CUT ) denotes the set of descendant nodes. A cut that

separates the nodes in level X and the nodes in the levels lower than

X is called an Xth-level cut of G. Assuming that cutX is the Xth-level

cut of G, Imme(cutX ) is the Xth complete level of G.

In RCS, checking two schedules node by node is neither efficient

nor necessary. Alternatively, we introduce the cut notation which

enables the fast comparison and pruning during RCS. A cut divides

a DFG into two disjoint parts where the first part is the set of all

the precedent nodes of the cut while the second part is the set of all

the descendant nodes of the cut. Consider the example in Figure 1,

{e3,e4} is the second level cut of G. However, {e4} is not a cut,

since there is no path from e4 to v3 in Gr. In G, Pre({e3,e4}) =
{v1,v2,v3,v4}, Imme({e3,e4}) = {v3,v4} and Post({e3,e4}) = {v5}.
The second complete level of G is {v3,v4}.

For a given DFG G and some given cut, if we have two schedules

(i.e., S1 and S2) which have just finished the scheduling of the node

set Pre(CUT ), our level-bound heuristics can be used to determine

whether some incomplete schedule can be abandoned only based on

the comparison of the scheduling information of the same cut of S1



and S2. Before proving the correctness of our level-bound heuristics

(Theorem 4.1), we define local optimal schedule which is essentially

based on the result of an incomplete schedule.

Definition 4.2: Let OP be the node set of a given DFG G.

Assume that S is an incomplete schedule of G and node set

OPsch = {opi1 ,opi2 , ...,opim} is a subset of scheduled operations. A

local optimal schedule Sl,OPsch
is a complete schedule which has fixed

values for OPsch and the optimal scheduling for the unscheduled

operations (i.e., OP\OPsch). That means Sl,OPsch
is a global optimal

schedule in the search space Πm
k=1[S(opik ),S(opik )]×Πop j∈OP\OPsch

[ASAP(op j),ALAP(op j)].
The local optimal schedule Sl,OPsch

denotes that when a set of

operations OPsch are assigned with fixed c-steps in advance, it

searches for the “global” optimal solution from the rest of the nodes.

Obviously, Sl,OPsch
is an optimal schedule but may not be the globally

optimal schedule of the given DFG.

Theorem 4.1: Assume that S1 and S2 are two incomplete sched-

ules of a given DFG G = (V,E), and CUT is a cut of G.

Let Sl1,Pre(CUT ) and Sl2,Pre(CUT ) be two different local optimal

schedules based on CUT , and Imme (CUT ) be an operation set

{opi1 ,opi2 , ...,opik}. Assume that ω1 = le(Sl1,Pre(CUT )) and ω2 =
le(Sl2,Pre(CUT )). We can conclude that

∧
1≤ j≤k(S1(opi j

)≤ S2(opi j
))

&&
∨
1≤ j≤k( Sopt(opi j

)!= S(opi j
)) =⇒ ω1 ≤ ω2.

Proof: From the definition of local optimal schedule, we know

that Sl1,Pre(CUT ) is obtained from the search space Πopi∈Pre(CUT )

[S1(opi), S1(opi)] × Πop j∈Post(CUT ) [ASAPS1(op j), ALAPS1(op j)]
while Sl2,Pre(CUT ) is obtained from the search space Πopi∈Pre(CUT )

[S2(opi), S2(opi)] × Πop j∈Post(CUT ) [ASAPS2(op j), ALAPS2(op j)].
Ignoring the scheduled nodes in Pre(CUT ), we schedule nodes

in Post(CUT ) independently. Based on the scheduled nodes in

Pre(CUT ), the ASAP values on the Post(CUT ) nodes of S1 and S2
can be dynamically updated. Due to the fact that if

∧
1≤ j≤k(S1(opi j

)
≤ S2(opi j

)) &&
∨
1≤ j≤k(Sopt(opi j

)! = S(opi j
)), for each op ∈

Post(CUT ), we can get that ASAPS1(op)′ ≤ ASAPS2(op)′ and sched-

ule S1 at time S1(op) has equal or more resource than schedule

S2 at time S2(op). For each op ∈ Post(CUT ), we do not change

the ALAP value, which means ALAPS1(op) = ALAPS2(op). Let

le(S1,Post(CUT )) and le(S2,Post(CUT )) be the lengths of the global

optimal schedules in the search space Πop∈Post(CUT ) [ASAPS1(op)′,
ALAPS1(op)] and Πop∈Post(CUT ) [ASAPS2(op)′, ALAPS2(op)], respec-
tively. Based on the fact that Πop∈Post(CUT ) [ASAPS1(op)′, ALAPS1

(op)] ⊃ Πop∈Post(CUT ) [ASAPS2(op)′,ALAPS2(op)], a local optimal

schedule achieved in Πop∈Post(CUT ) [ASAPS2(op)′, ALAPS2(op)] can
also be achieved in Πop∈Post(CUT )[ASAPS1(op)′, ALAPS1(op)]. That
means le((S1,Post(CUT ))) ≤ le((S2,Post(CUT ))). Therefore, based on

the CUT , if
∧
1≤ j≤k(S1(opi j

) ≤ S2(opi j
)) and le((S1,Post(CUT ))) ≤

le((S2,Post(CUT ))), we can conclude that ω1 ≤ ω2 holds.

In RCS, dynamically deciding whether an edge set is a cut or not is

a time-consuming job. Since the static information of complete level

structures introduced in Definition 4.1 implies the cut information,

our approach adopts it for the level-bound pruning checking. Instead

of comparing two schedules based on all scheduled operations, in

our level-bound heuristics, the comparison is triggered only when all

operations in one level have been scheduled.

Definition 4.3: For a given DFG G, S is an incomplete schedule

and Sopt is the best schedule so far. Let OPk be the operation set of

the kth complete level. Assume that all the operations in set OPk have

been scheduled. Based on Theorem 4.1, the level-bound pruning can

be enabled when the following conditions hold.

1) ∀opi, opi ∈ OPk → S(opi)> 0;

2) ∀opi, opi ∈ OPk → Sopt(opi)≤ S(opi);

3) ∃opi, opi ∈ OPk → Sopt(opi)< S(opi).

In Definition 4.3, the condition 1) indicates that all the operations

in kth complete level are dispatched. The condition 2) means that all

the operations of S in kth complete level have no smaller c-steps than

the corresponding operations of Sopt . The condition 3) denotes that

at least one operation in kth complete level has worse c-step than the

corresponding operation in Sopt . The above conditions indicate that

the comparison only needs to check all the operations in level k. For

example in Figure 3, when the last operation in level X is scheduled,

the level-bound checking will be invoked. Since all operations of S

in Xth complete level have larger or equal c-steps than the ones in

Sopt , the level-bound pruning can be enabled in this case.

For a given DFG, assume that the ith complete level contains k

operations, i.e., OPk = {opi1 ,opi2 , . . . ,opik}, and all the operations in

the ith complete level have been scheduled. Let Sopt be the optimal

schedule so far, and let S be the current schedule. When the level-

bound pruning condition holds for the ith complete level, there exists

an operation opi j
(1 ≤ j ≤ k) such that S(opi j

) > Sopt(opi j
). In

other words, the recursive procedure of B&B approach backtracks at

least to the operation opi j
with value Sopt(opi j

)+1. Let OP be the

operation set which contains both OPk and its precedent operations,

and their c-steps are the same as the schedule S. According to

Theorem 4.1, the local optimal schedule Sl,OP cannot be better than

Sopt . Since Sopt keeps the up-to-date best schedule along the B&B

approach recursion, the current schedule S can be pruned.

Algorithm 1: Our Level-Bound Pruning Algorithm

Input: i) Sopt , which is the best schedule searched so far

ii) S, which stores the current incomplete schedule

iii) opi, which is the last dispatched operation of S

Output: Whether Sopt outperforms S.

LevelBound(S,Sopt ,opi) begin

if i 6= Lh(opi) then
1. return f alse;

end

2. OP = {opi1 , . . . ,opik}= (level(opi))th complete level;

if
∧

1≤ j≤k(Sopt (opi j
)≤ S(opi j

)) &&
∨

1≤ j≤k(Sopt (opi j
) 6= S(opi j

)) then

3. return true;

end

4. return f alse;
end

Algorithm 1 describes the implementation of our level-bound

pruning approach. Step 1 checks whether all the operations in current

level have been scheduled. Step 2 obtains the (level(opi))th complete

level. Step 3 asserts that Sopt outperforms S based on the level-

bound condition, and step 4 asserts otherwise. Note that, to save

time, the level bound based approach will be invoked only when all

the operations in the (level(opi))th complete level are dispatched.

B. HLS Scheduling using Our Approach

Compared to B&B approach which uses ω value only for pruning,

our level-bound based heuristic employs the structure information

of both current and optimal schedules. The level-bound pruning ap-

proach can be combined with B&B approach to explore more pruning

chances, which can improve the RCS performance drastically.

Algorithm 2 presents our RCS approach that uses both B&B and

level-bound heuristics. Step 1 initializes the variable sucTimes which

indicates the times of the successful occupation of the resource

by opi. If opi is the final unscheduled operation in level(opi)
and LevelBound(S,Sopt ,opi) returns true, it means that the current

schedule stored in S is worse than Sopt . Then step 2 sets the

global Boolean variable jump to be true, which indicates that

the level-bound checking may lead to some backtrack of more



than one operations. Step 3 stops the c-step enumeration of opi.

If LevelBound(S,Sopt ,opi) returns false, the operation opi will be

scheduled. Step 4 indicates that the operation successfully gets the

intended resource. Steps 5 and 6 calculate the lower and upper for

the current schedule. If upper is smaller than ω, then ω and Sopt

will be updated in steps 7 and 8. Changing ω value will trigger the

checking of early termination condition (i.e., achieving a schedule

whose length equals to GlobalLow) in step 9. Step 10 does the

runtime space shrinking by update the ALAP values of operations.

If lower is smaller than ω, current operation will be scheduled. Step

11 assigns a c-step to operation opi. Step 12 reserves resources

required by the operation. Then opi+1 is processed recursively in step

13. When the search backtracks, the resource occupied by opi+1 is

released in step 14. Steps 15 and 16 deal with the backtracks caused

by the level-bound checking. When sucTimes equals to 1, it means

that the current step is the smallest for opi based on the scheduled

operations. Since all the subsequent operations in the dispatching

order have been enumerated, the search by increasing step by 1 is

fruitless. Therefore, step 15 indicates that the search of opi can be

stopped. Step 16 continues to enumerate the following c-steps of the

current operation. Finally, the algorithm returns one global optimal

schedule and its length.

Algorithm 2: Structure-Aware B&B Pruning

Input: i) D, which is an HLS DFG with resource constraints;

ii) OP = {op1, . . . ,opN} in dispatching order;

iii) Sopt , which is a feasible schedule of length ω;

iv) S, which stores the current incomplete schedule;

v) jump = f alse, which is a global Boolean variable;

Output: An optimal HLS schedule and its length (S′, ω′)

OurMethod(D, OP, i, N, Sopt , S, ω) begin

if i ≤ N then
1. sucTimes = 0;

for step = ASAP(opi) to ALAP(opi) do

if LevelBound(S,Sopt ,opi) then
2. jump = true;

3. return (Sopt , ω);
end

if Precedence(opi) ∧ ResAvaible(step, type(opi)) then
4. sucTimes++;

5. lower = LBound(opi);
6. upper = le(ListScheduling(OP,opi));
if upper < ω then

7. ω = upper;

8. Sopt = ListScheduling(OP,opi);
if ω == GlobalLow(D) then

9. Terminate (Sopt , ω);

end

10. U pdateALAP();
end

if lower < ω then
/* Dispatch the current operation */

11. S(opi) = step;

12. ResOccupy(step,type(opi),delay(opi));

13. OurMethod(D,OP, i+1,N,Sopt ,S,ω);
14. ResRestore(step,type(opi),delay(opi));

if jump then

if sucTimes==1 then
15. return (Sopt , ω);

else
16. jump = f alse;

end

end

end

end

end

end

return (Sopt , ω);
end

V. EXPERIMENTAL RESULTS

To evaluate the effectiveness of our approach, we conducted

various experiments with different kinds of resource constraints. We

collected the following benchmarks from the MediaBench benchmark

[11], which is a standard DSP benchmark suite: i) ARFilter with

28 nodes and 30 edges, ii) Cosine 1 with 66 nodes and 76 edges,

iii) Collapse with 56 nodes and 73 edges, and iv) Feedback with

53 nodes and 50 edges. We also used the benchmark FDCT with

42 nodes and 52 edges from [16]. By using the C programming

language, we implemented both the BULB method and our approach

that integrates the structure-aware pruning heuristic. For comparison,

we also derived ILP models for RCS using IBM ILOG CPLEX CP

Optimizer [12], which adopts the branch-and-cut heuristic method

for efficient searching. All the experimental results were obtained on

a Linux machine with Intel 2.0GHz processors and 3 GB RAM.

TABLE I
THE SETTINGS OF THE FUNCTIONAL UNITS

Functional Operation Delay Power Energy Area

Unit Class (unit) (unit) (unit) (unit)

ADD/SUB +/- 1 10 10 10

MUL/DIV * 2 20 40 40

MEM LD,STR 1 15 15 20

Shift <<,>> 1 10 10 5

Other . . . 1 10 10 10

In this experiment, we consider functional unit constraints as well

as non-functional constraints (i.e., power and area). Table I lists the

corresponding settings for various types of functional operations used

in the experiment.

TABLE II
SCHEDULING RESULTS UNDER FUNCTIONAL UNIT CONSTRAINTS

Design ILP [12] BULB Ours Speedup

name # of +, × (sec.) (sec.) (sec.)

ARFilter

1, 3 Timeout 0.34 0.14 2.43

1, 4 Timeout 0.86 0.26 3.31

1, 5 Timeout 0.85 0.26 3.27

2, 3 2.32 0.01 <0.01 >1.00

Collapse
2, 1 Timeout Timeout 234.76 >15.33

2, 2 Timeout Timeout Timeout NA

Cosine

1, 2 Timeout 105.67 23.38 4.52

2, 2 Timeout 611.75 65.91 9.28

3, 3 Timeout 0.02 <0.01 >2.00

Feedback

4, 4 Timeout 171.67 154.94 1.11

4, 5 Timeout Timeout Timeout NA

5, 5 Timeout 5.53 4.96 1.11

FDCT

1, 2 Timeout 38.05 23.52 1.62

2, 2 Timeout 210.22 18.67 11.26

2, 3 Timeout 21.26 4.12 5.16

2, 4 Timeout 4.31 2.00 2.16

2, 5 Timeout 0.99 0.61 1.62

3, 4 Timeout 0.64 0.51 1.25

4, 4 Timeout 0.13 0.02 6.50

* Timeout means that the scheduling time is larger than 3600 seconds.

Table II presents the experimental results carried out with different

functional unit constraints on the five benchmarks. The first column

of the table has two sub-columns. The first sub-column indicates

the name of the benchmarks. The second sub-column presents the

functional unit constraint for the design. We use notation “x, y” to

denote that only x adders and y multipliers are adopted for the RCS.

For example, in the first row of ARFilter design, “1, 3” denotes that

one adder and three multipliers are used for the given design. Due

to the space limit, we did not provide the number of other functional

unit types. The second column presents the ILP solving time using

the CPLEX CP Optimizer. In all benchmark items, only one of them

(i.e., ARFilter design with 2 adders and 3 multipliers) can achieve

the optimal result within the time limit. The third column presents

the scheduling timing using the BULB approach [3]. The fourth

column shows the results using our structure-aware approach. The

last column indicates overall speedup using our approach over the

BULB approach, i.e., BULB
Our Approach .



From this table, we can find that our approach can not only

outperform the state-of-the-art ILP solver with the branch-and-cut

heuristic, but also it can drastically improve the RCS performance

using the B&B style searching. For instance, when handling the

design Collapse under the constraint of two adders and one multiplier,

BULB method needs more than 3600 seconds for scheduling, which

is not acceptable in many scenarios. However, our approach requires

only 234.76 seconds. Generally, during RCS, the cost of the detection

and the check of level-bound information is negligible. However,

it can effectively prune the space where the search is fruitless.

Therefore, in most cases, our approach can achieve a significant

improvement.

The area and the power are two key issues in hardware design.

The scheduling under these two constraints can be considered as a

variant of the time-minimum resource scheduling [13]. Since both

area and power can be treated as special kinds of resources, our

proposed structure-aware pruning can also be used to promote the

scheduling performance under such non-functional constraints. We

did the experiment with the designs given in Table II using these two

constraints. Due to the space limit, we only present the results for

the FDCT design. All the other designs have the similar conclusion

based on their results.
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Fig. 4. Scheduling results with an area of 140 units
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Fig. 5. Scheduling results with an area of 100 units

Figure 4 shows the RCS result using the BULB approach and our

approach. Under the area constraint of 140 units, we check the RCS

with different power constraints (from 60 to 120 with an increment

of 10). We can find that when the power is taken into consideration

during the RCS (i.e., the case with a power constraint 60), our

approach can get the maximum speedup (more than 22 times). It is

important to note that, for the design of FDCT with a 140-unit area

constraint, the threshold of the power is 80 units. When the power

limit is larger than 80 units in this case, the power constraint will not

alter the outcome. Therefore, we can find that the last five instances

in Figure 4 show the similar results. We also tried to do RCS for

the FDCT design with a smaller area constraint (i.e., 100 units). As

shown in Figure 5. We can find a similar trend in Figure 4. In this

case with a power constraint of 50 units, none of the BULB approach

and our method can figure out any optimal schedule within the time

limit (i.e., 3600 seconds). Although it shows the same result in this

case, in fact the results cannot be compared. From above figures, we

can find that our approach is very promising in pruning the search

space of designs with power and area constraints. Our approach can

achieve up to 101 times improvement (for the case with 100-unit area

and 40-unit power) compared to the BULB approach [3].

VI. CONCLUSION

This paper proposes a structure-aware approach to prune search

space efficiently during resource-constrained HLS scheduling. Unlike

existing B&B algorithms which are based on the comparison of upper

and lower bounds between optimal schedule searched so far and

incomplete searching schedules, our approach investigates structural

scheduling information of the optimal schedule candidates during the

search to prune other non-optimal schedules in a proactive manner.

Our approach is orthogonal with the exsiting B&B approaches. The

synergy of them can promote the overall RCS performance drastically

by several orders of magnitude. Experimental results using various

benchmarks with different resource constraints show that our method

can achieve significantly better performance than existing state-of-

the-art B&B techniques.
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