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Abstract

Lossless compression is widely used to improve both mem-

ory requirement and communication bandwidth in embed-

ded systems. Dictionary based compression techniques are

very popular because of their good compression efficiency

and fast decompression mechanism. Bitmask based com-

pression improves the effectiveness of the dictionary based

approaches by recording minor differences using bitmasks.

This paper proposes an efficient encoding of bitmasks used

in bitmask-based compression. We prove that a n-bit bitmask

(records n differences) can be encoded using only n− 1 bits.

This encoding improves compression efficiency while reduces

decompression hardware overhead. We have applied our ap-

proach in a wide a variety of domains including code com-

pression, FPGA bitstream compression as well as control

word compression. Our experimental results using a wide va-

riety of benchmarks demonstrate that our approach improves

the compression efficiency by 3 to 10% without adding any

additional decompression overhead.

1 Introduction

Memory is one of the key driving factors in system design

because a larger memory indicates an increased chip area,

more power dissipation, and higher cost. As a result, mem-

ory imposes constraints on the size of application programs.

Moreover, memory typically operates at lower speed than the

processing elements and thereby brings down the overall sys-

tem performance. Compression techniques address the prob-

lem of slow and limited memory by reducing the data size.

Transmitting the compressed data improves the bandwidth

between memory and processing elements. Compression ra-

tio, widely accepted as a primary metric for measuring the

efficiency of compression, is defined as:

Compression Ratio =
Compressed Size

Original Size
(1)

Dictionary-based compression techniques are popular be-

cause they provide both good compression ratio and fast de-

compression mechanism. The basic idea is to take advantage

of commonly occurring patterns by using a dictionary. Re-

cently proposed techniques ([8, 12]) improve the dictionary-

based compression by considering mismatches. The basic

idea is to create matching patterns by remembering a few bit

positions. The efficiency of these techniques is limited by

the number and length of bit changes used during compres-

sion. It is obvious that if more bit changes are allowed, more

matching sequences will be generated. However, the cost of

storing the information for more bit positions offsets the ad-

vantage of generating more repeating word sequences. Stud-

ies [12] have shown that it is not profitable to consider more

than three bit changes for compression of 32-bit vectors.

The bitmask based approach proposed by Seong et al. [20]

compresses the data using bitmasks that can record differ-

ences between input words and dictionary entries. This pa-

per proposes an efficient compression technique to further

improve the compression ratio by reducing the bits needed

to encode the bitmask information. Our approach is appli-

cable in all compression scenarios where mismatch (correc-

tion) information is used but it is most effective in scenarios

where small dictionaries are used for compression and most

of the data patterns can be compressed using one or more bit-

masks. This paper analyzes the application of this approach

on compressing a wide variety of data patterns including no

instruction set computer (NISC) control words, application

programs, and FPGA bitstreams. We have used benchmark

from various domains ([6], [11], [14], and [15]). Our exper-

imental results demonstrate that our approach improves the

compression ratio by an average of 3 to 10% over existing

dictionary-based compression techniques without introduc-

ing any additional decompression overhead.

The rest of the paper is organized as follows. Section 2

presents related work on lossless compression. Section 3 de-

scribes the existing bitmask based compression. Section 4

presents our encoding technique followed by experimental

results in Section 5. Finally, Section 6 concludes the paper.

2 Related Work

The first compression technique for embedded processors

was proposed by Wolfe and Chanin [1]. Their technique uses



Huffman coding, and the compressed program is stored in the

main memory. The decompression unit is placed between

the main memory and the instruction cache. They used a

Line Address Table (LAT) to map original code addresses to

compressed block addresses. Lekatsas et al. [7] proposed a

dictionary based decompression prototype that is capable of

decoding one instruction per cycle. The idea of using dictio-

nary to store the frequently occurring instruction sequences

has been explored by various researchers [3], [17]. The tech-

niques discussed so far target reduced instruction set com-

puter (RISC) processors. There has been a significant amount

of research in the area of code compression for very long

instruction word (VLIW) and and no instruction set com-

puter (NISC) processors. The technique proposed by Ishiura

and Yamaguchi [13] splits a VLIW instruction into multiple

fields, and each field is compressed by using a dictionary-

based scheme. Gorjiara et al. [5] applies similar approach in

splitting the control words into different fields and compress-

ing them using multiple dictionaries.

Several techniques ([8], [12]) have been proposed to im-

prove the standard dictionary based code compression by

considering mismatches. Seong et al. [18, 19, 20] improve

the compression efficiency further by using bitmasks. Fig-

ure 3 shows an example of the bitmask-based code compres-

sion. The basic idea is to create repeating patterns from mis-

matches by storing the differences during compression us-

ing bitmasks. We try to encode the differences (bitmask)

using minimal number of bits to improve the compression

efficiency without introducing any additional decompression

overhead.

3 Background: Bitmask-Based Compression

This section describes the existing bitmask based com-

pression using illustrative examples. First, we describe the

standard dictionary-based approach. Next, we describe the

bitmask based compression that improve the standard ap-

proach by considering mismatches (using bitmasks).

3.1 Dictionary-based Approach

Dictionary-based code compression techniques provide

compression efficiency as well as fast decompression mech-

anism. The basic idea is to take advantage of commonly oc-

curring instruction sequences by using a dictionary. The re-

peating occurrences are replaced with a codeword that points

to the index of the dictionary that contains the pattern. The

compressed program consists of both codewords and uncom-

pressed instructions.

Figure 2 shows an example of dictionary based code com-

pression using a simple program binary and encoding format

shown in Figure 1. The binary consists of ten 8-bit patterns

i.e., total 80 bits. The dictionary has two 8-bit entries. The

compressed program requires 62 bits and the dictionary re-

isCompressed

(1−bit)

(a) Compressed with dictionary index

(b) Uncompressed word

isCompressed Dictionary Index

(1−bit)
2

(log (d) bits)

UnCompressed Word

(w−bits)

Figure 1. Format for dictionary-based compression

quires 16 bits. In this case, the compression ratio (CR) is

97.5% (using Equation (1)).
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Figure 2. Dictionary-based compression example

3.2 Bitmask-based Compression (BMC)

Seong et al. [20] improve the standard dictionary based

compression techniques by considering mismatches. The ba-

sic idea is to find the data sequences that are different in few

consecutive bit positions and store that information in the

compressed program. Compression ratio will depend on how

many bit changes (and length of each consecutive change)

are considered during compression. Figure 3 shows the same

example (80-bit binary in Figure 2) compressed using one

bitmask allowing 2 consecutive bit changes starting at even

locations. In this example, we are able to compress all the

mismatched words using smaller number of bits and achieve

the compression ratio of 87.5%.

Figure 4 shows the encoding format used by these tech-

niques for a w-bit program. In general, the compression ra-

tio depends mainly on the word width, dictionary size and

the number of bitmasks used. A smaller word size results

in more direct matches whereas it increases the number of

words needed to be compressed. A larger dictionary size can

match more words replacing them with dictionary index but

at the cost of increased dictionary index bits. More number

of bitmasks results in more compressed words but requires

more bits to encode the bitmask information. Our approach

reduces the number of bits required for encoding bitmasks

without adding any extra overhead during decompression.
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Figure 3. Bitmask-based compression example

Bitmask-based compression has been successfully used in

different domains including code compression [18, 19, 20],

manufacturing test compression [9], and NISC control word

compression [4].
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4 Efficient Representation of Bitmasks

We describe our approach using illustrative examples.

Figure 5 shows compression using a two-entry dictionary and

one bitmask that records 1-bit change. It is clear that if we

know the location, additional bitmask information is redun-

dant. Thus it can be removed from the bitmask encoding.

For example, the second pattern in the Figure 5 is differing

at location ‘000’ (from left) with bit difference of 1 (XOR

operation will give us the required bitmask). Our approach

removes this bit from encoding.

Figure 6 shows another example that uses a bitmask to en-

code 2 bit differences. In this example, four entries (second,

third, fourth and fifth input patterns) are compressed using

one bitmask (of size 2). Note that the second pattern is com-

pressed using bitmask ‘01’ applied at location 0. We can also

encode the same difference using bitmask ‘10’ applied at lo-

cation 1. Thus we have only two unique differences to be

 1

 0
 1

 0100 0010  0  1  0  1

 0000 0000
 1100 0010

 0  1
 0  0 000 1

 0  1
 0  0 000  0000 0000

 0100 0010

Content

 0
 1

Dictionary

bitmask value

bitmask position

 0
 1
 1

Original Our ApproachCompressed

Figure 5. Encoding 1-bit change using bitmasks

encoded (‘10’ and ‘11’). These two encodings require only

one bit as shown in Figure 6 (third column – Our Approach).
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Figure 6. Encoding 2-bit changes using bitmasks

In general with a 2-bit bitmask, there are four different

bitmask values possible { ‘00’, ‘01’, ‘10’, ‘11’ } as shown

in Figure 7. Out of these possibilities the first pattern (‘00’)

never occurs as this indicates that there are no differences.

The second and third bitmasks are equivalent except that off-

set of these differ by one. Hence both can be represented

using ‘10’ bitmask. Thus there are only two bitmasks (‘10’

and ‘11’) that needs to be encoded. Hence a single bit is

sufficient to represent any 2-bit bitmasks.

0 0 0 0
0 0 0 1

mask = 0 1 offset = 1

0 0 0 0
0 0 1 1

mask = 1 1 offset = 1

0 1

1 1

mask = 1 0 offset = 0
or

mask = 1 0

0 0 1 0
0 0 0 0

offset = 1

1 0

0 0 No change

Possible 2−bit changes

encode using ‘0’

encode using ‘1’

Figure 7. Four possible values of a 2-bit bitmask

Similarly, Figure 8 shows how a 3-bit bitmask can be en-

coded using 2-bits with different offset values. Theorem 1

proves that it is always possible to encode a n-bit bitmask

using only n-1 bits.
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Theorem 1: Let n be the number of consecutive bit

changes to encode between two words w1 and w2. Then n−1

bits are sufficient to encode the n bit changes.

Proof: We prove this theorem using induction. It is clear

that we do not need any bits to indicate the difference for

n = 1, since the location (offset) information is sufficient.

Similarly as described earlier (Figure 7), we need only one

bit to encode two bit changes (n = 2).

Let us assume that a n− 1 bit bitmask can be encoded us-

ing n−2 bits. Now we show that, to encode n bits we require

only n − 1 bits. A n-bit bitmask can encode 2n differences

out of which flower = 2
n

2
= 2n−1 differences have MSB set

to 0 and fupper = 2
n

2
= 2n−1 differences have MSB set to 1.

To encode flower differences without the MSB we need only

n−2 bits (based on our assumption). Similarly, we need n−2

bits to encode fupper differences without the MSB. Now to

encode the differences with MSB we need an extra bit along

with n − 2 bits. Thus we need a total of n − 2 + 1 = n − 1

bits to encode n-bit bitmasks. This completes the proof.

5 Experiments

The application of our approach improves the compres-

sion efficiency in scenarios where input patterns are com-

pressed using small dictionaries and most of the words are

encoded using one or more bitmasks. To evaluate the effec-

tiveness of our approach, we have applied it on three different

domains – code compression, FPGA configuration bitstream

compression, and NISC control word compression.

5.1 Code Compression

Embedded systems are constrained by the available mem-

ory. Code compression techniques address this issue by re-

ducing the code size of application programs. The bitmask

based code compression discussed in Section 3.2 reduces the

instruction size significantly by storing the most frequently

occurring instructions in a restricted dictionary and replacing

them with shorter dictionary index. The instructions which

are different from the dictionary entries in some bit positions

are encoded using dictionary index along with bitmasks.

Figure 9. BMC versus our approach

Figure 9 shows the comparison of our approach with

bitmask-based compression (BMC [20]). These experiments

were conducted using 32-bit binaries with dictionary size of

512 entries and two sliding bitmasks (2- and 3-bits wide).

We have used benchmarks from various application domains

including TI and Mediabench [2] benchmark suites. It is ob-

served that on an average there is an improvement of 2 to 3%

on overall compression efficiency. An advantage of this tech-

nique is that the improvement is achieved without adding any

extra logic or overhead on decompression.

5.2 FPGA Bitstream Compression

Field programmable gate arrays (FPGA) store configura-

tion bitstream in memories which are usually limited in ca-

pacity and bandwidth. As FPGAs are commonly used in re-

configurable systems and application specific integrated cir-

cuits (ASIC), configuration memory becomes a key factor

in determining the number of IP cores that a reconfigurable

system can support and the configuration delay. Compres-

sion of configuration bitstream solves memory constraint is-

sue by reducing the size of the bitstreams, whereas fast de-

compression increases the communication bandwidth reduc-

ing the configuration delay.

Figure 10 shows the comparison with bitmask-based com-

pression (BMC). We have used benchmarks from various ap-

plication domains including image processing and encryp-

tion benchmarks [10]. These experiments were conducted

using 16-bit FPGA bitstreams with dictionary size of 512 en-

tries and one 2-bit sliding bitmask. It is found that on an

average there is an improvement of 2 to 3% on overall com-

pression efficiency.



Figure 10. FPGA bitstream compression

5.3 NISC Control Word Compression

It is not always efficient to run an application on a generic

processor, whereas implementing a custom hardware is not

always feasible due to cost and time considerations. One of

the promising direction is to design a custom datapath for

each application using its execution characteristics. The ab-

straction of instruction set in generic processors limits from

choosing such custom data path. No instruction set architec-

ture (NISC [16]) promises faster performance guarantees by

analyzing the datapath behavior and eliminating abstraction

of instruction set to choose a custom datapath, thus control-

ling the selection of optimal datapath to meet applications

performance requirements. The datapath or control word

(CW) tend to be at least 4 to 5 times wider than regular in-

structions, thus increasing the code size of applications. One

promising approach is to reduce these control words by com-

pressing them.

Figure 11. NISC control word compression

Figure 11 shows the comparison with bitmask-based com-

pression (BMC). These experiments were conducted using

32-bit control words with dictionary size of 1024 entries and

two sliding bitmasks (2- and 3-bits wide). The control word

benchmarks are generated by NISC compiler [5] and is based

on MiBench [6] benchmarks. It is found that on an average

there is an improvement of 5 to 10% on overall compression

efficiency.

The improvement of compression efficiency by our ap-

proach is dependent on the number of bitmasks used in com-

pressed patterns since it reduces the size (number of bits) of

each bitmask by one. Clearly, this approach will perform

better in the scenarios where multiple bitmasks are used for

compression. It is important to note that the improvement in

compression efficiency does not introduce any decompres-

sion overhead since our method changes only the offset in-

formation and reduces the bitmask size.

6 Conclusions

This paper presented a novel encoding scheme to effi-

ciently represent a n-bit bitmask using n-1 bits, thus reduc-

ing the compressed data size. We applied this technique for

compressing a wide variety of input patterns including appli-

cation programs, FPGA configuration bitstreams, as well as

NISC control words. Our experimental results demonstrated

an improvement of 3 to 10% in compression efficiency with-

out introducing any area or performance penalty. Our ap-

proach is applicable in all compression scenarios where mis-

match (correction) information is used but it is most effective

in scenarios where small dictionaries are used for compres-

sion and most of the data patterns are compressed using one

or more bitmasks. Our approach can also be applied in other

domains where differences are encoded as offset and value

pairs to reduce the bits required to encode these differences.

Acknowledgments

This work was partially supported by NSF CAREER

award 0746261. We would like to thank Xiaoke Qin for his

insightful comments and suggestions.

References

[1] A. Wolfe and A. Chanin. Executing compressed pro-

grams on an embedded RISC architecture. In Proceed-

ings of International Symposium on Microarchitecture

(MICRO), pages 81–91, 1992.

[2] C. Lee, M. Potkonjak and W. Mangione-Smith. Me-

diabench: A tool for evaluating and synthesizing mul-

timedia and communication systems. In Proceedings

of International Symposium on Microarchitecture (MI-

CRO), pages 330–335, 1997.

[3] C. Lefurgy, P. Bird, I. Chen and T. Mudge. Improv-

ing code density using compression techniques. In Pro-

ceedings of International Symposium on Microarchitec-

ture (MICRO), pages 194–203, 1997.

[4] C. Murthy and P. Mishra. Bitmask-based control word

compression for NISC architectures. In Proceedings

of ACM Great Lakes Symposium on VLSI (GLSVLSI),

2009.

[5] B. Gorjiara and D. Gajski. FPGA-friendly code com-

pression for horizontal microcoded custom IPs. In Pro-



ceedings of Field Programmable Gate Arrays (FPGA),

2007.

[6] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T.

Mudge, and R. Brown. MiBench: A free, commercially

representative embedded benchmark suite. In Proceed-

ings of International Workshop on Workload Charac-

terization (WWC), 2001.

[7] H. Lekatsas, J. Henkel and V. Jakkula. Design of an

one-cycle decompression hardware for performance in-

crease in embedded systems. In Proceedings of Design

Automation Conference (DAC), pages 34–39, 2002.

[8] J. Prakash, C. Sandeep, P. Shankar and Y. Srikant. A

simple and fast scheme for code compression for VLIW

processors. In Proceedings of Data Compression Con-

ference DCC, page 444, 2003.

[9] K. Basu and P. Mishra. A novel test-data compression

technique using application-aware bitmask and dictio-

nary selection methods. In Proceedings of ACM Great

Lakes Symposium on VLSI (GLSVLSI), pages 83–88,

2008.

[10] D. Koch, C. Beckhoff, and J. Teich. Bitstream de-

compression for high speed FPGA configuration from

slow memories. In Proceedings of International Con-

ference on Field Programmable Technology (ICFPT),

pages 161–168, 2007.

[11] D. Koch, C. Beckhoff, and J. Teich. FPGA bitstream

compression benchmark. Dept. of Computer Science

12, University of Erlangen-Nuremberg, 2007.

[12] M. Ros and P. Sutton. A hamming distance based

VLIW/EPIC code compression technique. In Pro-

ceedings of International Conference on Compilers,

Architectures, and Synthesis for Embedded Systems

(CASES), pages 132–139, 2004.

[13] N. Ishiura and M. Yamaguchi. Instruction code

compression for application specific VLIW processors

based of automatic field partitioning. In Proceedings of

Synthesis And System Integration of Mixed Information

Technologies SASIMI, pages 105–109, 1997.

[14] Opencore. IP Core repository. Stockholm, Sweden,

1999. Opencore.org.

[15] J. Pan, T. Mitra, and W. Wong. Configuration bitstream

compression for dynamically reconfigurable FPGAs. In

Proceedings of International Conference on Computer

Aided Design (ICCAD), pages 766–773, 2004.

[16] M. Reshadi. No-Instruction-Set-Computer (NISC)

technology modeling and compilation. In PhD thesis,

Irvine, CA, USA, 2007. University of California Irvine.

[17] S. Liao, S. Devadas and K. Keutzer. Code density

optimization for embedded DSP processors using data

compression techniques. In Proceedings of Advanced

Research in VLSI, pages 393–399, 1995.

[18] S. Seong and P. Mishra. A bitmask-based code com-

pression technique for embedded systems. In Proceed-

ings of International Conference on Computer-Aided

Design (ICCAD), pages 251–254, 2006.

[19] S. Seong and P. Mishra. An efficient code compression

technique using application-aware bitmask and dictio-

nary selection methods. In Proceedings of Design Au-

tomation and Test in Europe (DATE), pages 582–587,

2007.

[20] S. Seong and P. Mishra. Bitmask-based code com-

pression for embedded systems. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Sys-

tems (TCAD), 27(4):673–685, April 2008.


