
Dynamic Reconfiguration of Two-Level Caches in
Soft Real-Time Embedded Systems∗

Weixun Wang and Prabhat Mishra
Department of Computer and Information Science and Engineering

University of Florida, Gainesville, FL
{wewang,prabhat}@cise.ufl.edu

Abstract
Cache reconfiguration is a promising optimization tech-

nique for reducing memory hierarchy energy consumption with
little or no impact on overall system performance. While
cache reconfiguration is successful in desktop-based systems,
it is not directly applicable in real-time systems due to tim-
ing constraints. Existing scheduling-aware cache reconfigura-
tion techniques consider only one-level cache. It is a major
challenge to dynamically tune multi-level caches since the ex-
ploration space is prohibitively large. This paper efficiently
integrates cache reconfiguration in soft real-time systems with
a unified two-level cache hierarchy. We utilize a set of explo-
ration heuristics during our static analysis which effectively
decreases the exploration time while keeps the generated pro-
file results beneficial to be leveraged during runtime. Our ex-
perimental results have demonstrated 32 - 49% energy savings
with minor impact on performance.

1 Introduction

Energy is one of the most stringent resources in embedded
systems due to the fact that most of the devices are driven by
batteries. Many low-power techniques and energy-aware algo-
rithms target at different system components. Memory hierar-
chy is responsible for as much as 50% of the energy consump-
tion of a microprocessor system [9]. According to Amdahl’s
law, such a large contribution to the overall energy consump-
tion makes memory hierarchy a good candidate for optimiza-
tion. Dynamic reconfiguration techniques offer the ability to
meet each application’s unique needs by tuning the parameters
at runtime. Cache subsystem reconfiguration could lead to sig-
nificant energy saving by meeting application’s diverse cache
requirements [1][17]. The working set of the application fa-
vors different cache sizes while its spatial locality determines
favored line size. Furthermore, cache associativity reflects the
application’s temporal locality.

Real-time embedded systems have been widely studied over
the last few decades with most of them focusing on schedul-
ing, resource allocation and management. Real-time embed-
ded systems have unique design considerations and optimiza-
tion constraints that tasks must meet their deadlines. A task

∗This work was partially supported by NSF CAREER Award 0746261.

set is said to be schedulable if there exists a feasible schedule
that can satisfy all timing constraints. Hence optimizations in
real-time systems must be aware of the task schedulability in
order to guarantee that the system’s service quality does not get
tampered. Hard real-time systems require that every task must
be completed within its specified deadline and any violation
will cause catastrophic consequences. Soft real-time systems,
including multimedia systems, provide a more relaxed environ-
ment where a few tasks are allowed to be dropped or miss their
deadlines. In other words, for soft real-time systems, minor
deadline violation could result in temporary service degrada-
tion but the system remains effective. Earliest Deadline First
(EDF) and Rate Monotonic (RM) [7] are the two most fre-
quently referenced fundamental scheduling algorithms in real-
time system research community.

It is a major challenge to apply cache reconfiguration in
real-time systems. Both determining the appropriate cache
configuration and tuning the cache hierarchy inevitably intro-
duce runtime overhead if done dynamically. Changing cache
configuration on-the-fly will also change the task’s execution
time, which may lead to unpredictable system behavior. Di-
rect application of reconfigurable cache in real-time systems
without careful consideration may not even be beneficial. Our
previous work [15] have explored the use of one-level reconfig-
urable cache in soft real-time systems. However, it remains a
challenge to dynamically tune multi-level caches since the ex-
ploration space is prohibitively large. This paper apply cache
reconfiguration in soft real-time systems with a unified two-
level cache hierarchy. We develop a set of exploration heuris-
tics for our static analysis to effectively decrease the explo-
ration time while keeping the generated profile results benefi-
cial.

The rest of the paper is organized as follows. Section 2
presents a survey of related research areas. Section 3 de-
scribes background on configurable cache architecture and
phase-based static profiling techniques. Section 4 describes
our design space exploration and dynamic cache tuning tech-
nique. Section 5 presents our experimental results. Finally,
Section 6 concludes the paper.

2 Related Work
There are many existing methods for general and appli-

cation specific reconfigurable cache architectures. Motorola

1

M*CORE processor [9] provides way shut-down and way
management, which has the ability to specify the content of
each specific way (instruction, data, or unified way). Modar-
resssi et al. [10] developed a cache architecture which can
be dynamically partitioned and resized to improve the perfor-
mance of object-oriented embedded systems. Settle et al. [12]
proposed a dynamically reconfigurable cache specifically de-
signed for chip multi-processors. Zhang et al. [17] proposed
an efficient and highly configurable cache architecture which
imposes almost no overhead to the critical path. All of these
approaches were studied in the context of desktop-based sys-
tems.

A lot of research efforts are spent in finding efficient au-
tomated techniques to reconfigure the cache hierarchy. Dy-
namic and static analysis are two possible ways to solve the
problem. Both methods explore possible candidates and de-
cide a profitable configuration to tune to at a given moment.
If applications are unknown a priori, dynamic analysis is ob-
viously the only option. However, its intrusive nature makes
dynamic analysis infeasible in real-time systems since it im-
poses unpredictable performance overhead during exploration.
In many cases, the applications are known during the design
time. It makes static analysis attractive to real-time systems
due to its non-intrusive nature. Static analysis explores design
space to predetermine the best cache configuration for either
the entire application or a part of it. The former strategy is
called application-based tuning [4] while the latter is called
phase-based tuning [13]. Previous works for tuning two-level
cache hierarchy focused on design space reduction in desktop-
based systems. Exploration heuristics introduced in [3] and [4]
are designed for a configurable cache hierarchy with separate
level-two caches [9] and with a unified level-two cache, respec-
tively. However, none of these works is applicable to real-time
systems.

While being ubiquitous in nearly all desktop level com-
puting systems, incorporating caches into real-time embedded
systems is still a hotspot issue. The difficulty mainly comes
from the unpredictability nature of caches in terms of timing
behavior. Fortunately, a great deal of research efforts have
been carried out to employ caches in real-time systems. Puant
et al. [11] present a technique in which cache lines in use
are “locked” when a task is preempted so that these blocks
will not be replaced to accommodate the new incoming task.
Cache partitioning [16] partitions the cache into multiple pre-
served regions, each of which can only be used by a dedicated
task. Obviously, both cache locking and cache partitioning
have the drawback that the cache space per task is reduced.
Cache-aware execution time analysis [14] improves the preci-
sion of worst-case execution time estimation by taking cache
effects into the preemption delay calculation. However, these
approaches do not address dynamic cache reconfiguration.

Our previous work on cache reconfiguration in real-time
systems is presented in [15], which utilized a single level cache
subsystem. As embedded system’s capability keeps improving
nowadays, two-level cache is becoming common in these sys-
tems. However, two-level cache hierarchy has a much larger

design space than single-level cache since a cross product of
two configuration spaces of two cache levels needs to be con-
sidered. This may lead to prohibitively long searching time if
brute force algorithm is used. We propose three heuristics to
tune two levels of caches in an efficient fashion. We also pro-
posed the algorithm to utilize the static profiling information
dynamically to tune the cache hierarchy. Our work is based on
a preemptive real-time system using EDF scheduling algorithm
and periodic tasks with soft time constraints.

3 Background
In our previous work [15], we statically profiled each task

and stored the analysis results in a lookup table which is fully
utilized at runtime to make reconfiguration decisions. In this
section, we summarize the background on configurable cache
architecture and our static profiling technique.

3.1 Configurable Cache Architecture

The configurable caches used in our work are based on the
architecture described in [17]. The underlying cache architec-
ture contains four separate banks that can operate as four sep-
arate ways. Special configuration registers are used to inform
the cache tuner – a custom hardware or a lightweight process –
to concatenate ways such that the associativity can be altered.
The special registers may also be configured to shut down ways
to vary the cache size. Similarly, by configuring the fetch unit
to fetch cache lines in various lengths, we can adjust the line
sizes. We extend the single level configurable cache in [17] to a
two-level cache hierarchy by utilizing a level two data cache as
a unified cache. Therefore, our target architecture has separate
level one caches – instruction level one cache (IL1) and data
level one cache (DL1) – as well as a unified level two cache
(L2).

3.2 Phase-based Cache Tuning

Research shows that application’s operating requirements
varies throughout the execution [13]. Hence, the energy sav-
ings by tuning configurable parameters for the whole applica-
tion still has potential for improvement. Since a preemptive
system is considered, executing tasks may be interrupted and
preempted by newly arrived tasks with higher priorities. Due
to this nature, tuning cache hierarchy at the granularity of ex-
ecution intervals may yield more energy savings and less per-
formance unpredictability.

Within a single task, potentially there exist several intervals
of different lengths having distinct operating behaviors. How-
ever, it is not feasible to utilize these inborn intervals because
preemption could happen at any point throughout the execu-
tion. In other words, when a preempted task resumes, the cache
requirement of the remaining part may greatly differ from the
entire task due to its distinguishing behaviors. So the best op-
tion is to use a Monte Carlo style method. As shown in Fig-
ure 1, each task is evenly divided with n predefined potential
preemption points. A phase is defined as the execution interval
from one partition point to task completion. The number of
partition points is defined as partition factor. Experiments in

[15] show that a partition factor around four to seven is suffi-
cient to yield the majority of energy savings. Here, C1, C2 ...
Cn represent the chosen cache configurations for each phase.
Note that since we are considering two-level caches, each Ci
actually stands for three cache configurations (IL1 cache, DL1
cache and L2 cache).

……

0 P1 P2 Pn-1

Task Execution Time

phase (0/n)

C1

C2

phase (1/n)

phase (2/n)

C3

Cn

phase (n-1/n)

Figure 1. Phase-based cache tuning: task is
partitioned at n potential preemption points (Pi)
resulting in n phases.

The phase-based profiling generates a profile table which
stores optimal cache configurations for each phase of a task.
For each task, the energy- and performance- optimal cache
configurations of all phases are found and stored in the pro-
file table. It also stores the total number of execution cycles
required in each phase. Differing from [15], we also take L2
cache also into account. Both energy-optimal configuration for
L1 cache (EOil1

i (n/p), EOdl1
i (n/p)) and L2 cache (EOul2

i (n/p))
of the nth phase of task i are stored. EOTi(n/p) represents the
nth phase’s execution time if the caches are tuned to these con-
figurations. Similarly, the same set of information are stored
for the performance-optimal cache configurations.

4 Reconfiguration of Two-Level Caches
In this section, we present our work on cache reconfigura-

tion for soft real-time systems with a two-level cache hierar-
chy. First, we describe how to generate profile table with prof-
itable cache configurations using efficient heuristics. Next, we
present an algorithm on how to use the profile table to dynam-
ically reconfigure cache hierarchy.

4.1 Two-Level Cache Exploration

Tuning a two-level cache faces the difficulty of exploring
an enormous configuration space. In this paper, we examine
typical exploration parameters of conventional embedded sys-
tems. We explore cache sizes of 1KB, 2KB and 4KB, line
sizes of 16, 32 and 64 bytes, and direct-mapped, 2- and 4-way
set associativities for the L1 cache. We use a 4KB cache ar-
chitecture proposed in [17] with four banks each of which is
1KB. Since the reconfiguration of associativity is achieved by
way concatenation as described in Section 3.1, 1KB L1 cache
can only be direct-mapped as other three banks are shut down.
For the same reason, 2KB cache can only be configured to
direct-mapped or 2-way associativity. Therefore, there are 18

(=3+6+9) configuration candidates for L1 caches. Let Sil1 and
Sdl1 denote the size of exploration space for IL1 cache and DL1
caches, respectively. So we have Sil1 = 18 and Sdl1 = 18. For
L2 cache, we choose 8KB, 16KB and 32KB as cache sizes; 32,
64 and 128 bytes as line sizes; 4-, 8- and 16-way set associativ-
ities with a 32KB cache architecture composed of four separate
banks. Similarly, there are 18 possible configurations (Sul2 =
18). For comparison, we have chosen a base cache hierarchy,
which reflects a global optimal configuration for all the tasks,
consisting of two 2KB, 2-way set associative L1 caches with a
32 byte line size, and a 16KB, 8-way set associative unified L2
cache with a 64 byte line size. The remainder of this section
describes our proposed exploration techniques.

4.1.1 Exhaustive Exploration

Intuitively, if the two levels of caches can be explored indepen-
dently, one can easily profile one level at a time while holding
the other level to a typical configuration, which will result in a
much small exploration space. However, it is not reasonable
to claim that the combination of three independently found
energy-optimal configurations actually is or ever close to the
global optimal one. The two cache levels affect each other’s
behavior in various ways. For instance, L2 cache’s configura-
tion determines the miss penalty of the L1 caches. Also, the
number of L2 cache accesses directly depends on the number
of L1 cache misses.

Therefore, the only way to hire the optimal configuration
is to search the entire space exhaustively. Since the instruc-
tion cache and the data cache could have different configura-
tions, there are 324 (=Sil1*Sdl1) possible configurations for L1
cache. Addition of the L2 cache increases the design space size
to 47521. Moreover, the phase-based profiling strategy we use
makes this number even larger. For a single task, if the parti-
tion factor is 4, we have to explore for all four phases, leading
to a total of 19008 task phase executions. Obviously it is infea-
sible. We use the exhaustive method for comparison with the
heuristics presented in the following sections.

4.1.2 Independent Level One Cache Tuning – IL1T

While different cache levels are dependent on each other, our
experimental results demonstrate that instruction cache and
data cache are relatively independent. In this study, we fix
one’s configuration while changing the other’s to see whether
the varying one has impact on the fixed one. We observe that
the profiling statistics for the instruction cache almost remain
identical with different data caches and vice versa. It is mainly
due to the fact that access pattern of L1 cache is purely deter-
mined by the application’s characteristics, and the instruction
and data streams are relatively independent from each other.
Furthermore, factors affecting the instruction cache’s energy
consumption as well as performance (such as hit energy, miss
energy and miss penalty cycles) have very little dependency on
the data cache and vice versa.

1Not equal to Sil1*Sdl1*Sul2 because the candidates in which L2 cache’s
line size is smaller than any of the L1 caches are eliminated

This observation offers an opportunity to reduce the ex-
ploration space. We propose IL1T – Independent Level One
Tuning heuristic – during which IL1 and DL1 caches always
use the same configuration while exploring with all L2 cache
configurations. This method results in a total of 288 config-
urations – a considerable cut down of the original quantity,
though still not small. Throughout the static analysis, we make
book keeping including the energy consumptions and miss cy-
cles of each cache individually. The energy-optimal IL1 cache
is the one with the lowest energy consumption of itself (and
same for DL1 cache and L2 cache). We choose the cache con-
figuration combination composed of the three locally energy-
(performance-) optimal caches as the energy- (performance-)
optimal cache hierarchy to be stored in the profile table.

4.1.3 Two-Step Tuning – TST
By examining the results generated by IL1T, we find that some
very unprofitable L1 cache configurations are also explored
18 (=Sul2) times with L2 cache, resulting in still relatively
inferior cache combinations. These non-beneficial configura-
tions are likely to be discarded. Just like in single level cache
tuning, we only have to consider configurations which offer
Pareto-optimal tradeoff points. Candidates with both lower
performance and higher energy consumption than one of these
Pareto-optimal ones are eliminated during exploration. Our
proposed Two-Step Tuning heuristic is summarized below:

1. Hold DL1 and L2 as the base cache. Tune IL1 and record
all its Pareto-optimal configurations. Let Pil1 denote the
number of recorded IL1 configurations.

2. Hold IL1 and L2 as the base cache. Tune data cache and
record all its Pareto-optimal configurations. Let Pdl1 de-
note the number of recorded DL1 configurations.

3. Hold both L1 caches as the base cache. Tune L2 and
record all its Pareto-optimal configurations. Let Pul2 de-
note the number of recorded L2 configurations.

4. Explore all the combinations from each set of Pareto-
optimal configurations recorded in the previous steps and
find the energy- and performance- optimal configurations.

The first three steps explore 54 (=Sil1+Sdl1+Sul2) candi-
dates while the last step explores Pil1*Pdl1*Pul2 candidates.
Based on our experimental results, the number of Pareto-
optimal points varies from application to application but nor-
mally around 3 to 5. Therefore, the total exploration space is
reduced to 81 - 179, though in some cases the number could be
larger than IL1T’s space size (288).

4.1.4 Interlaced Tuning – ILT
Gordon-ross et al. [3] designed a tuning heuristic named TCaT
– Two-level Cache Tuning – in a interlaced manner for desk-
top systems. In their approach, cache parameters are tuned in
the order of their importance to the overall energy consump-
tion, which is cache size followed by line size and finally as-
sociativity. TCaT claims to find the configuration with energy
consumption close to the optimal one by only exploring tens of
candidates. We adapt the strategy used in TCaT and propose
ILT – Interlaced Tuning heuristic – which finds both energy-

and performance- optimal parameters throughout the explo-
ration. In order to increase the chances finding optimal L2
cache size, which we believe has the highest importance, we
combine the exploration of L2 cache’s size and associativity
together. ILT is described below:

1. First, tune by cache size. Hold the IL1’s line size, as-
sociativity as well as DL1 to the smallest configuration.
L2 is set to the base cache. Explore all three instruction
cache sizes (1KB, 2KB and 4KB) and find out the energy-
and performance- optimal one(s). Perform same explo-
rations for DL1 cache size. In L2 size exploration, we try
all the associativities for each cache size and repeat the
process twice to find the energy- and performance- op-
timal size(s), separately. We set L1 sizes to the energy-
(performance-) optimal ones in the process of finding
energy- (performance-) optimal L2 size(s).

2. Next, tune by line size. We set cache sizes to the energy-
(performance-) optimal ones and L2’s associativity found
in the first step in exploring energy- (performance-) op-
timal line sizes for each cache. These two tasks are re-
peated for both L1 caches and L2.

3. Finally, tune by associativity. We set the cache sizes and
line sizes to the energy- (performance-) optimal ones in
exploring energy- (performance-) optimal associativity.
Note that we only explore associativities for L1 caches in
this step. During the process of finding DL1’s optimal as-
sociativities, we already have all the other parameters we
needed to compute the total numbers of execution cycles
that are required in the profile table.

In the worst case, ILT explores 54 configurations: the first
step explores 6 for L1 caches and 18 for L2 cache; the sec-
ond step explores 18 (=6*3) candidates; final step explores 12
(=6*2) candidates. However, in most cases, there are a lot of
repetitive configurations throughout the process that we only
have to execute once. In practice, ILT has a exploration space
size of around 35 configurations.

4.2 Scheduling-Aware Reconfiguration

This section describes the algorithm we propose to dynami-
cally reconfigure the cache hierarchy at runtime using the static
analysis results stored in the profile table. Additionally, as ex-
hibited in Table 1, there is a task list that maintains necessary
book keeping information for each task. Current Phase (CPi)
denotes the last partition point which the task execution has just
passed through. Like common real-time systems, a ready task
list (RTL) is also maintained as a priority queue comprising all
the tasks ready to execute ordered by priority2.

Table 1. Task list entry sample.
Task ID: i Partition Factor: p

Current Phase (CPi) Deadline (Di)
Total Instruction
Number (TINi)

Executed Instruction
Number (EINi)

2Here the priority means the dynamic scheduling priority decided by EDF.

Algorithm 1 Cache configuration selection
Input: Task list entry, ready task list and profile table.
Output: An appropriate cache configuration combination.
Step 1: Calculate the preempted task Tp’s CP.
for i = 0 to p−1 do

if T INT p×i/p ≤ EINT p< T INT p×(i+1)/p then
CPT p= i/p;

end if
end for
Step 2: Get the task with maximum priority Tc from RTL.
Step 3: Sort all tasks in RTL by priority, T1 to Tm, from
highest to lowest. t represents the current time instant.
for j = 1 to m do

if t + POT T c(CPT c/p)+∑
j
i=1 POT Ti((CPTi+1)/p)>DT j

then
Task DT j is subject to be discarded;

end if
end for
Step 4: Select cache configuration for Tc. Let m′ be the
number of tasks in RTL left after Step 3.
if t +EOT T c(CPT c/p)>DT c then

EO OK = f alse;
else

EO OK = true;
for j = 1 to m′ do

if t +EOT T c(CPT c/p)+∑
j
i=1 POT Ti((CPTi+1)/p)>DT j

then
EO OK = f alse;

end if
end for

end if
if EO OK == true then

Cacheil1
T c= EOil1

T c(CPT c/p); Cachedl1
T c = EOdl1

T c (CPT c/p);
Cacheul2

T c = EOul2
T c (CPT c/p);

else
Cacheil1

T c= POil1
T c(CPT c/p); Cachedl1

T c = POdl1
T c (CPT c/p);

Cacheul2
T c = POul2

T c (CPT c/p);
end if
Return: Cacheil1

T c, Cachedl1
T c , Cacheul2

T c

Algorithm 1 illustrates cache configuration selection algo-
rithm. This algorithm is called either when a new task with a
higher priority than the current executing task arrives in the
system or when the current task finishes its execution. In
the former case, Step 1 uses the executed instruction number
(EIN) to calculate the Current Phase (CP) for the preempted
task. In the latter case, this step should be omitted. Step 2
picks the highest priority task Tc from RTL. In the former
case, the newly arrived task is inserted into RTL and, obvi-
ously, Tc refers to that task. Step 3 checks the schedulability
of all the tasks in RTL by iteratively checking whether each
task can meet its deadline if all the preceding tasks, includ-
ing itself, use performance-optimal cache configurations. This
process is done in the order of tasks’ priority (from highest to
lowest) to achieve least discarded tasks. Step 3 is skipped if

RTL is empty. In Step 4, the appropriate cache configuration
for Tc is selected based on whether it is safe to use energy-
optimal cache configuration. This algorithm runs in time of
O(max(p,m)) where p is the partition factor and m is the total
number of tasks in RTL.

5 Experiments
5.1 Experiment Setup

To evaluate our exploration heuristics and scheduling algo-
rithm, we selected six benchmarks from MediaBench [8] and
another six benchmarks from EEMBC [5] benchmark suites.
These benchmarks are all specially designed for embedded
systems and suitable for the cache configuration parameters
described in Section 4.1. Table 2 shows our four task sets,
each of which consists of three selected benchmarks. In order
to avoid the situation where one or two tasks dominate the total
energy consumption, tasks in each set are chosen to have com-
parable sizes. All the tasks are executed with the default input
sets provided with the benchmark suites.

Table 2. Benchmark task sets
Task 1 Task 2 Task 3

Set 1 epic* pegwit* rawcaudio*
Set 2 cjpeg* toast* mpeg2*
Set 2 A2TIME01** AIFFTR01** AIFIRF01**
Set 3 BITMNP01** IDCTRN01** RSPEED01**

*MediaBench **EEBMC

Our energy model is adapted from the one used in [15] and
extended to incorporate a unified L2 cache. In order to fill up
the energy model with the actual dynamic cache access energy
consumption of each configuration, we obtained values using
CACTI 4.2 [6] with a 0.18 µm technology. We implemented
the energy model and cache tuning heuristics using Perl scripts,
which we used to drive the SimpleScalar toolset [2] to do the
phase-based task profiling. In order to get the optimal cache
configurations for each phase, we utilized checkpointing and
fastforwarding capabilities provided in SimpleScalar which al-
low us to execute specified intervals of a task. Once we have
the profile tables for all the tasks, we use an EDF scheduler to
simulate the system. The scheduler calls another script which
contains the cache configuration selection algorithm (Algo-
rithm 1) to reconfigure the cache.

5.2 Results

We quantify the cache subsystem energy savings using our
approach by comparing to the base cache scenario. We use four
cache exploration methods – exhaustive, IL1T, TST and ILT –
to generate profile tables for all the task sets. Figure 2 presents
the total cache hierarchy energy consumption normalized to
the base cache for all the four task sets using each exploration
technique. As expected, exhaustive exploration generated the
highest energy saving (49% on average). IL1T achieves 46%
average energy saving which is comparable to the exhaustive
method. TST outperforms IL1T in task set 4 but on average
saves 43% of the energy consumption, while ILT performs the

worst, though still 32% energy saving is achieved. Figure 2
also shows the relative performances of each heuristic. On an
average, IL1T, TST, ILT make the system consume 7%, 13%
and 34% more energy than the exhaustive method. The reason
for IL1T not finding the optimal configurations is that though
L1 caches are relatively independent, they both have impact
on the L2 cache which has effect back on L1 caches. So they
are essentially indirectly dependent on each other through the
L2 cache. TST only considers Pareto-optimal configurations
at the cost of losing the chance of finding more efficient cache
combinations which actually consists of non-beneficial ones.
One of the reason is that a less energy efficient (due to over-
size) L1 cache may cause less accesses to L2 cache. Hence an
appropriate L2 cache may make this non-beneficial L1 cache
overall better. ILT behaves worst due to the fact that it could
miss the optimal parameter easily when exploring with other
unknown but randomly chosen parameters.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set 1 Set 2 Set 3 Set 4

base exhaust IL1T TST ILT

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

N
o
rm

a
li

ze
d

 t
o
 B

a
se

 C
a
ch

e

Figure 2. Cache hierarchy energy consumption
using four heuristics.

The three heuristics, though exhibits less energy savings,
are much more efficient than exhaustive method in the static
profiling stage. Table 3 presents the total number of cache
configurations explored by each exploration heurstics3. Our
experience is that it normally takes days to profile a task us-
ing exhaustive method while few minutes if ILT is employed.
Designers can decide which heuristic to use based on the static
profiling time and the overall energy savings.

Table 3. Cache hierarchy configuration explored
using different exploration methods.

Set 1 Set 2 Set 3 Set 4
Exhaust 14256 14256 14256 14256

IL1T 864 864 864 864
TST 419 334 368 403
ILT 106 98 107 104

6 Conclusions
Dynamic reconfiguration techniques are widely used in de-

signing efficient embedded systems. Dynamic cache reconfig-
3For simplicity, these numbers only count for the three tasks on the whole

in each set but not for every phase.

uration is a promising approach to improve both energy effi-
ciency and overall performance. In this paper, we present a
novel methodology to apply a two-level configurable cache hi-
erarchy in soft real-time systems. Our methodology employs
an efficient combination of static analysis and dynamic tuning
of cache parameters with very minor impact on timing con-
straints. Three cache exploration heuristics, which greatly im-
prove the static analysis efficiency, are designed and compared
with the exhaustive method. Our results show that up to 46%
energy of the cache hierarchy can be saved using our approach.

References

[1] D. H. Albonesi. Selective cache ways: On-demand cache
resource allocation. Micro, 1999.

[2] The SimpleScalar toolset. http://www.simplescalar.com/.
[3] A. Gordon-ross and F. Vahid. Automatic tuning of two-

level caches to embedded applications. DATE, 2004.
[4] A. Gordon-ross and F. Vahid. Fast configurable-cache tun-

ing with a unified second-level cache. ISLPED, 2005.
[5] EEMBC, The Embedded Microprocessor Benchmark

Consortium. http://www.eembc.org/.
[6] CACTI, HP Labs, CACTI 4.2. http://www.hpl.hp.com/.
[7] J. Liu. Real-Time Systems. Prentice Hall, 2000.
[8] C. Lee, M. Potkonjak, and W. H. Mangione-smith. Media-

bench: A tool for evaluating and synthesizing multimedia
and communications systems. Micro, 1997.

[9] A. Malik, B. Moyer, and D. Cermak. A low power uni-
fied cache architecture providing power and performance
flexibility. ISLPED, 2000.

[10] M. Modarressi, S. Hessabi, and M. Goudarzi. A recon-
figurable cache architecture for object-oriented embedded
systems. CCECE, 2006.

[11] I. Puaut and D. Decotigny. Low-complexity algorithms
for static cache locking in multitasking hard real-time sys-
tems. RTSS, 2002.

[12] A. Settle, D. Connors, and E. Gibert. A dynamically re-
configurable cache for multithreaded processors. Journal
of Embedded Computing, 2006.

[13] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and
B. Calder. Discovering and exploiting program phases.
Micro, 2003.

[14] Y. Tan and V. J. Mooney. Timing analysis for preemptive
multitasking real-time systems with caches. ACM Trans-
actions on Embedded Computing Systems, 2007.

[15] W. Wang, P. Mishra, and A. Gordon-Ross. Sacr:
Scheduling-aware cache reconfiguration for real-time em-
bedded systems. VLSI Design, 2009.

[16] A. Wolfe. Software-based cache partitioning for real-time
applications. IWRCS, 1993.

[17] C. Zhang, F. Vahid, and R. Lysecky. A self-tuning cache
architecture for embedded systems. DATE, 2004.

