
Specification-based Compaction of Directed Tests for
Functional Validation of Pipelined Processors

∗

Heon-Mo Koo
†

Intel Corporation
1900 Prairie City Road

Folsom, CA 95630, USA
heon-mo.koo@intel.com

Prabhat Mishra
Computer & Information Science & Engineering

University of Florida
Gainesville, FL 32611, USA

prabhat@cise.ufl.edu

ABSTRACT

Functional validation is a major bottleneck in micropro-
cessor design methodology. Simulation is the widely used
method for functional validation using billions of random
and biased-random test programs. Although directed tests
require a smaller test set compared to random tests to achieve
the same functional coverage goal, there is a lack of auto-
mated techniques for directed test generation. Furthermore,
the number of directed tests can still be prohibitively large.
This paper presents a methodology for specification-based
coverage analysis and test generation. The primary con-
tribution of this paper is a compaction technique that can
drastically reduce the required number of directed test pro-
grams to achieve a coverage goal. Our experimental results
using a MIPS processor and an industrial processor (e500)
demonstrate more than 90% reduction in number of directed
tests without sacrificing the functional coverage goal.

Categories and Subject Descriptors: B.6.3 [Logic De-
sign]: Design Aids - Verification

General Terms: Design, Verification

Keywords: Test Compaction, Processor Validation

1. INTRODUCTION
Verification complexity is increasing at an alarming rate

since it is directly proportional to the design complexity
growth of modern processors. A major challenge is how
to reduce the overall functional validation effort. In the cur-
rent industrial practice [1, 16], random and biased-random
test program generation at architecture (ISA) level is most
widely used for simulation-based validation to uncover er-
rors early in the design cycle. A test program consists of a
sequence of instructions. Compared to random or biased-
random tests, directed test generation can significantly re-
duce overall validation effort since the shorter tests can ob-
tain the same coverage goal. The number of directed tests

∗This work was partially supported by grants from Intel
Corporation and NSF CAREER award 0746261.
†This work was performed when the author was a graduate
student at the University of Florida.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

can still be extremely large. Therefore, there is a need for
efficient test reduction techniques.

In directed test generation, although a test is generated for
activating a particular functional fault, it may go through
several pipeline stages and paths over multiple clock cycles
to reach the target fault. Therefore, there is a high proba-
bility that the test can accompany multiple pipeline inter-
actions before and after it reaches the target functionality.
Based on this fact, we present an FSM coverage-directed
selection of minimal fault set to reduce the number of func-
tional tests required for validation of pipelined processors.
The goal is to generate a reduced set of test vectors without
sacrificing the coverage requirement. It is important to note
that we perform compaction of required faults before test
generation and therefore only need to generate a reduced set
of tests. This is in contrast with the existing test compaction
approaches, especially in the domain of manufacturing test,
where compaction is performed after test generation, there-
fore, the existing approaches does not reduce the cost of test
generation. Our approach can significantly reduce the test
generation cost as well as the overall validation effort using
the reduced set of functional tests.

Reduced Test Set

Test Generation

Processor Specification

Compaction
(States & Transitions)

Coverage Model
(FSM states/transitions)

Processor Model
(FSM)

Figure 1: Functional test compaction methodology

Figure 1 shows the overall flow of our fault selection and
associated test generation methodology. From specification
of a processor, we create a finite state machine (FSM) model
and define FSM state and transition coverage metrics based
on pipeline interactions. FSM compaction is performed be-
fore test generation by eliminating the states and the tran-
sitions that are illegal, redundant, or unreachable based on
design constraints. The remaining states and transitions are
represented in the proposed binary format. One of the un-

covered states or transitions is chosen as a target for directed
test generation. A path in FSM is traversed from a given
point by tracing backward to an initial state and tracing
forward to a final state from that point. During the trace
process, we select an uncovered transition to minimize test
redundancy as well as test volume. The number of uncov-
ered states and transitions are reduced by eliminating the
states and transitions on the path. We use model check-
ing to generate a test program to exercise the path. Path
selection and test generation continues until all states and
transitions are covered. This paper makes three important
contributions. First, we propose a simple but efficient FSM
model of pipelined processors. Second, we define FSM state
and transition coverage based on pipeline interactions. Fi-
nally, we propose efficient techniques for fault selection and
test generation to reduce overall validation effort.

The rest of the paper is organized as follows. Section 2
presents related work addressing FSM modeling and test
compaction in the context of test generation. Section 3 de-
scribes our FSM modeling and functional coverage for val-
idation of pipelined processors. Section 4 presents our test
compaction technique. Section 5 describes coverage-driven
test generation followed by a case study in Section 6. Fi-
nally, Section 7 concludes the paper.

2. RELATED WORK
FSM model-based test generation has been developed for

validation of pipelined processors where an FSM model is
used to generate a test suite based on state, transition, or
path coverage [2, 20]. A significant bottleneck in these meth-
ods is the high complexity of FSM models, resulting in state
explosion problem. To alleviate FSM complexity, abstrac-
tion techniques have been proposed [3, 8, 13, 15, 17]. The
abstract FSM models provide feasible ways of concrete test
generation. Abstract tests are generated from the abstract
FSM and then they are converted into test programs. Com-
pared to the existing approaches, our FSM model is easy to
create and analyze because its states describe the functional
status of each functional unit.

Due to the large volume of test data and the extremely
long test time for manufacturing test, considerable research
has been done to reduce the structural test data volume.
Test compaction techniques are generally categorized into
dynamic and static compactions. Dynamic compaction is
applied during test generation while static compaction is
applied after test generation. Rudnick and Patel [14] have
proposed dynamic test compaction for sequential circuits us-
ing fault simulation and genetic algorithms. El-Maleh and
Osais [5] have presented decomposition-based static com-
paction algorithms where a test vector is decomposed into
atomic components and the test vector is eliminated if its
components can be all moved to other test vectors. Set
covering has been applied to static compaction procedures
for combinational circuits using the fault detection matrix
[6, 9]. Dimopoulos and Linardis [4] have modeled static
compaction for sequential circuits as a set-covering prob-
lem. The matrix reduction techniques [18] can be applied
to mitigate the complexity of set covering by eliminating re-
dundant rows (faults) and columns (test vectors) in the fault
detection matrix.

A lot of structural test compaction techniques have been
proposed in manufacturing test domain because they have
a significant impact on overall testing cost and time. There

has been no significant progress in functional test compaction
in validation domain because functional tests are considered
as one-time effort in design methodology. However, millions
of tests are used in the current industrial practice, and re-
gression test is conducted every day during design cycle.
Therefore, reduction in functional tests will have significant
impact on overall design effort by removing redundant tests
as well as selecting effective tests.

3. FSM MODEL AND COVERAGE
Our FSM model can be generated from an Architecture

Description Language (ADL) [12] specification by defining
desired functionalities of a processor using states and their
transition functions. The proposed FSM model is used to
generate a set of test programs based on FSM coverage met-
rics. The test set is reusable during design validation at dif-
ferent levels of abstraction including specification and im-
plementation.

3.1 FSM Modeling of Pipelined Processors
An FSM model is defined as M = (I, O, S, δ, λ) where I,

O, S, δ, and λ are a finite set of inputs, outputs, states,
state transition function δ : S × I → S, and output func-
tion λ : S × I → O, respectively. When the model M is
in the state s (s ∈ S) and receives an input a (a ∈ I), it
moves to the next state specified by δ(s, a) and produces an
output given by λ(s, a). For an initial state s1, an input
sequence x = a1, ..., ak takes the M successively to states
si+1 = δ(si, ai), i = 1, ..., k with the final state sk+1. In
the pipelined processor FSM model, assuming each ai cor-
responds to instruction(s) fetched from instruction cache (or
memory), the input instruction sequence x = a1, ..., ak can
be used as a test program to exercise the path consisting of
the states and the state transitions from s1 to sk+1.

3.1.1 Modeling of FSM States

We create the functional states S in the form of binary
data from the processor specification that contains both the
pipelined structure and the behaviors of the processor. The
proposed FSM model is based on interactions among func-
tional units of the pipelined processor. A group of bits are
assigned to describe the functional status of each functional
unit. A functional state of the entire processor consists of
bit concatenation of local states of all functional units. We
denote the number of activities in the functional unit fuj

by rj and the number of bits to be assigned to the unit by bj

where j = 1, ..., U and U is the number of functional units
in the processor. Therefore, the total number of bits to de-
scribe the processor FSM states is N =

PU

j=1
bj . We denote

the number of states in the machine M by NS = |S| = 2N .
The state of functional unit fuj is denoted as ssj using bj

bits and the state sk of the processor FSM can be defined
by concatenating ss1, ss2, ..., ssU .

For example, we assign two bits to represent four func-
tional states of Fetch (IF) unit: ‘00’ for idle, ‘01’ for normal
operation (instruction fetch), ‘10’ for stall, and ‘11’ for ex-
ception. Figure 2 shows an example of the FSM states of the
pipelined processor. Given that all the functional units have
only four possible states, each unit requires 2 bits for its four
functionalities. This binary format of functional FSM model
provides an efficient indexing mechanism to access and an-
alyze each functional state. In addition, next states can be
described as Boolean functions. For example, assuming the

WB

…
MEM IFID

Bit: B�B�����… … B� B� B� B�
Figure 2: Binary format of the states in FSM model

state transitions (si, sj) and (si, sk) with sj = ‘0011’ and sk

= ‘0010’, the next states of si are expressed as B̄4B̄3B2B1

+ B̄4B̄3B2B̄1 = B̄4B̄3B2. For each state, a corresponding
index number has a list of the next and previous states that
are produced using transition functions. The list of neigh-
boring states are used for selecting a uncovered path during
test generation.

3.1.2 Modeling of FSM Transitions

The state transition functions are based on pipeline be-
haviors of processors. The pipeline behaviors are the rules
in each pipeline stage that determine when instructions can
move to the next stage and when they cannot. For pipeline
behavior modeling, we decompose the entire processor FSM
into smaller FSMs at functional unit level. Since not all the
functional units affect the next states of other functional
units, the transition functions of the FSM can be decom-
posed into sub-functions each of which is dedicated to a
specific functional unit.

fu k”, j-1

fu l”, j+1

Stagej-1

Stagej

Stagej+1

fu k, j-1

fu i, j

fu l, j+1

fu k’, j-1

fu l’, j+1

(a) Instruction flow

fu k, j-1

fu i, j

fu l, j+1

Stagej-1

Stagej

Stagej+1

fu i, j

fu l, j+1

Time step: t-1 t

(b) Pipeline interaction

Figure 3: Pipeline behavior

Figure 3 shows the general behaviors of pipelined pro-
cessors. Each instruction goes through the current pipeline
stage to the next stage as shown in Figure 3(a), where fu
is a functional unit, 1 ≤ i, k, l ≤ U , 1 ≤ j ≤ D, and D is
the pipeline depth. Each functional unit fui,j can interact
with different number of functional units at stage j − 1 and
j + 1. For example, a decode unit may have multiple execu-
tion units at its following stage while a fetch unit typically
has only one unit (decode unit) at the following stage.

Figure 3(b) shows the pipeline interaction of the func-
tional unit fui,j . The state of fui,j at time step t is de-
cided by the previous and current states of units fuk,j−1

and ful,j+1 as well as itself. For example, if ful,j+1 and
fui,j are on the same pipeline and ful,j+1 is in the stall
state at time step t, then fui,j should be in stall state be-
cause the instruction in fui,j cannot go to the next stage
ful,j+1. Considering feedback loop such as data forwarding
in the pipelined processor, fui,j at time t will be affected by
the state of fui,j+α at (t − 1) where 0 ≤ α ≤ D.

Based on the pipeline behavior, the state transition to the
functional unit fui,j at time step t is defined as ssi,j(t) =
f(ssk,j−1(t− 1), ssi,j(t− 1), ssl,j+1(t− 1), ssl,j+1(t)). Here,
ssi,j(t) represents a set of bits to describe the functional
state of fui,j at time t, and f represents a transition func-

tion decided by unit interactions. Therefore, the state s of
the processor FSM can be expressed by concatenating ssi,j

where i = 1, ..., U and 1 ≤ j ≤ D.

3.2 Functional Coverage
State coverage and transition coverage are used as cover-

age metrics to generate a test set. State coverage ensures
that every state of an FSM has been visited. Transition cov-
erage ensures that every transition between FSM states has
been traversed.

The state coverage of the proposed FSM model is identi-
cal to the pipeline interaction coverage that tries to detect
whether a set of pipeline interactions (between functional
units) have been activated at a given clock cycle. Because
each FSM state consists of multiple sub-states of each func-
tional unit in the processor. Therefore, a test program that
covers the FSM state will activate the corresponding pipeline
interaction. We can compute the number of theoretically
possible FSM states based on the number of functional units
and the number of activities at each unit. In general, the
number of activities varies for different units depending on
what activities we want to test, thereby each unit may re-
quire different number of bits for its functional states. Con-
sidering an FSM model with m units where each unit has
on average r activities, the FSM will have rm states which
can be extremely large even for small number of activities.
For example, a MIPS processor [7] with 17 functional units
and 4 activities has approximately seventeen billion states.

From the point of functionality, the proposed state transi-
tion coverage represents temporal pipeline interactions. Based
on the state transition functions, each state has a list of their
next states. When a test visits the state and goes to one of
its next state, we put the next state off the list since the
transition between the two states is covered. State transi-
tion coverage of the FSM is achieved when the next state
lists are empty for every states. The number of state transi-
tions is determined by the processor’s functional behaviors.
Theoretically, the maximum number of state transitions is
N2, where N is the number of states, assuming any state
can be reached from another state in one step. This theoret-
ical large number of functional states and transitions can be
reduced by eliminating unreachable states using functional
constraints described in the processor specification.

4. COMPACTION OF FSM MODEL
The state and transition compaction of an FSM plays a

major role in efficient test generation since reduction of one
state or transition implies one less test vector to generate
and apply on RTL implementation. The basic idea is to
identify and eliminate all the unreachable and redundant
states as well as transitions with respect to coverage-driven
test generation.

4.1 Identifying Unreachable States
We use functional constraints described in the processor

specification to distinguish unreachable states from reach-
able ones. The constraints are represented as binary pat-
terns of FSM states. The states with these patterns are
removed from the FSM and they are not considered during
test generation and coverage analysis since they are unreach-
able. For example, assume that decode (ID) unit has the
single instruction issue constraint and there are two parallel
execution units EX1 and EX2 in the next pipeline stage.

Since only one instruction can be passed to either EX1 or
EX2, both execution units cannot be in normal operation
(executes a valid instruction) at the same time. Assuming
that EX1 and EX2 correspond to the state variables B6B5

and B4B3 respectively in 8-bit FSM processor state model,
the binary pattern ‘xx0101xx’ represents unreachable states
for the single issue constraint, where ‘01’ represents the unit
state of normal operation and ‘x’ represents ‘0’ or ‘1’. By
applying all the functional constraints described in the pro-
cessor specification, we can identify the unreachable states
in the FSM and compute the number of reachable states.

4.2 Identifying Illegal State Transitions
Extracting FSM state transitions at the processor level is

very difficult since specification documents do not include
relation of processor-level states in general. However, the
processor specification provides the rules in each pipeline
unit about when instructions can move to the next stage
and when they cannot. These pipeline behaviors are used
to identify illegal state transitions. We also leverage the de-
composition of a processor state transition into functional
unit level transitions. For example, if the state of a func-
tional unit ssi,j is in normal operation at time t, then the
state of the unit in the previous stage (ssk,j−1) cannot be
in idle state at time t− 1 since the instruction in fui,j must
be ready at the previous pipeline stage at time t − 1.

Table 1: Transition rules between ssk,j−1 and ssi,j

ssk,j−1(t − 1) ssi,j(t)

idle idle, stall
normal op. normal op., stall, exception
stall idle, stall
exception idle, stall

Table 2: Transition rules between ssi,j and ssi,j

ssi,j(t − 1) ssi,j(t)

idle idle, normal op., stall, exception
normal op. idle, normal op., exception
stall idle, normal op., stall, exception
exception idle

Table 3: Transition rules between ssl,j+1 and ssi,j

ssl,j+1(t − 1) ssi,j(t)

idle idle, normal op., stall, exception
normal op. idle, normal op., stall, exception
stall idle, normal op., stall, exception
exception idle

Sub-state transition rules between units are shown above
assuming four functional activities at each unit and one reg-
ister between consecutive pipeline stages. For example, in
Table 1, if ssk,j−1(t − 1) = stall, then ssi,j(t) can be either
in idle or stall state because no instruction moves from the
previous stage. In Table 2 and Table 3, if ssk,j−1(t − 1) or
ssl,j+1(t − 1) = exception, then ssi,j(t) should be in idle
state to flush the following instructions in the pipeline.

4.3 Identifying Redundancy
We define redundant states and transitions in terms of

coverage-driven test generation. A state (transition) is re-
dundant if the test generated for activating any other states
or transitions has to go through this state (transition). This

redundant state (transition) is called an inevitable state (tran-

sition). Identifying a redundant state (transition) is similar
to finding fault dominance in manufacturing test compaction
except the fact that in this case we do not need the generated
tests.

State aaaa

State bbbb

State cccc

State eeee

State ffff

State dddd

Figure 4: Single transitions between states

We employ various techniques to remove redundant states
and transitions. Figure 4 shows inevitable states and transi-
tions that have single outgoing transition (from states a and
b) and single incoming transition (to states e and f). The
state c is an inevitable state because all the paths from a and
b should include the state c. Similarly, the state d is an in-
evitable state because all the paths to e and f should include
the state d. The transitions (a → c), (b → c), (d → e), and
(d → f) are inevitable transitions to their neighbors. We can
eliminate the test cases that activate these inevitable states
and transitions since any test program that exercises their
neighboring states will also activate the inevitable states.
The next state lists of each state are used to identify the in-
evitable states of the single outgoing transitions. If a state
has only one state in its next state list, the next state is an
inevitable state. In the same way, the previous state lists
are used to identify the single incoming transitions.

5. TEST GENERATION
FSM coverage metrics provide a mechanism to evaluate

verification progress. In FSM coverage-driven test genera-
tion, tests are created to activate a target coverage point
(state or transition).

5.1 Coverage-driven Test Selection
Once all the unreachable and redundant tests are removed,

one of the uncovered states or transitions is chosen as a
target for directed test generation. Each state (binary index
number) has a flag to indicate whether the state is covered
or not. The flag is called StateCovered flag and is initialized
to 0. Each state also has a list of its neighboring states, i.e.,
a list of its transitions. In the list, each neighboring state
has two flags to indicate whether the state is a next state
or a previous state and whether the transition to/from the
neighboring state is covered or not. The second flag is called
TransitionCovered flag and is initialized to 0.

Beginning from a target state, we search for an FSM path
that can cover maximum number of states and transitions.
For backward path, one of the previous neighboring states
is selected that has TransitionCovered=0. A pair of state
and transition is covered by setting value 1 for StateCovered

of the current state and TransitionCovered of the previous
state. This process continues until the path traversal reaches
an initial state. If all of the previous states in the neighbor
list are covered (TransitionCovered=1) at the current state,
we check the neighbor list of the previous states to deter-
mine whether the path includes any uncovered state and
transition. We extend the search space until an uncovered
state/transition is encountered, or until the number of back-
ward transitions reaches its upper bound (maximum number

of clock cycles in which an instruction can stay in the pro-
cessor pipeline). Similarly, we complete the path by tracing
forward to a final state from the target point. We continue
path generation until all states and transitions in the FSM
are covered, i.e., all of the StateCovered and TransitionCov-

ered flags are set to 1.

5.2 Directed Test Generation
We use model checking for directed test generation be-

cause of its capability of automatically producing a coun-
terexample. Figure 5 shows a test generation framework
using model checking [10, 11]. In this scenario, a desired be-
havior is expressed in the form of temporal logic property.
A model checker exhaustively searches all reachable states
of the processor model to check if the property holds (ver-
ification) or not (falsification). If the model checker finds
any reachable state that does not satisfy the property, it
produces a counterexample. This falsification can be quite
effectively exploited for test generation. Instead of a desired
property, its negated version is applied to model checking. A
model checker produces a counterexample and correspond-
ing input requirements. The input requirements of the pro-
cessor model contains a sequence of instructions from an
initial state to the point where the negated version of the
property fails.

Counterexample
(Test)

Processor Model

Negated Property

Model Checker

Figure 5: Test generation using model checking

For example, a path selected in the previous section is de-
scribed in the form of a temporal logic property EFp (i.e.,
there exists a path p in the processor model) where p con-
sists of the states at every time step on the path. Its negated
property AG¬p (i.e., there is no such path p) is applied to
the model checker. The model checker generates a coun-
terexample path with an input instruction sequence. Since
this counterexample path is the same as the selected path,
the instruction sequence can be used as a test program to
exercise the selected path.

6. EXPERIMENTS
We applied our test compaction methodology on a single-

issue MIPS architecture [7] and a superscalar (dual-issue)
e500 processor [19]. Figure 6 shows the MIPS architecture.
There are 17 functional units. We consider four functional
states (activities) of each unit: ‘00’ for idle, ‘01’ for nor-
mal operation, ‘10’ for stall, and ‘11’ for exception. Figure 7
shows the functional FSM model of the processor in the form
of 33-bit binary. We assume that WB has only two states
(idle and normal operation), and IALU and DIV have the
exception state for overflow and divide-by-zero, respectively.
All other functional units have three states (idle, normal op-
eration, and stall). In the figure, the term “oper” represents
“normal operation”. Therefore, theoretically possible num-
ber of states is 2 × 4 × 4 × 314 ≃ 153 × 106.

Unreachable states are removed by using the constraints
of processor behavior such as single issue requirement. For
example, the unreachable binary pattern ‘xxxx...0101xxxx’

ID

IF

WB

Memory

RegFile

PC

DIV

MUL7

IALU FADD1MUL1

MUL2

MEM

FADD4

FADD3

FADD2

Storage

Functional unit

Data−transfer edge

Pipeline edge

Figure 6: A MIPS architecture

(where x is a don’t-care bit) represents the single issue con-
straint that two execution units IALU and MUL1 cannot
be in normal operation at the same clock cycle. The corre-
sponding number of states is 12.7 × 106. We can eliminate
those states in the FSM model since the states with this
pattern are not allowed due to single-issue constraint. Af-
ter removing all unreachable states, the number of states is
reduced to 87.2 × 106 (43% reduction).

32

IFIDIALUMEMWB

00: idle

01: oper

10: stall

0: idle

1: oper

31 30 5 4 3 2 1 0

00: idle

01: oper

01: stall

00: idle

01: oper

10: stall

00: idle

01: oper

10: stall

11: exception

…

Figure 7: 33-bit FSM state model

Table 4 presents the results of our test compaction for the
MIPS processor. The first column indicates various com-
paction steps. The second and third column present com-
paction results for states and transitions respectively. For
example, the value 87.2×106 (in second row, second column)
indicates the total number of reachable states after perform-
ing reachability analysis (on original 153 × 106 states). For
FSM state compaction, we searched for incoming and outgo-
ing single transitions that have inevitable neighboring states.
We do not need to generate a test for those states since the
test programs to exercise their neighbors will cover them.

Table 4: Test compaction results for MIPS processor

Compaction of Compaction of
FSM States Transitions

Reachable 87.2 × 106 693.1 × 106

States/Transitions
Legal and Required 83.5 × 106 376.3 × 106

States/Transitions
Selected Tests 16.9 × 106

(States/Transitions)
Overall Reduction 97.8%

After state compaction, we could reduce the number of
tests by 3.7×106 (4% reduction). As a result, the number of

directed test programs before test selection is 83.5×106. The
FSM transition coverage needs to activate 376.3×106 transi-
tions. Our framework of selecting tests (minimum number of
states/transitions required to achieve 100% state and transi-
tion coverage) produced 16.9×106 test programs. Therefore,
our approach generates 97.8%1 overall reduction of directed
tests without sacrificing the functional coverage goal.

Fetch stage 1

Fetch stage 2

Decode stage

Issue stage

MU stage 1

MU stage 2

MU stage 3

MU stage 4

Completion stage

Write-back stage

LSU stage 1

LSU stage 2

LSU stage 3

SU1 SU2

Divide

Post-divide

Execute stage

� 7 pipeline stages

� Superscalar

� Dynamic scheduling

RS RS

IQ

GIQ

I-cache

Rename
Buffers

Completion
Queue

RS RS

D-cache

Figure 8: Instruction pipeline flow of e500 processor

We also applied our test generation methodology on a sim-
plified version of the dual-issue e500 processor based on the
Power ArchitectureTM Technology2 [19]. Figure 8 shows the
dual-issue e500 architecture. It has seven pipeline stages and
15 functional units. We used the 29-bit FSM model for the
e500 processor with the same assumption as the MIPS pro-
cessor. Theoretically possible number of states is 22.7×106.
In our experiment, the e500 processor has less number of
states compared to the MIPS processor because we mod-
eled 15 functional units by assuming only single instruction
buffer between neighboring pipeline stages. Table 5 presents
the results of test compaction for e500 architecture. Our ap-
proach generates 92.6% overall reduction in directed tests.

Table 5: Test compaction results for e500 processor

Compaction of Compaction of
FSM States Transitions

Reachable 14.6 × 106 135.7 × 106

States/Transitions
Legal and Required 14.2 × 106 134.6 × 106

States/Transitions
Selected Tests 11.1 × 106

(States/Transitions)
Overall Reduction 92.6%

7. CONCLUSIONS
Functional verification is a major bottleneck in pipelined

processor design methodology. Simulation is widely used for
processor validation using billions of random and constrained-
random tests. The directed tests can significantly reduce

1(87.2 + 376.3 − 16.9)/(87.2 + 376.3) = 97.8%
2The Power Architecture and Power.org wordmarks and the
Power and Power.org logos and related marks are trade-
marks and service marks licensed by Power.org

overall validation effort since directed tests require a smaller
test set compared to random tests to achieve the same func-
tional coverage goal. However, the number of directed tests
can be still extremely large – in the order of millions.

This paper presented a functional test compaction tech-
nique that can significantly reduce the number of directed
tests without sacrificing the functional coverage. This pa-
per made three important contributions. First, it developed
an efficient FSM model of pipelined processors and defined
FSM state and transition coverage based on pipeline inter-
actions. Second, we developed an FSM compaction tech-
nique to eliminate redundant states/transitions that can be
covered by the remaining states/transitions with respect to
test generation. Finally, we developed efficient techniques
for fault selection and test generation to reduce overall val-
idation effort. Our experimental results using MIPS and
e500 processors demonstrated more than 90% reduction in
functional tests without sacrificing the coverage goal.

8. REFERENCES
[1] A. Adir et al. Genesys-pro: Innovations in test program

generation for functional processor verification. Design &
Test, 21(2):84–93, 2004.

[2] D. Campenhout et al. High-level test generation for design
verification of pipelined microprocessors. DAC, 1999.

[3] K.-T. Cheng et al. Automatic generation of functional
vectors using the extended finite state machine model.
ACM TODAES, 1(1):57–79, 1996.

[4] M. Dimopoulos and P. Linardis. Efficient static compaction
of test sequence sets through the application of set covering
techniques. DATE, 194–199, 2004.

[5] A. El-Maleh and Y. Osais. Test vector decomposition-based
static compaction algorithms for combinational circuits.
ACM TODAES, 8(4):430–459, 2003.

[6] P. Flores et al. On applying set covering models to test set
compaction. GLSVLSI, 8–11, 1999.

[7] J. Hennessy and D. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 2002.

[8] R. Ho et al. Architecture validation for processors. ISCA,
404–413, 1995.

[9] D. Hochbaum. An optimal test compression procedure for
combinational circuits. TCAD, 15(10):1294–1299, 1996.

[10] H.-M. Koo and P. Mishra. Functional test generation using
property decompositions for validation of pipelined
processors. DATE, 1240–1245, 2006.

[11] P. Mishra and N. Dutt. Specification-driven directed test
generation for validation of pipelined processors. ACM
TODAES, 13(2), article 42, 36 pages, 2008.

[12] P. Mishra and N. Dutt, Editors. Processor Description
Languages. Morgan Kaufmann, 2008.

[13] D. Moundanos et al. Abstraction techniques for validation
coverage analysis and test generation. Computers,
47(1):2–14, 1998.

[14] E. Rudnick et al. Efficient techniques for dynamic test
sequence compaction. Computers, 48(3), 1999.

[15] J. Shen and J. A. Abraham. An RTL abstraction technique
for processor microarchitecture validation and test
generation. JETTA, 16(1-2):67–81, 2000.

[16] K. Shimizu et al. Verification of the cell broadband engine
processor. DAC, 338–343, 2006.

[17] N. Utamaphethai et al. Effectiveness of microarchitecture
test program generation. Design & Test, 17(4):38–49, 2000.

[18] T. Villa et al. Explicit and implicit algorithms for binate
covering problems. IEEE TCAD, 16(7):677–691, 1997.

[19] Freescale PowerPc e500 core family reference manual.
http://www.phxmicro.com/Online/E500CORERM.pdf.

[20] Y. Zhang et al. Using model-based test program generator
for simulation validation. ESS, (3605):549–556, 2005.

