
Memory Access Optimizations in Instruction-Set Simulators
Mehrdad Reshadi

Center for Embedded Computer Systems (CECS)
University of California Irvine

Irvine, CA 92697, USA
reshadi@cecs.uci.edu

Prabhat Mishra
Computer and Information Science and Engineering

University of Florida
Gainesville, FL 32611, USA

prabhat@cise.ufl.edu

ABSTRACT
Design of programmable processors and embedded applications
requires instruction-set simulators for early exploration and
validation of candidate architectures. Interpretive simulators are
widely used in embedded systems design. One of the key
performance bottlenecks in interpretive simulation is the
instruction and data memory access translation between host and
target machines. The simulators must maintain and update the
status of the simulated processor including memory and register
values. A major challenge in the simulation is to efficiently map
the target address space to the host address space. This paper
presents two optimization techniques that aggressively utilize the
spatial locality of the instruction and data accesses in interpretive
simulation: signature based address mapping for optimizing
general memory accesses; and incremental instruction fetch for
optimizing instruction accesses. To demonstrate the utility of this
approach we applied these techniques on SimpleScalar simulator,
and obtained up to 30% performance improvement. Our
techniques complement the recently proposed optimizations
(JIT-CCS [1] and IS-CS [2]) and further improve the
performance (up to 89%) on ARM7 and Sparc processors.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development; I.6.7
[Simulation and Modeling]: Simulation Support Systems; C.4
[Performance of Systems]: Modeling techniques.

General Terms
Algorithms, Measurement, Performance, Design.

Keywords
Instruction-set simulator, memory address-space mapping.

1. Introduction
Instruction-set simulators are essential tools for design space
exploration as well as validation and evaluation of programmable
architectures and compilers. The simulators run on a host
machine and mimic the behavior of an application generated for

a target processor. The simulators can be broadly classified into
two categories: interpretive and compiled. Figure 1 shows the
three main stages in a traditional interpretive simulation. In this
approach, an instruction is fetched, decoded and executed at run
time.

Figure 1- Three steps in interpretive simulation.

Interpretive simulators provide flexibility but are very slow.
Compiled simulators achieve higher performance by moving the
time consuming decoding step from the run time to compile time
as shown in Figure 2. In this approach the application is decoded,
and the optimized code for the host machine is generated at
compile time.

Figure 2- Traditional compiled simulation.

In spite of their performance advantage, the compiled simulators
are not used in system-on-chip designs due to the assumption
that the program does not change during run time. There are
various application domains where programs are modified during
run time for various reasons including power, performance and
code size. For example, ARM processor uses two instruction sets
(normal and reduced bit-width) and dynamically switches to
different instruction-set at run time. Due to the restrictiveness of
compiled simulation technique, interpretive simulators are
widely used in embedded systems design flow. There are many
techniques in the literature (JIT-CCS [1], IS-CS [2]) that
combine the benefits of both simulation approaches by
temporarily storing the decoded information and reusing them
during run-time as well as optimizing the execution of each
instruction. Since 10% of the code is executed 90% of the time,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009...$5.00.

Application
(Target Binary)

Code

Generation

Decode

Execute

Run Time

Decoded Program
(Target Assembly)

Host Assembly (Binary)

Instruction Memory

Fetch

Compile Time

Instruction Fetch

Decode

Execute

Run Time

Application
(Target Binary)

237

the run-time decode is not necessary for majority of the dynamic
instructions.

Figure 3 shows the flow of a fast and flexible interpretive
simulation. The flexibility is maintained since the simulation
engine still fetches and executes one target instruction at a time.
The performance is achieved by reusing the previously decoded
instructions. In case an instruction is modified during run-time, it
needs to be detected and decoded.

Figure 3- Fast and flexible interpretive simulation.

Irrespective of the simulation technique, the execute stage runs
the code and updates the simulated processor status. In an
instruction-set simulator, the processor status is the set of
memory and register values in the target processor. Since the
target processor can potentially access a very large memory, a
major challenge during simulation is to efficiently map the target
program memory address space to the simulator memory address
space. In interpretive simulation, this address space mapping is
needed in all three main stages of the simulation. In the fetch
stage, the opcode of the instructions or their corresponding
decoded information must be read from program memory or an
instruction cache based on the value of the program counter. In
the decode stage, if the decoded information needs to be reused,
it must be stored in a location relative to the corresponding
instruction address. In the execute stage, the load/store operations
depend on the address space mapping to access the correct
memory location. Similarly, in compiled simulation during
execution of instructions the address mapping may be necessary.

The dynamic nature of indirect addresses, as in indirect jumps or
indirect data memory accesses, requires the address space
mapping to be done at run time. It is very similar to the virtual to
physical memory address mapping in computer architecture
except that the address space mapping in the simulator is
performed sequentially in software without any hardware
support. In simulators, the address space mapping is done via a
typical hash function. To the best of our knowledge, there are no
published results for optimizing this mapping.

In this paper, we present an efficient approach for address space
mapping in interpretive simulators. We present signature-based
address mapping for optimizing general memory accesses; and
incremental instruction fetch for optimizing instruction accesses.
The proposed techniques are fast, efficient and independent of
the behavior of the simulated target instructions. Therefore, the
techniques are also suitable for retargetable simulation. They can
be applied both in interpretive and compiled simulators. The
performance improvement is achieved through aggressive
exploitation of spatial locality of both instruction and data
accesses. To evaluate the effectiveness of our approach, we
applied these techniques on SimpleScalar [7], a widely used
interpretive simulator, and obtained up to 30% performance

improvement. The experimental results (using ARM7 and Sparc
processor models) demonstrate up to 89% performance
improvement compared to the best known techniques ([1] and
 [2]) in interpretive simulation.

The rest of the paper is organized as follows. Section 2 presents
related work addressing instruction-set simulation approaches.
Our memory access optimization techniques are described in
Section 3 followed by the experimental results in Section 4.
Finally, Section 5 concludes the paper.

2. Related Work
There has been an enormous body of work done on different
classes of instruction-set simulators such as trace driven ([14],
 [15]), interpretive ([1], [2], [7]) and compiled simulators ([3], [4],
 [5], [6], [12], [13]). While every simulator must deal with the
address space mapping problem, to the best of our knowledge,
very little has been reported that addresses this issue separately.

In compiled simulation techniques, a major part of the
performance boost comes from the direct execution of
instructions on the host machine: instead of mapping the address
of each instruction, the simulator only needs to find the actual
address of the beginning of a basic block and transfer the flow of
execution to that block. Therefore the address space mapping is
only performed for basic blocks and data memory read/write
operations. In static compiled simulation, very large switch-case
statements control the flow of execution based on the value of
the program counter. In dynamic compiled simulation (binary
translation), portions of the program are decoded into
overlapping blocks, and program counter values are mapped to
the memory addresses of the corresponding blocks.

Shade [3] has proposed a simulation technique that partially
reduces the amount of address space mapping required for
executing consecutive instructions. This approach has been
adopted by other simulators ([4], [5], [6]) that use binary
translation. In Shade, groups of instructions are decoded and
stored in the memory blocks that have three sections: prolog,
body and epilog. Every program counter value that has been the
target of a jump is mapped to one such memory block and
therefore the blocks may overlap. Every time a new block is
generated, consecutive blocks are chained by adding a jump
instruction in the epilog section of the proper block. The target
instructions are directly mapped into host binary that is stored in
the body section of the corresponding memory block. Prolog and
epilog sections contain extra instructions for initializing and
finalizing the execution of the instructions in the body section.

Although this approach results in very high performance, it has
several drawbacks. First, directly generating host binary is a
complex task that limits the portability and retargetability of the
simulator. Second, generating overlapping blocks decreases the
efficiency of block chaining and utilization of memory. Finally,
when a self modifying program1 changes the instruction
memory, instead of re-decoding the modified instruction and

1Self-modifying programs occur often, e.g. in just-in-time compiler,
dynamic linker and processor mode change.

Decoded
Instruction

Decode
Run Time

Application update

yes

no
Fetch Execute Modified?

238

updating it in the corresponding memory blocks, all of the
memory blocks must be discarded because it is impossible or
very expensive to find the containing blocks and the relevant
portions to be updated.

In SimpleScalar [7], the address space mapping is done using a
hash table. This approach imposes a constant cost on all address
calculations and does not exploit the spatial locality of accessed
addresses. In this paper we propose a simple and efficient
approach that increases the performance of interpretive
simulators by utilizing the spatial locality of accessed memory
addresses. Our techniques can be effectively coupled with
existing optimization techniques to further boost simulator
performance.

3. Memory Access Optimization
A program generated for a target processor may expect specific
information at specific memory addresses for correct execution.
For example, addresses of functions, locations of global data and
target addresses of branches are fixed in a program. During
simulation, these addresses must be converted to valid addresses
on the host machine that are legally accessible for the simulator.
One way of doing this is to add an offset to all of the program
addresses and map them to a continuous memory region
allocated by the simulator on the host. For example, if s and e are
respectively the smallest and the largest addresses that the
program may access, the simulator needs to allocate (e-s+1)
bytes of memory and then subtract s (as a negative offset) from
every address accessed by the program at run time. However, the
program may only access small and disjoint regions of its
memory. In other words, while (e-s+1) can be a very large
number, the program may actually consume much less memory.
For example, the executable and data sections of a program are
usually placed in non-contiguous sections mostly far away from
each other in the memory. Also, a program may have access to a
very large heap/stack area but may actually use a very small
portion of it.

Figure 4- Address space mapping using typical hash table.

For better memory utilization, the simulator needs to allocate
memory for the program only when it needs them. To do this, the
memory space is partitioned into same sized pages and then a
hash table maps the program addresses to the actual pages.
Figure 4 shows this flow with a typical hash table. In a hash

table, a hash function maps each input value to a unique row of
the table. Since multiple input values may be mapped to the same
row, the hash function needs to perform a search to find the
corresponding page in the row.

After a program address is mapped to a memory page, the actual
location (index) of the corresponding element in the page is
calculated. Figure 5 shows the pseudo code that maps an address
in the target processor address space to its corresponding address
on the host machine. The FindMemoryPage function is the
actual hash function that returns the memory page containing the
target address. The FindMemoryCell function calculates the
index of the corresponding cell in the mapped page.

MemoryCell* FindHostAddress(MemoryAddr target) {
 MemoryPage mp = FindMemoryPage(target);
 MemoryCell* mc = FindMemoryCell(mp, target);
 return mc;
}
Figure 5- Pseudo code for target to host address mapping.

3.1 Signature Based Address Mapping (SAM)
Due to the spatial locality of memory accesses in the simulated
program, many consecutive memory accesses may be mapped to
the same memory page. In other words, the hash function returns
the same result for many consecutive calls. Therefore, by
detecting this situation, we can avoid the overhead of hash
function, and directly map the address to its corresponding page.
In order to detect whether a new address maps to the same page
as the previous one, we need to calculate a signature for the
addresses and compare them. The least significant bits of an
address is usually used for indexing in a page hence two
addresses that reside in the same page may differ only in these
bits. A shift right operation extracts the constant portions of these
addresses which we use as their signature.

Figure 6- Signature based Address Mapping optimization.

Figure 6 shows the new adaptive hash function. If the signature
of the new address to be mapped matches with that of the
previous one (a hit), the previous result is reused; otherwise (a
miss) the normal hash function is called to calculate the mapping.
The new adaptive hash function executes faster whenever
address signatures match. The signatures must be so that all of
the addresses that map to the same page have the same signature.

Find Cell

Find page

Find Row

Map to Index

Hash
asll

Target addr. space Memory pages on host machine

da
ta

co

de

Signature
Matches?

hit

miss

Find

Find page

Find Row

Map to Index

Hash

Target address space Memory pages on host machine

co
de

da

ta

co
de

239

Also the calculation and comparison of the signatures must have
less overhead than calling the hash function.

Figure 7 shows the modified pseudo code for address mapping.
In this code, whenever the original hash function
(FindMemoryPage) is called to find a new page, the result page
and the signature of the addresses that map to it are stored. As
long as the signatures of the addresses in the next calls match
with the existing signature, the stored memory page is used. In
this way, the cost of finding consecutively accessed pages is
decreased but the cost of finding a new page is slightly increased.
Overall it has a considerable positive impact on the performance
of the simulator because the number of page hits is significantly
higher than the number of page misses as demonstrated in
Section 4.2.

MemoryCell* FindHostAddress(MemoryAddr target) {
 MemoryPage mp;
 if (signature(target) == lastSignature)
 mp = lastMemoryPage;
 else {
 mp = FindMemoryPage(target);
 lastMemoryPage = mp;
 lastSignature = signature(target);
 }
 MemoryCell* mc = FindMemoryCell(mp, target);
 return mc;
}

Figure 7- Signature based Address Mapping optimization.

The FindMemoryPage function performs more computations
than a single shift right that is needed to calculate the signature of
the addresses. It also needs to access internal data structures in
the host processor memory to find the corresponding page. These
extra host memory accesses may remove simulation information
from the cache of host processor and hence degrade the cache
performance of the simulator. Therefore, by using signature
based address mapping and avoiding the FindMemoryPage
function, the simulation engine executes fewer operations and
shows a better cache performance on the host machine.

3.2 Incremental Instruction Fetch (IIF)
In any instruction-set simulator, as in real hardware, the program
counter indicates the address of the instruction that must be
executed next. Figure 8 shows the simulation loop: the opcode
(or the decoded information) of the next instruction is read from
the memory and the program counter is incremented before
executing the instruction.

while (not end of program) {
 hostInstAddress = FindHostAddress (programCounter);
 increment (programCounter);
 execute instruction at hostInstAddress;
}

Figure 8- The execution loop of the simulator.

A branch instruction may change the value of the program
counter and the sequential flow of the program execution. In
other words, as long as the program counter is not changed by an
instruction, we can calculate the address of next instruction to be
executed by incrementing the address of current instruction.
Therefore, instead of calling the mapping function for every

program counter value, it is invoked only when an instruction
changes the sequential flow of execution (PC changed by that
instruction) as shown in Figure 9. The special case occurs when
the address of next instruction does not reside in the current
memory page. This is similar to a program counter change and is
handled in the same manner.

Figure 9- Incremental Instruction Fetch optimization.

Figure 10 shows the optimized version of the simulation
execution loop. This algorithm does not require the semantics of
the executed instructions. Therefore, the simulation engine can
be completely independent of the behavior of the simulated
processor instruction set. This optimization will improve the
performance only when the cost of incrementing the instruction
address and detecting the program counter change is less than
that of mapping the address through a hash function call. Its
efficiency also depends on the size of the basic blocks in the
program. Simulation of longer sequential codes will benefit more
speedup because they require less hash function calls.

while (not end of program) {
 hostInstAddress = FindHostAddress(programCounter);
 while ((programCounter is not changed) and
 (hostInstAddress is in the current page)) {
 increment (programCounter);
 execute instruction at hostInstAddress;
 increment (hostInstAddress);
 }
}
Figure 10- Pseudo code for Incremental Instruction Fetch.

4. Experiments
We evaluated the applicability of our memory access
optimization techniques using various processor models. In this
section, we present simulation results using two popular
processors, ARM7 [10] and Sparc [11].

4.1 Experimental Setup
We implemented our technique on two simulators. First, we used
the SimpleScalar [7] for ARM processor to demonstrate the
usefulness of our approach on a popular interpretive simulator.
Second, we developed a fast and flexible interpretive simulation
framework [16] for ARM and Sparc processors that uses the

Find Cell

Find page

Find Row

Map to Index

Hash
asll

Target addr. space Memory pages on host machine

da
ta

co

de

Signature
Matches?

hit

miss

PC
changed?

co
de

no

yes

240

recently proposed optimization techniques on reuse of decoded
instructions (JIT-CCS [1]) and improving instruction execution
speed (IS-CS [2]). In this paper, we refer the second simulator as
Base Simulator. All of the experiments are performed on a
Pentium 4, 2.4 GHz with 512 MB RAM running Windows XP.
The application programs are taken from MiBench (bluefish,
crc), MediaBench (adpcm, epic, g721) and SPEC95 (compress,
go) benchmark suites.

4.2 Results
 Figure 11 shows the performance of the SimpleScalar before
and after applying the SAM and IIF optimizations. Higher spatial
locality and higher reduction in hash function calls result in better
performance using these optimizations. The results demonstrate
13% to 30% performance improvement in SimpleScalar.

0

2

4

6

8

10

12

14

adpcm bluefish compress crc epic g721 go

M
IP

S

Simplescalar SAM SAM+IIF

 Figure 11- SimpleScalar simulator for ARM processor.

 Figure 12 shows the utilization of our techniques on
SimpleScalar. The first bar shows the hit rates after applying
SAM optimization. A hit means that the signature of the address
to be mapped is equal to that of the previous address and
therefore the previous mapping result can be reused. For
example, in case of adpcm benchmark, 78% of the time the
signatures were identical; therefore the hash function was not
called. Less number of hash function calls (higher hit rate)
implies better performance.

78

87 87 8686

79
84

7682
86

9494 9094

0
10
20
30
40
50
60
70
80
90

100

adpcm bluefish compress crc epic g721 go

H
it

R
at

e

SAM SAM+IIF

 Figure 12- SAM and IIF on Simplescalar ARM simulator.

The second bar in Figure 12 shows the hit rates after applying
both SAM and IIF optimizations. As mentioned in Section 3.2,
when PC is not changed by an instruction (hit for IIF), the
address of current instruction is incremented to find the memory
address of next instruction instead of calling the hash function.
For example, in adpcm benchmark, the hit rate is 87% using both
SAM and IIF optimizations. These techniques drastically reduce
the number of hash function calls (up to 94%) and thereby
generate improved simulation performance (up to 30%).

 Figure 13 and Figure 14 show the performance of Base
Simulator for ARM and Sparc processor models respectively. In
these figures, the first bar shows the performance of Base
Simulator that implements the JIT-CCS and IS-CS
optimizations. The second and third bars show the simulation
performance with only SAM optimization, and with both SAM
and IIF optimizations respectively. The results demonstrate 20%
to 89% performance improvement on top of the best known
techniques (JIT-CCS and IS-CS) in interpretive simulation.

0

5

10

15

20

25

30

35

adpcm bluefish compress crc epic g721 go

M
IP

S

Base Simulator SAM SAM+IIF

 Figure 13- Performance of base simulator for ARM.

0

5

10

15

20

25

adpcm bluefish compress crc epic g721 go

M
IP

S

Base Simulator SAM SAM+IIF

Figure 14- Performance of base simulator for Sparc

Clearly, our techniques generated higher performance
improvement when applied with recent optimizations (Base
Simulator) than when applied to Simplescalar. There are two
primary reasons for this difference:

• First, the data and executable sections in a typical program are
usually placed far away from each other in the memory. The
executable sections are accessed when the instructions are read
and decoded while the data sections are accessed during
execution of load/store instructions. Simplescalar simulator
accesses both the data and the executable sections in the same
iteration of the execution loop. This reduces the spatial locality
of the memory accesses. However, in the base simulator, as
long as decoded instructions are reused (using JIT-CCS or IS-
CS), only the data sections of the memory are accessed and
hence the spatial locality can be exploited more effectively.

• Second, Base Simulator performs fewer operations (due to JIT-
CCS and IS-CS) than SimpleScalar to simulate the same
application. Although, our techniques generated almost same
reduction of hash function calls in both simulators, SAM and
IIF optimizations are more effective in Base Simulator since it
results in a higher percentage of total reduction in the number
of executed operations.

241

Figure 15 compares the performance of SimpleScalar ARM with
our final ARM simulator that implements all of the optimizations
(JIT-CCS, IS-CS, SAM and IIF). The final simulator is up to 3.4
times faster than SimpleScalar ARM.

0

5

10

15

20

25

30

35

40

adpcm bf compress crc epic g721 go

SimpleScalar JIT-CCS+IS-CS+SAM+IIF

Figure 15- SimpleScalarARM vs. all optimizations

In this section we demonstrated that our techniques complement
the recently proposed optimizations and further improve the
performance (up to 89%) of the simulator. Our techniques
improved the performance (up to 30%) of Simplescalar, a widely
used interpretive simulator, which does not use any recent
optimizations.

5. Conclusions
Instruction-set simulators are an integral part of today’s processor
and software design process. Fast and flexible interpretive
simulators are widely used in embedded systems design. One of
the key performance bottlenecks in instruction-set simulators is
the instruction and data memory access translation between host
and target machines. This paper presented an efficient approach
for optimizing memory accesses in instruction-set simulation.
We proposed two techniques to exploit the spatial locality of
memory accesses: signature based address mapping for
optimizing both data and instruction accesses; and incremental
instruction fetch for reducing the overhead of the instruction
accesses. We applied these optimizations on two different
simulators: SimpleScalar for ARM processor; and Base
Simulator that models both ARM and Sparc processors and also
implements recent optimization techniques. Our experimental
results demonstrated up to 30% performance improvement in
SimpleScalar, and up to 89% performance improvement in Base
Simulator on top of the existing optimizations. The better
performance improvement in Base Simulator is due to the use of
decoded instruction cache and a lighter execution loop.

The proposed techniques are general and can be applied to any
simulation framework including both compiled and interpretive
simulators. The efficiency of these techniques depends on the
spatial locality of memory accesses and the average size of basic
blocks in the simulated program. Future work will focus on
application of these techniques on further real-world processors.

6. Reference
[1] Achim Nohl, Gunnar Braun, Oliver Schliebusch, Rainer

Leupers, Heinrich Meyr, Andreas Hoffmann. “A Universal
Technique for Fast and Flexible Instruction-Set Architecture
Simulation”. DAC, 2002.

[2] Mehrdad Reshadi, Prabhat Mishra, Nikil Dutt. “Instruction-
Set Compiled Simulation: A Technique for Fast and
Flexible Instruction Set Simulation”. DAC, 2003.

[3] Robert. F. Cmelik, David Keppel. Shade: A fast instruction
set simulator for execution profiling. Measurement and
Modeling of Computer Systems, 1994.

[4] Emmett Witchel, Mendel Rosenblum. “Embra: Fast and
Flexible Machine Simulation”. MMCS, 1996.

[5] Eric Schnarr, James R. Larus. “Fast Out-of-Order Processor
Simulation using Memoization”. PLDI, 1998.

[6] Eric C. Schnarr, Mark D. Hill, James R. Larus. “Facile: A
language and compiler for high-performance processor
simulators”. PLDI, 2001.

[7] Simplescalar Home page: http://www.simplescalar.com

[8] David Keppel. “A Portable Interface for On-The-Fly
Instruction Space Modification”. ASPLOS, pp. 86-95, 1991.

[9] David Keppel, Susan J. Eggers, and Robert R. Henry, “A
Case for Runtime Code Generation”. University of
Washington Comp. Science and Engg. Technical Report
91-11-04, 1991.

[10] The ARM7 User Manual, http://www.arm.com.

[11] Sparc Version 7 Instruction set manual.

[12] Gunnar Braun, Andreas Hoffmann, Achim Nohl, Heinrich
Meyr. “Using Static Scheduling Techniques for the
Retargeting of High Speed, Compiled Simulators for
Embedded Processors from an Abstract Machine
Description”. ISSS, 2001.

[13] J. Zhu, Daniel Gajski. “A Retargetable, Ultra-fast
Instruction Set Simulator”. DATE, 1999.

[14] R. Uhlig, “Trap-Driven Memory Simulation”. Ph.D Thesis,
Dept. of EECS, University of Michigan, Ann Arbor 1995.

[15] R. A. Uhlig and T. N. Mudge. “Trace-driven memory
simulation: A survey”. ACM Computing Surveys,
29(2):128–170, 1997.

[16] M. Reshadi, N. Bansal, P. Mishra, N. Dutt, "An Efficient
Retargetable Framework for Instruction-Set Simulation",
CODES+ISSS, pp. 13-18, 2003.

242

