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ABSTRACT 
Design of programmable processors and embedded applications 
requires instruction-set simulators for early exploration and 
validation of candidate architectures. Interpretive simulators are 
widely used in embedded systems design. One of the key 
performance bottlenecks in interpretive simulation is the 
instruction and data memory access translation between host and 
target machines. The simulators must maintain and update the 
status of the simulated processor including memory and register 
values. A major challenge in the simulation is to efficiently map 
the target address space to the host address space. This paper 
presents two optimization techniques that aggressively utilize the 
spatial locality of the instruction and data accesses in interpretive 
simulation: signature based address mapping for optimizing 
general memory accesses; and incremental instruction fetch for 
optimizing instruction accesses. To demonstrate the utility of this 
approach we applied these techniques on SimpleScalar simulator, 
and obtained up to 30% performance improvement. Our 
techniques complement the recently proposed optimizations 
(JIT-CCS  [1] and IS-CS  [2]) and further improve the 
performance (up to 89%) on ARM7 and Sparc processors. 

Categories and Subject Descriptors 
I.6.5 [Simulation and Modeling]: Model Development; I.6.7 
[Simulation and Modeling]: Simulation Support Systems; C.4 
[Performance of Systems]: Modeling techniques. 

General Terms 
Algorithms, Measurement, Performance, Design. 

Keywords 
Instruction-set simulator, memory address-space mapping. 

1. Introduction 
Instruction-set simulators are essential tools for design space 
exploration as well as validation and evaluation of programmable 
architectures and compilers. The simulators run on a host 
machine and mimic the behavior of an application generated for 

a target processor. The simulators can be broadly classified into 
two categories: interpretive and compiled. Figure 1 shows the 
three main stages in a traditional interpretive simulation. In this 
approach, an instruction is fetched, decoded and executed at run 
time. 

  
Figure 1- Three steps in interpretive simulation. 

Interpretive simulators provide flexibility but are very slow. 
Compiled simulators achieve higher performance by moving the 
time consuming decoding step from the run time to compile time 
as shown in Figure 2. In this approach the application is decoded, 
and the optimized code for the host machine is generated at 
compile time.  

 
Figure 2- Traditional compiled simulation. 

In spite of their performance advantage, the compiled simulators 
are not used in system-on-chip designs due to the assumption 
that the program does not change during run time. There are 
various application domains where programs are modified during 
run time for various reasons including power, performance and 
code size. For example, ARM processor uses two instruction sets 
(normal and reduced bit-width) and dynamically switches to 
different instruction-set at run time. Due to the restrictiveness of 
compiled simulation technique, interpretive simulators are 
widely used in embedded systems design flow. There are many 
techniques in the literature (JIT-CCS  [1], IS-CS  [2]) that 
combine the benefits of both simulation approaches by 
temporarily storing the decoded information and reusing them 
during run-time as well as optimizing the execution of each 
instruction. Since 10% of the code is executed 90% of the time, 
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the run-time decode is not necessary for majority of the dynamic 
instructions.  

Figure 3 shows the flow of a fast and flexible interpretive 
simulation. The flexibility is maintained since the simulation 
engine still fetches and executes one target instruction at a time. 
The performance is achieved by reusing the previously decoded 
instructions. In case an instruction is modified during run-time, it 
needs to be detected and decoded. 

 
Figure 3- Fast and flexible interpretive simulation. 

Irrespective of the simulation technique, the execute stage runs 
the code and updates the simulated processor status. In an 
instruction-set simulator, the processor status is the set of 
memory and register values in the target processor. Since the 
target processor can potentially access a very large memory, a 
major challenge during simulation is to efficiently map the target 
program memory address space to the simulator memory address 
space. In interpretive simulation, this address space mapping is 
needed in all three main stages of the simulation. In the fetch 
stage, the opcode of the instructions or their corresponding 
decoded information must be read from program memory or an 
instruction cache based on the value of the program counter. In 
the decode stage, if the decoded information needs to be reused, 
it must be stored in a location relative to the corresponding 
instruction address. In the execute stage, the load/store operations 
depend on the address space mapping to access the correct 
memory location. Similarly, in compiled simulation during 
execution of instructions the address mapping may be necessary. 

The dynamic nature of indirect addresses, as in indirect jumps or 
indirect data memory accesses, requires the address space 
mapping to be done at run time. It is very similar to the virtual to 
physical memory address mapping in computer architecture 
except that the address space mapping in the simulator is 
performed sequentially in software without any hardware 
support. In simulators, the address space mapping is done via a 
typical hash function. To the best of our knowledge, there are no 
published results for optimizing this mapping.  

In this paper, we present an efficient approach for address space 
mapping in interpretive simulators. We present signature-based 
address mapping for optimizing general memory accesses; and 
incremental instruction fetch for optimizing instruction accesses. 
The proposed techniques are fast, efficient and independent of 
the behavior of the simulated target instructions. Therefore, the 
techniques are also suitable for retargetable simulation. They can 
be applied both in interpretive and compiled simulators. The 
performance improvement is achieved through aggressive 
exploitation of spatial locality of both instruction and data 
accesses. To evaluate the effectiveness of our approach, we 
applied these techniques on SimpleScalar  [7], a widely used 
interpretive simulator, and obtained up to 30% performance 

improvement. The experimental results (using ARM7 and Sparc 
processor models) demonstrate up to 89% performance 
improvement compared to the best known techniques ( [1] and 
 [2]) in interpretive simulation. 

The rest of the paper is organized as follows. Section  2 presents 
related work addressing instruction-set simulation approaches. 
Our memory access optimization techniques are described in 
Section  3 followed by the experimental results in Section  4. 
Finally, Section  5 concludes the paper. 

2. Related Work 
There has been an enormous body of work done on different 
classes of instruction-set simulators such as trace driven ( [14], 
 [15]), interpretive ( [1],  [2],  [7]) and compiled simulators ( [3],  [4], 
 [5],  [6],  [12],  [13]). While every simulator must deal with the 
address space mapping problem, to the best of our knowledge, 
very little has been reported that addresses this issue separately.  

In compiled simulation techniques, a major part of the 
performance boost comes from the direct execution of 
instructions on the host machine: instead of mapping the address 
of each instruction, the simulator only needs to find the actual 
address of the beginning of a basic block and transfer the flow of 
execution to that block. Therefore the address space mapping is 
only performed for basic blocks and data memory read/write 
operations. In static compiled simulation, very large switch-case 
statements control the flow of execution based on the value of 
the program counter. In dynamic compiled simulation (binary 
translation), portions of the program are decoded into 
overlapping blocks, and program counter values are mapped to 
the memory addresses of the corresponding blocks.  

Shade  [3] has proposed a simulation technique that partially 
reduces the amount of address space mapping required for 
executing consecutive instructions. This approach has been 
adopted by other simulators ( [4],  [5],  [6]) that use binary 
translation. In Shade, groups of instructions are decoded and 
stored in the memory blocks that have three sections: prolog, 
body and epilog. Every program counter value that has been the 
target of a jump is mapped to one such memory block and 
therefore the blocks may overlap. Every time a new block is 
generated, consecutive blocks are chained by adding a jump 
instruction in the epilog section of the proper block. The target 
instructions are directly mapped into host binary that is stored in 
the body section of the corresponding memory block. Prolog and 
epilog sections contain extra instructions for initializing and 
finalizing the execution of the instructions in the body section.  

Although this approach results in very high performance, it has 
several drawbacks. First, directly generating host binary is a 
complex task that limits the portability and retargetability of the 
simulator. Second, generating overlapping blocks decreases the 
efficiency of block chaining and utilization of memory. Finally, 
when a self modifying program1 changes the instruction 
memory, instead of re-decoding the modified instruction and 
                                                             
1Self-modifying programs occur often, e.g. in just-in-time compiler, 
dynamic linker and processor mode change. 
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updating it in the corresponding memory blocks, all of the 
memory blocks must be discarded because it is impossible or 
very expensive to find the containing blocks and the relevant 
portions to be updated.  

In SimpleScalar  [7], the address space mapping is done using a 
hash table. This approach imposes a constant cost on all address 
calculations and does not exploit the spatial locality of accessed 
addresses. In this paper we propose a simple and efficient 
approach that increases the performance of interpretive 
simulators by utilizing the spatial locality of accessed memory 
addresses. Our techniques can be effectively coupled with 
existing optimization techniques to further boost simulator 
performance. 

3. Memory Access Optimization 
A program generated for a target processor may expect specific 
information at specific memory addresses for correct execution. 
For example, addresses of functions, locations of global data and 
target addresses of branches are fixed in a program. During 
simulation, these addresses must be converted to valid addresses 
on the host machine that are legally accessible for the simulator. 
One way of doing this is to add an offset to all of the program 
addresses and map them to a continuous memory region 
allocated by the simulator on the host. For example, if s and e are 
respectively the smallest and the largest addresses that the 
program may access, the simulator needs to allocate (e-s+1) 
bytes of memory and then subtract s (as a negative offset) from 
every address accessed by the program at run time. However, the 
program may only access small and disjoint regions of its 
memory. In other words, while (e-s+1) can be a very large 
number, the program may actually consume much less memory. 
For example, the executable and data sections of a program are 
usually placed in non-contiguous sections mostly far away from 
each other in the memory. Also, a program may have access to a 
very large heap/stack area but may actually use a very small 
portion of it.  

 
Figure 4- Address space mapping using typical hash table. 

For better memory utilization, the simulator needs to allocate 
memory for the program only when it needs them. To do this, the 
memory space is partitioned into same sized pages and then a 
hash table maps the program addresses to the actual pages. 
Figure 4 shows this flow with a typical hash table. In a hash 

table, a hash function maps each input value to a unique row of 
the table. Since multiple input values may be mapped to the same 
row, the hash function needs to perform a search to find the 
corresponding page in the row. 

After a program address is mapped to a memory page, the actual 
location (index) of the corresponding element in the page is 
calculated. Figure 5 shows the pseudo code that maps an address 
in the target processor address space to its corresponding address 
on the host machine. The FindMemoryPage function is the 
actual hash function that returns the memory page containing the 
target address. The FindMemoryCell function calculates the 
index of the corresponding cell in the mapped page.  

MemoryCell* FindHostAddress(MemoryAddr target)  { 
 MemoryPage mp = FindMemoryPage( target); 
 MemoryCell* mc = FindMemoryCell( mp, target); 
 return mc; 
} 
Figure 5- Pseudo code for target to host address mapping. 

3.1 Signature Based Address Mapping (SAM) 
Due to the spatial locality of memory accesses in the simulated 
program, many consecutive memory accesses may be mapped to 
the same memory page. In other words, the hash function returns 
the same result for many consecutive calls. Therefore, by 
detecting this situation, we can avoid the overhead of hash 
function, and directly map the address to its corresponding page. 
In order to detect whether a new address maps to the same page 
as the previous one, we need to calculate a signature for the 
addresses and compare them. The least significant bits of an 
address is usually used for indexing in a page hence two 
addresses that reside in the same page may differ only in these 
bits. A shift right operation extracts the constant portions of these 
addresses which we use as their signature. 

 
Figure 6- Signature based Address Mapping optimization. 

Figure 6 shows the new adaptive hash function. If the signature 
of the new address to be mapped matches with that of the 
previous one (a hit), the previous result is reused; otherwise (a 
miss) the normal hash function is called to calculate the mapping. 
The new adaptive hash function executes faster whenever 
address signatures match. The signatures must be so that all of 
the addresses that map to the same page have the same signature. 
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Also the calculation and comparison of the signatures must have 
less overhead than calling the hash function. 

Figure 7 shows the modified pseudo code for address mapping. 
In this code, whenever the original hash function 
(FindMemoryPage) is called to find a new page, the result page 
and the signature of the addresses that map to it are stored. As 
long as the signatures of the addresses in the next calls match 
with the existing signature, the stored memory page is used. In 
this way, the cost of finding consecutively accessed pages is 
decreased but the cost of finding a new page is slightly increased. 
Overall it has a considerable positive impact on the performance 
of the simulator because the number of page hits is significantly 
higher than the number of page misses as demonstrated in 
Section  4.2. 

MemoryCell* FindHostAddress(MemoryAddr target)  { 
 MemoryPage mp; 
 if ( signature( target) == lastSignature ) 
  mp = lastMemoryPage; 
 else  { 
  mp = FindMemoryPage(target); 
  lastMemoryPage = mp; 
  lastSignature = signature(target); 
 } 
 MemoryCell* mc = FindMemoryCell( mp, target); 
 return mc; 
} 

Figure 7- Signature based Address Mapping optimization. 

The FindMemoryPage function performs more computations 
than a single shift right that is needed to calculate the signature of 
the addresses. It also needs to access internal data structures in 
the host processor memory to find the corresponding page. These 
extra host memory accesses may remove simulation information 
from the cache of host processor and hence degrade the cache 
performance of the simulator. Therefore, by using signature 
based address mapping and avoiding the FindMemoryPage 
function, the simulation engine executes fewer operations and 
shows a better cache performance on the host machine.  

3.2 Incremental Instruction Fetch (IIF) 
In any instruction-set simulator, as in real hardware, the program 
counter indicates the address of the instruction that must be 
executed next. Figure 8 shows the simulation loop: the opcode 
(or the decoded information) of the next instruction is read from 
the memory and the program counter is incremented before 
executing the instruction.   

while ( not end of program )  { 
 hostInstAddress = FindHostAddress (programCounter); 
 increment (programCounter); 
 execute instruction at hostInstAddress; 
} 

Figure 8- The execution loop of the simulator. 

A branch instruction may change the value of the program 
counter and the sequential flow of the program execution. In 
other words, as long as the program counter is not changed by an 
instruction, we can calculate the address of next instruction to be 
executed by incrementing the address of current instruction. 
Therefore, instead of calling the mapping function for every 

program counter value, it is invoked only when an instruction 
changes the sequential flow of execution (PC changed by that 
instruction) as shown in Figure 9. The special case occurs when 
the address of next instruction does not reside in the current 
memory page. This is similar to a program counter change and is 
handled in the same manner. 

Figure 9- Incremental Instruction Fetch  optimization. 

Figure 10 shows the optimized version of the simulation 
execution loop. This algorithm does not require the semantics of 
the executed instructions. Therefore, the simulation engine can 
be completely independent of the behavior of the simulated 
processor instruction set. This optimization will improve the 
performance only when the cost of incrementing the instruction 
address and detecting the program counter change is less than 
that of mapping the address through a hash function call. Its 
efficiency also depends on the size of the basic blocks in the 
program. Simulation of longer sequential codes will benefit more 
speedup because they require less hash function calls. 

while ( not end of program )  { 
 hostInstAddress = FindHostAddress(programCounter); 
 while ( ( programCounter is not changed ) and  
     ( hostInstAddress is in the current page ) )  { 
  increment ( programCounter ); 
  execute instruction at hostInstAddress; 
  increment ( hostInstAddress ); 
 } 
} 
Figure 10- Pseudo code for Incremental Instruction Fetch. 

4. Experiments 
We evaluated the applicability of our memory access 
optimization techniques using various processor models. In this 
section, we present simulation results using two popular 
processors, ARM7  [10] and Sparc  [11]. 

4.1 Experimental Setup 
We implemented our technique on two simulators. First, we used 
the SimpleScalar  [7] for ARM processor to demonstrate the 
usefulness of our approach on a popular interpretive simulator. 
Second, we developed a fast and flexible interpretive simulation 
framework  [16] for ARM and Sparc processors that uses the 
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recently proposed optimization techniques on reuse of decoded 
instructions (JIT-CCS  [1]) and improving instruction execution 
speed (IS-CS  [2]). In this paper, we refer the second simulator as 
Base Simulator. All of the experiments are performed on a 
Pentium 4, 2.4 GHz with 512 MB RAM running Windows XP. 
The application programs are taken from MiBench (bluefish, 
crc), MediaBench (adpcm, epic, g721) and SPEC95 (compress, 
go) benchmark suites.  

4.2 Results 
  Figure 11 shows the performance of the SimpleScalar before 
and after applying the SAM and IIF optimizations. Higher spatial 
locality and higher reduction in hash function calls result in better 
performance using these optimizations. The results demonstrate 
13% to 30% performance improvement in SimpleScalar. 

0

2

4

6

8

10

12

14

adpcm bluefish compress crc epic g721 go

M
IP

S

Simplescalar SAM SAM+IIF

  Figure 11- SimpleScalar simulator for ARM processor. 

  Figure 12 shows the utilization of our techniques on 
SimpleScalar. The first bar shows the hit rates after applying 
SAM optimization. A hit means that the signature of the address 
to be mapped is equal to that of the previous address and 
therefore the previous mapping result can be reused. For 
example, in case of adpcm benchmark, 78% of the time the 
signatures were identical; therefore the hash function was not 
called. Less number of hash function calls (higher hit rate) 
implies better performance. 
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  Figure 12- SAM and IIF on Simplescalar ARM simulator. 

The second bar in   Figure 12 shows the hit rates after applying 
both SAM and IIF optimizations. As mentioned in Section  3.2, 
when PC is not changed by an instruction (hit for IIF), the 
address of current instruction is incremented to find the memory 
address of next instruction instead of calling the hash function. 
For example, in adpcm benchmark, the hit rate is 87% using both 
SAM and IIF optimizations. These techniques drastically reduce 
the number of hash function calls (up to 94%) and thereby 
generate improved simulation performance (up to 30%).  

  Figure 13 and Figure 14 show the performance of Base 
Simulator for ARM and Sparc processor models respectively. In 
these figures, the first bar shows the performance of Base 
Simulator that implements the JIT-CCS and IS-CS 
optimizations. The second and third bars show the simulation 
performance with only SAM optimization, and with both SAM 
and IIF optimizations respectively. The results demonstrate 20% 
to 89% performance improvement on top of the best known 
techniques (JIT-CCS and IS-CS) in interpretive simulation. 
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  Figure 13- Performance of base simulator for ARM. 

 

0

5

10

15

20

25

adpcm bluefish compress crc epic g721 go

M
IP

S

Base Simulator SAM SAM+IIF

 
Figure 14- Performance of base simulator for Sparc 

Clearly, our techniques generated higher performance 
improvement when applied with recent optimizations (Base 
Simulator) than when applied to Simplescalar. There are two 
primary reasons for this difference: 

• First, the data and executable sections in a typical program are 
usually placed far away from each other in the memory. The 
executable sections are accessed when the instructions are read 
and decoded while the data sections are accessed during 
execution of load/store instructions. Simplescalar simulator 
accesses both the data and the executable sections in the same 
iteration of the execution loop. This reduces the spatial locality 
of the memory accesses. However, in the base simulator, as 
long as decoded instructions are reused (using JIT-CCS or IS-
CS), only the data sections of the memory are accessed and 
hence the spatial locality can be exploited more effectively.  

• Second, Base Simulator performs fewer operations (due to JIT-
CCS and IS-CS) than SimpleScalar to simulate the same 
application. Although, our techniques generated almost same 
reduction of hash function calls in both simulators, SAM and 
IIF optimizations are more effective in Base Simulator since it 
results in a higher percentage of total reduction in the number 
of executed operations. 
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Figure 15 compares the performance of SimpleScalar ARM with 
our final ARM simulator that implements all of the optimizations 
(JIT-CCS, IS-CS, SAM and IIF). The final simulator is up to 3.4 
times faster than SimpleScalar ARM.  
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Figure 15- SimpleScalarARM vs. all optimizations 

In this section we demonstrated that our techniques complement 
the recently proposed optimizations and further improve the 
performance (up to 89%) of the simulator. Our techniques 
improved the performance (up to 30%) of Simplescalar, a widely 
used interpretive simulator, which does not use any recent 
optimizations. 

5. Conclusions  
Instruction-set simulators are an integral part of today’s processor 
and software design process. Fast and flexible interpretive 
simulators are widely used in embedded systems design. One of 
the key performance bottlenecks in instruction-set simulators is 
the instruction and data memory access translation between host 
and target machines. This paper presented an efficient approach 
for optimizing memory accesses in instruction-set simulation. 
We proposed two techniques to exploit the spatial locality of 
memory accesses: signature based address mapping for 
optimizing both data and instruction accesses; and incremental 
instruction fetch for reducing the overhead of the instruction 
accesses. We applied these optimizations on two different 
simulators: SimpleScalar for ARM processor; and Base 
Simulator that models both ARM and Sparc processors and also 
implements recent optimization techniques. Our experimental 
results demonstrated up to 30% performance improvement in 
SimpleScalar, and up to 89% performance improvement in Base 
Simulator on top of the existing optimizations. The better 
performance improvement in Base Simulator is due to the use of 
decoded instruction cache and a lighter execution loop.  

The proposed techniques are general and can be applied to any 
simulation framework including both compiled and interpretive 
simulators. The efficiency of these techniques depends on the 
spatial locality of memory accesses and the average size of basic 
blocks in the simulated program. Future work will focus on 
application of these techniques on further real-world processors. 
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