
Reliability and Energy-aware Cache
Reconfiguration for Embedded Systems

Yuanwen Huang and Prabhat Mishra
Department of Computer and Information Science and Engineering

University of Florida, Gainesville FL 32611-6120, USA
{yuanwen, prabhat}@cise.ufl.edu

Abstract—Cache vulnerability due to soft errors is one of
the reliability concerns in embedded systems. Dynamic recon-
figuration techniques are widely studied for improving cache
energy without considering the implications of cache vulnera-
bility. Maintaining a useful data longer in the cache can be
beneficial for energy improvement due to reduction in miss
rates, however, longer data retention negatively impacts the
vulnerability due to soft errors. This paper studies the trade-off
between energy efficiency improvement and reduction in cache
vulnerability during cache reconfiguration. We propose two
heuristic approaches for reliability- and energy-aware dynamic
cache reconfiguration. Experimental results demonstrate that
our proposed approaches can provide drastic reduction in cache
vulnerability with minor impact on energy and performance.

I. INTRODUCTION

Soft errors are transient faults in CMOS circuits, which are
caused by energy carrying particles (cosmic rays or substrate
alpha particles). These transient faults flip bits in storage cells
or change the logic values in functional units. Soft error rate
per chip is expected to grow due to the growing density
of transistors on chip [1]. Previous studies have concluded
that unprotected memory elements are the most vulnerable
components to soft errors [2]. The cache in embedded mi-
croprocessors is most susceptible to soft errors for several
reasons: (i) cache occupies the majority of chip area, (ii)
cache has an extremely high density of transistors, and (iii)
cache cell size scales down, which reduces the critical charge
needed to flip a bit in stored data. Due to widespread use of
embedded systems in safety-critical devices, it is necessary to
protect embedded caches from soft errors.

Dynamic Cache Reconfiguration (DCR) is a widely studied
method for optimizing energy and performance in embedded
systems [3] [4]. The basic idea of cache reconfiguration is that
different programs have varying data and instruction access
characteristics during execution (runtime) and DCR tries to
find the optimal cache configuration for a given application
(program). For example, we can improve performance by
increasing cache size when a program needs a lot of data ac-
cesses. Similarly, we can save energy by shutting down a part
of the cache if the program is not so data-intensive. However,
cache reconfiguration will also affect the vulnerability due to
soft errors. A large cache size for a data-intensive program
might have fewer cache misses and thus improve energy and
performance efficiency, but it is also likely to increase the

This work was partially supported by the NSF grants (CNS-1526687 and
CNS-1441667) and SRC grant (2014-TS-2554).

vulnerability of cache data because of longer data retention
in the cache. This interesting trade-off between performance,
energy and vulnerability is the motivation for this work.

It is a major challenge to improve the reliability of real-time
embedded systems with special design considerations of real-
time constrains. Hard real-time systems require that all tasks
must complete execution before their deadlines to ensure cor-
rect execution. Due to stringent timing constraints, scheduling
for hard real-time systems must perform task schedulability
analysis based on task attributes (such as deadlines, priorities,
and periods). For soft real-time systems, minor deadline
misses may result in temporary service degradation, but will
not lead to incorrect behavior. An efficient cache reconfigu-
ration framework is proposed for energy optimization in soft
real-time systems in [4]. They exploit the flexibility of soft
real-time systems and manage to achieve considerable energy
savings with minor impacts on user experiences. However
their method does not consider the vulnerability of cache due
to soft errors.

To the best of our knowledge, there are no prior efforts
in analyzing the cache vulnerability during cache reconfigu-
ration. We propose a methodology for using cache reconfig-
uration in soft real-time systems. Our approach provides an
efficient cache tuning strategy based on static profiling and
dynamic scheduling of tasks. Our proposed research is able to
balance performance, energy consumption and vulnerability,
so that tasks can meet their deadlines and energy savings
while vulnerability reduction can also be achieved.

The rest of the paper is organized as follows. Section II
presents related work on DCR and cache vulnerability. Sec-
tion III motivates the reader by illustrating the effect of
DCR on performance, energy consumption and vulnerability.
Section IV presents our cache reconfiguration methodology.
Section V presents the experimental results. Finally, Sec-
tion VI concludes the paper.

II. BACKGROUND AND RELATED WORK

This section surveys existing works in two related domains:
cache reconfiguration and cache vulnerability.

A. Cache Reconfiguration

Applications have varied instruction and data access pat-
terns, which means that they require different cache require-
ments in terms of cache size, line size, and associativity.
In inter-task (application-based) cache reconfiguration, DCR
tunes the cache when a new task starts its execution. Fig. 1

illustrates that DCR can improve overall performance by
tuning cache size for a system with three tasks. We assume
that cache size is the only tunable parameter of cache for
the ease of illustration (line size and associativity remain the
same). Fig. 1(a) shows a traditional system using a fixed base
cache, whereas in Fig. 1(b) each task uses its favorable cache
configuration and the overall execution time is improved.

(a) A traditional system

(b) A system with reconfigurable cache

Fig. 1: DCR in a system with three tasks.

DCR has been extensively studied by previous works [3]
[4] [6]. The underlying cache architecture used in our work
contains four banks which can operate as four separate ways.
The cache ways can be configured to shut down so as to
vary the cache size. Similarly, line size can be adjusted
by configuring the fetch unit to different lengths and alter
way associativity by concatenating ways. There are many
prior efforts in developing energy- and performance-aware
cache reconfiguration techniques. Wang et al. [3] studied
scheduling-aware cache reconfiguration for energy saving in
real-time systems. Cai et al. [7] showed that cache size could
impact performance, energy and reliability. However, none
of the previous works has considered cache vulnerability
improvement during DCR.

B. Cache Vulnerability

In order to facilitate reliability analysis of cache, a mea-
surement method is needed for the quantification of cache
vulnerability due to soft errors. Mukherjee et al. [8] in-
troduced the concept of Architectural Vulnerability Factor
(AVF). Vulnerability analysis divides a bit’s lifetime into
vulnerable and un-vulnerable intervals. A bit is vulnerable
for an interval, if soft errors that happen in this interval will
cause the program to get contaminated data. Similar to [8]
and [11], we measure the vulnerability of cache on a per-byte
basis. Activities during the lifetime of a byte includes “idle”,
“fill”, “read”, “write” and “eviction”. As shown in Fig. 2, the
vulnerable intervals are marked by two black rectangles: the
data is vulnerable between the first write and the second read
as well as between the second write and the third read. During

these two intervals, the data needs to be read for reuse, while
a flipped bit can corrupt the data, causing the program to use
corrupted cache data. While the interval between the second
read and the second write is un-vulnerable, the data will be
updated by the write operation even if soft errors corrupt it.

Fig. 2: Vulnerable intervals of a data element in cache (where
W=Write Access, R=Read Access).

Byte Cycles is an widely used term for measuring cache
vulnerability. We measure the vulnerability of cache as the
summation of vulnerable intervals of all bytes. It can be
defined as follows:

Vulnerability =
∑

all bytes

vulnerable time of bytei

Major reliability improvement techniques include error
detection and error prevention [1] [9]. Error detection tech-
niques, such as parity caching and error-correcting codes,
use spatial redundancy to detect errors. Error prevention
techniques [10], such as periodic flushing and early write-
back, are introduced. These hardware techniques need extra
hardware support in cache, and are not sensitive to the data
access pattern of the applications. In this paper, we assume no
error prevention, as we aim to reduce vulnerability with the
given reconfigurable cache architecture during DCR. Our goal
is to take advantage of the reconfigurable cache and the data
access pattern of applications to reduce vulnerability while
still save energy and meet timing constraints.

III. MOTIVATION: ILLUSTRATIVE EXAMPLE

Existing techniques for cache reconfiguration do not con-
sider cache vulnerability due to soft errors. Fig. 3 illustrates
the interesting behaviors of vulnerability and energy con-
sumption under different cache configurations. We run the
program pegwit (a benchmark from MediaBench [12]) for 18
times, and each run uses a different configuration for L1 data
cache. Each configuration consists of three parameters: cache
size, associativity and line size. For example, 1024B 1W 64B
implies a cache configuration with cache size of 1024 bytes,
one way with 64 bytes line size.

Fig. 3 shows that the energy consumption, vulnerability and
miss rate change drastically as we tune cache configurations.
Both energy and vulnerability relate to cache miss rates and
cache configurations. However, the correlation behaviors are
quite different and even conflicting in certain scenarios. In
Fig. 3(a), energy consumption decreases when miss rate de-
creases (the first 9 cache configurations), but keeps increasing
for the last 9 cache configurations even though miss rates are
fairly low. The reason is that total energy consumption is
the sum of dynamic and static energy. For the first 9 cache
configurations, the total energy is dominated by dynamic
energy consumption, thus the total energy decreases when

miss rate (dynamic energy consumption) decreases. However,
for the last 9 cache configurations with large cache size, the
total energy is dominated by static energy consumption even
though miss rates are low. In Fig. 3(b), the relation between
vulnerability and miss rate is a little more complex. Cache
size has a significant influence on vulnerability. Configu-
rations with cache size of 1024B is much less vulnerable
than configurations with cache size of 2048B and 4096B.
For configurations with the same cache size, vulnerability
decreases when miss rate increases and vice versa. For the
same cache size, lower miss rate means that more dirty data
is staying in cache for longer time, which contributes to
vulnerability.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

11.0%

12.0%
Energy Miss Rate

E
ne

rg
y

(n
J)

M
is

s
R

at
e

0

500000000

1000000000

1500000000

2000000000

2500000000

3000000000

3500000000

4000000000

4500000000

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

11.0%

12.0%Vulnerability Miss Rate

V
ul

ne
ra

bi
lit

y
(in

 B
yt

e
C

yc
le

s)

M
is

s
R

at
e

(a) Energy and Miss Rate of pegwit

(b) Vulnerability and Miss Rate of pegwit

Fig. 3: Energy (a) and vulnerability (b) values of pegwit
benchmark using different cache configurations.

There are two interesting observations here: (i) small cache
size might have high energy consumption but less vulnerable;
(ii) low miss rate might be energy friendly but leads to higher
vulnerability. These observations motivate us to investigate
the trade-off between vulnerability, energy and performance
during DCR. In this paper, we develop a cache reconfiguration
framework that considers both energy and cache vulnerability.
Since both vulnerability and energy depend on program
characteristics and cache configurations, we statically analyze
various cache configurations for each application. Such an
approach is suitable for embedded systems since applications
are known a priori. Based on static analysis, we propose two

heuristic approaches for inter-task dynamic cache tuning that
can select suitable configurations during runtime.

IV. DCR FOR ENERGY AND RELIABILITY

A. System Model

Let us define the reliability-aware DCR problem with
consideration of both energy and cache vulnerability. The
system we consider can be modeled as:
• A processor with a reconfigurable cache which supports
m possible cache configurations C = {c1, c2, c3, ..., cm}.

• A set of n independent tasks T = {t1, t2, t3, ..., tn}.
• Each task ti ∈ T has attributes including arrival time,

period and deadline. Non-preemptive execution is em-
ployed, which means, a task will continue execution until
completion once it starts to execute.

Let ecjti , pcjti and v
cj
ti denote the energy, execution time

(performance) and vulnerability of task ti when it is run on
cache configuration cj . The reliability-aware DCR problem
is to find a cache assignment for the task set such that
energy consumption and vulnerability are minimized with
each of the tasks satisfying its deadline. One common practice
for dealing with multi-objective optimization problem is to
optimize one objective at a time while transforming other
objectives into constraints. We introduce the Vulnerability-
aware Energy Optimization (VAEO) problem, which aims
at minimizing the total energy consumption, while adding
vulnerability of tasks as constraints. A heuristic algorithm
based on run-time task scheduling is proposed for solving
the VAEO problem. We also introduce the Energy-aware
Vulnerability Optimization (EAVO) problem, which aims at
minimizing the total vulnerability while adding energy con-
sumption constraints.

B. Vulnerability-aware Energy Optimization (VAEO)

The VAEO DCR problem can be defined as the following:

minimize
n∑

i=1

e
cj
ti (1)

subject to
v
cj
ti ≤ Vti , ∀i ∈ [1, n] (2)
ati + wti + p

cj
ti ≤ Dti , ∀i ∈ [1, n] (3)

Let n represent the total number of task arrivals within the
least common multiple (hyper-period1) of all task periods.∑n

i=1 e
cj
ti is the total energy consumption of n tasks2. Equa-

tion 2 and 3 contain the vulnerability and timing constraints.
Vti is the upper bound for vulnerability of task ti. Here ati ,
wti , p

cj
ti , Dti denote the arrival time, queuing time, execution

time, and deadline of task ti. The optimization goal is to find
a set of cache configuration assignments for all tasks so that

1A hyper-period is the Least Common Multiple (LCM) of all the periods
in the task set. The basic idea of using hyper-period is that once we find
a profitable (for energy or vulnerability) schedule for one hyper-period, the
exactly same schedule can be applied to subsequent hyper-periods.

2It will be precise to call n as the total number of “jobs” as in real-time
system terminology. However, for ease of discussion, we do not distinguish
between tasks and jobs.

the total energy consumption is minimized with vulnerability
and timing constraints. We choose Vti as the vulnerability of
task ti when it is executed with the base cache, the most
profitable cache configuration decided during design time. In
other words, we set the vulnerability as a constraint to ensure
that it is always at least as reliable as the base cache.

In Equation 3, arrival time ati and deadline Dti are known
upon the arrival of the task, while queuing time wti and
execution time p

cj
ti depend on the scheduling and cache

reconfiguration algorithms. Queuing time wti depends on the
scheduler and is determined by the priority of this task and
the other tasks currently in the queue. Execution time p

cj
ti

is determined by the cache configuration cj which will be
assigned to this task by the cache reconfiguration algorithm.

C. Heuristic Approach for VAEO Problem

Tasks arrive periodically and each task is inserted into
a list of ready tasks upon arrival. We propose a heuristic
approach, which employs Earliest Deadline First (EDF) as our
underlying scheduling algorithm. EDF fetches the task with
the highest priority (earliest deadline) to execute. The cache
configuration selection algorithm will pick a configuration for
this task and try to satisfy Equation 2 and 3 if possible. Our
heuristic approach chooses between the VAEO cache configu-
ration and performance optimal (PO) cache configuration for
this task.
• VAEO cache configuration of a task is the configura-

tion which satisfies Equation 2 and consumes the least
energy (i.e. the VAEO configuration) among all possible
configurations.

• PO cache configuration of a task is the configuration
which has the shortest execution time (i.e. the PO
configuration), but PO configuration might not satisfy
Equation 2.

The intuition behind our approach of choosing between PO
and VAEO configuration are as follows:

(1) The VAEO configuration satisfies the vulnerability
constraint in Equation 2 and it is most beneficial for energy
savings, although it might have long execution time. We
would like to always choose the VAEO configuration for
energy optimization, as long as this choice would not cause
the task itself or any of the subsequent tasks to violate their
deadlines.

(2) The PO configuration is aimed on Equation 3 for
satisfying timing constraints. If the VAEO configuration of
a task causes deadline violations, we would conservatively
choose the PO configuration instead. With this task running
under the PO configuration, the subsequent tasks will have
more slack time for scheduling and possibly save energy.

Algorithm 1 illustrates the runtime cache selection algo-
rithm for VAEO approach. Let us assume that our system
uses non-preemptive EDF scheduling for the task set. Tasks
arrive periodically and currently available tasks will be put
into the list of ready tasks (LRT), which is maintained as a
priority queue based on the deadlines of tasks. Algorithm 1 is
called when the processor is ready to execute a new task. The
term pPO

ti stands for the execution time of task ti using its

Algorithm 1 Cache Configuration Selection for VAEO
Input: List of ready tasks (LRT) and task profile table.
Output: VAEO or PO cache configuration.

Step 1: Sort all tasks in LRT by priority and fetch the task
tc with highest priority.

Step 2: t1 to tm are tasks left in LRT, from highest to
lowest priority. τ represents the current time.
//***check the schedulability of each task in LRT***//
for j = 1 to m do do

if τ + pPO
tc +

∑j
i=1 p

PO
ti > Dtj then

Discard task tj
end if

end for
Step 3: Select cache configuration for current task tc. Let
m′ be the number of tasks in LRT left after Step 2.
//***test the feasibility of using VAEO config for tc***//
if τ + pV AEO

tc > Dtc then
OKV AEO=false;

else
OKV AEO=true;
for j = 1 to m′ do

if τ + pV AEO
tc +

∑j
i=1 p

PO
ti > Dtj then

OKV AEO=false;
end if

end for
end if
if OKV AEO==true then

return VAEO configuration for task tc
else

return PO configuration for task tc
end if

PO configuration, and pV AEO
ti stands for the execution time

using its VAEO configuration.
Step 1 fetches the current task tc to be executed, which

is the highest priority task from LRT. Step 2 checks the
schedulability of the tasks left in LRT, when the current
task tc is executed with PO cache configuration. The schedu-
lability of each task tj left in the LRT is checked by
τ+pPO

tc +
∑j

i=1 p
PO
ti > Dtj , which tests whether its deadline

can be met with the assumption that all preceding tasks (and
itself) use PO cache configurations. If tj cannot satisfy its
deadline even with this conservative assumption, tj should
be discarded. The discarding process is done from highest
priority to lowest priority, so as to achieve fewest discarded
tasks. This step ensures that all tasks in LRT will satisfy
their deadlines with their PO configurations, when the current
task tc is executed with its PO configuration. This step will
be skipped if LRT is empty. In Step 3, we try to test the
feasibility of using its VAEO configuration for the current
task tc, which will help improve vulnerability and energy
consumption. The appropriate cache configuration for the
current task tc is selected by checking whether it is safe to
use its VAEO configuration. VAEO configuration is safe, only

if no tasks in the LRT will fail to meet their deadlines with
their PO configurations. If the VAEO configuration is not safe
for tc, we will conservatively execute the current task tc with
its PO configuration, which can ensure all tasks left in the
LRT to satisfy their deadlines with their PO configurations
(otherwise they would have already been discarded in Step
2). This algorithm runs in time of O(m) where m is the total
number of tasks in LRT.

D. Energy-aware Vulnerability Optimization (EAVO)

Now we are ready to develop a similar heuristic approach to
solve the EAVO problem, which has the total vulnerability of
task set as the optimization objective and energy consumption
of tasks as constraints. The EAVO DCR problem can be
defined as the following:

minimize
n∑

i=1

v
cj
ti (4)

subject to
e
cj
ti ≤ Eti , ∀i ∈ [1, n] (5)
ati + wti + p

cj
ti ≤ Dti , ∀i ∈ [1, n] (6)∑n

i=1 v
cj
ti is the total vulnerability of n tasks. Equation 5

contains the energy constraints and Eti is the upper bound
for energy consumption of task ti. Equation 6 contains the
timing constraints, which is the same as Equation 3. The
optimization objective is to find a set of cache configuration
assignments for all tasks so that the total vulnerability is
minimized without violating energy and timing constraints.
We choose Eti as the energy consumption of task ti when it
is executed with the base cache. In other words, we aim to
minimize vulnerability of task set while ensuring that tasks
can meet their deadlines and consume no more energy than
the base cache.

Similar to VAEO, our EAVO approach will choose between
the EAVO configuration and PO configuration. The cache
configuration selection algorithm of our EAVO approach is
similar to Algorithm 1 except that all “VAEO” phrases in
Algorithm 1 need to be replaced with the phrase “EAVO”.
Due to space constraints, we will not duplicate the algorithm
for our EAVO approach.

V. EXPERIMENTS

A. Experimental Setup

The configurable caches used in our work are from the
cache architecture introduced in [4]. The underlying cache
architecture contains a configurable cache with a four-bank
cache with sizes of 1 KB, 2 KB and 4 KB, line sizes of
16 bytes, 32 bytes and 64 bytes, and associativity of 1-way,
2-way and 4-way. In order to quantify reliability-aware DCR
trade-off, we selected benchmarks from MediaBench [12] and
EEMBC Automotive [13] benchmark suites. Table 1 shows
our four task sets with three selected benchmarks in each set.
All of the tasks are executed with the default input parameters

provided with the benchmark suites. The Base Cache3 is
chosen as a 4KB, 2-way set-associative cache with line size
of 32 bytes and this base configuration meets the need of
tested benchmarks.

Task 1 Task 2 Task 3
Task Set 1 epic* pegwit* cjpeg*
Task Set 2 toast* mpeg2* dijkstra*
Task Set 3 AIFFTR01** AIFIRF01** A2TIME01**
Task Set 4 RSPEED01** BITMNP01** IDCTRN01**

TABLE I: Task set benchmarks from *MediaBench [12] and
**EEMBC [13]

We modified the SimpleScalar simulator [14] for cache
vulnerability analysis and energy consumption estimation. We
performed the vulnerability analysis during cache accesses for
each byte in instruction and data cache. The vulnerability es-
timation function collects all the vulnerable intervals for each
valid byte in cache. We applied the same energy model as in
[4] to calculate both dynamic and static energy consumption,
and the energy consumption was estimated using CACTI 4.2
[15] with a 0.18 µm technology. For static profiling of each
task to find the PO, VAEO, and EAVO cache configurations,
we developed Perl scripts to exhaustively search the design
space of all possible cache configurations. Since we only
consider systems with one level of reconfigurable cache
architecture, the space of possible cache configurations is
small. The statistics for all possible cache configurations for
a task can be collected in a reasonable time (a few hours).
Once we have the profile tables for all the tasks, we use an
EDF scheduler to simulate the system for a hyper-period. The
cache selection algorithms are integrated in the scheduler to
make decisions to reconfigure the cache during simulation.
The optimization for instruction cache and data cache are
independent.

B. Results and Analysis

Using the methodology described in Section IV, we apply
our VAEO and EAVO approaches on each task set. Fig. 4
and Fig. 5 show results for instruction cache and data cache,
respectively. VAEO approach can improve both energy and
vulnerability while EAVO approach can significantly reduce
vulnerability with minor impact on energy consumption.
There are a few interesting observations on our results:

(1) As expected, VAEO approach always consumes less en-
ergy, but has higher vulnerability than EAVO approach. This
is aligned with our optimization goals: VAEO is for energy
optimization and EAVO is for vulnerability optimization.

(2) VAEO approach improves vulnerability as well as
energy consumption. As we mentioned earlier, the Base Cache
is selected as 4096B 2W 32B because this configuration will
ensure all tasks to meet their deadlines. A large cache size of
4096B can have high performance but also cause high vulner-
ability. So Base Cache is among the cache configurations with

3Base Cache refers to the cache used in typical real-time systems, which is
chosen to ensure durable task schedules. Typically, base cache is the globally
optimal cache configuration determined during design time for a set of tasks.

Task Set 1 Task Set 2 Task Set 3 Task Set 4 Average
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Base Cache VAEO EAVO

E
ne

rg
y

 N
or

m
al

iz
ed

 to
 B

as
e

C
ac

he

Task Set 1 Task Set 2 Task Set 3 Task Set 4 Average
0

0.2

0.4

0.6

0.8

1

1.2
Base Cache VAEO EAVO

V
ul

ne
ra

bi
lit

y
N

or
m

al
iz

ed
 to

 B
as

e
C

ac
he

(a) Energy Consumption of Instruction Cache

(b) Vulnerability of Instruciton Cache

Fig. 4: Instruction cache energy and vulnerability. VAEO can
improve both energy (9.6%) and vulnerability (15.8%). EAVO
can significantly reduce vulnerability (21.9%) with minor
impact on energy consumption (9.7%).

high vulnerability and leaves plenty of room for vulnerability
reduction.

(3) But EAVO approach may increase the energy consump-
tion. As shown in Section III, small cache size and large miss
rate tend to have low vulnerability, while it usually comes with
a cost of inferior performance and high energy consumption.
Moreover, when a task uses its EAVO cache configuration
has extremely bad performance, it may force the subsequent
tasks to choose PO cache configurations in order to meet their
deadlines and consume a lot more energy for these tasks.

(4) For data cache optimization of Task Set 1, EAVO
approach gains neither energy nor vulnerability improvement.
That is because EAVO cache configurations for some tasks
have extremely bad performance, which forces too many
subsequent tasks to choose PO cache configurations and
increase the vulnerability for the task set.

VI. CONCLUSIONS

Dynamic cache reconfiguration is widely used for improv-
ing energy and performance in embedded systems. While
cache vulnerability is a well studied area, previous research
efforts did not explore cache vulnerability in the context of
cache reconfiguration. In this paper, we developed algorithms
to reduce cache vulnerability due to soft errors with energy
and performance considerations. Our experimental results

Task Set 1 Task Set 2 Task Set 3 Task Set 4 Average
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Base Cache VAEO EAVO

E
ne

rg
y

N
or

m
al

iz
ed

 to
 B

as
e

C
ac

he

Task Set 1 Task Set 2 Task Set 3 Task Set 4 Average
0

0.2

0.4

0.6

0.8

1

1.2
Base Cache VAEO EAVO

V
ul

ne
ra

bi
lit

y
N

or
m

al
iz

ed
 to

 B
as

e
C

ac
he

(a) Energy Consumption of Data Cache

(b) Vulnerability of Data Cache

Fig. 5: Data cache energy and vulnerability. VAEO can
improve both energy (8%) and vulnerability (23%). EAVO can
significantly reduce vulnerability (25.4%) with minor impact
on energy consumption (5.9%)

demonstrated that our approach can significantly improve the
reliability of both instruction and data caches.

REFERENCES

[1] V. Sridharan and D. Liberty. A Study of DRAM Failures in the Field.
HPCNSA(SC), 2012.

[2] R. Jeyapaul and A. Shrivastava. Smart Cache Cleaning: Energy efficient
vulnerability reduction in embedded processors. CASES, 2011.

[3] W. Wang et al. Dynamic Cache Reconfiguration for Soft Real-Time
Systems. TECS, 2012.

[4] W. Wang et al. Dynamic Reconfiguration in Real-Time Systems - Energy,
Performance, Reliability and Thermal Perspectives. Springer, 2012.

[5] C. Ekelin. Clairvoyant Non-Preemptive EDF Scheduling. ECRTS, 2006.
[6] P. Hsu and T. Hwang. Thread-criticality aware dynamic cache reconfig-

uration in multi-core system, ICCAD, 2013.
[7] Y. Cai et al. Cache size selection for performance, energy and reliability

of time-constrained systems. ASP-DAC, 2006.
[8] S. Mukherjee et al. A systematic methodology to compute the archi-

tectural vulnerability factors for a high-performance microprocessor.
MICRO, 2003.

[9] V. Sridharan et al. Reducing data cache susceptibility to soft errors.
TDSC, 2006.

[10] G. H. Asadi et al. Balancing performance and reliability in the memory
hierarchy. ISPASS, 2005.

[11] A. Biswas et al. Computing architectural vulnerability factors for
address-based structures. ISCA, 2005.

[12] C. Lee et al. Mediabench: A tool for evaluating and synthesizing
multimedia and communications systems. MICRO, 1997.

[13] http://www.eembc.org. EEMBC, The Embedded Microprocessor
Benchmark Consortium.

[14] http://www.simplescalar.com. The SimpleScalar Simulator.
[15] http://www.hpl.hp.com/research/cacti/. CACTI.

