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Validation of hybrid systems is complex due to
interactions of both continuous and discrete dynamics.
Simulation is the most widely used form of system vali-
dation using a combination of random and constrained-
random tests. Directed tests are promising since orders-
of-magnitude less number of directed tests can achieve
the same coverage goal compared to random tests.
While directed test generation is well studied for digital
designs, it is still in its infancy for hybrid systems. In this
paper, we propose a method for automatically generating
directed tests for hybrid systems. The test generation
scheme is based on the Rapidly Exploring Random Tree
(RRT) algorithm. In contrast to existing methods of using
RRT for validation that tries to reach targets (functional
scenarios) from the initial state, we propose to employ
reverse RRT that starts from a target and tries to reach
the initial state. This enables us to generate an accurate
testcase for both functional scenarios and interesting
corner cases. Our test generation algorithm is upto 33
times faster (average 10 times) compared to state-of-the-
art forward RRT techniques.

I. INTRODUCTION

Validation of systems with both continuous and dis-
crete dynamics (hybrid systems) is complex. Automated
techniques for efficient functional validation of such
systems become necessary to keep pace with increasing
validation complexity. Simulation using a set of test
vectors is an integral part of validating hybrid systems.
Test vector generation can be classified into three broad
categories: random, constrained-random and directed.
Random test generators, due to their capability to gen-
erate a wide variety of functional scenarios, are efficient
in verification of unknown errors. Constrained random
test generation is an attempt to steer a generic random
test generator towards generating test vectors that are
likely to activate a set of important functional scenar-
ios. Depending on the nature of a functional scenario,
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constraint generation can be complex. Moreover, due to
probabilistic nature of these constraints, the generated
tests may not activate the target functional scenarios.

Let us take an example of a bouncing ball system
which is described in detail in Section V-A. As shown in
Fig. 1, the ball can be launched with different velocities
and from a starting point of different height, resulting in
different bounce trajectories.
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Fig. 1. Different trajectories for a bouncing ball system

The ball bounces on impact with different planks on
the ground. The gaps between planks (holes) must be
avoided during travel. An interesting functional scenario
here could be that of a trajectory where ball only
hits planks 2 and 3 before reaching the other side.
One can imagine many more such functional scenarios
of increasing complexity that might be of interest. A
random test generator in this case would generate nu-
merous random bounce trajectories before discovering
the desirable functionality. A directed test generator on
the other hand would generate exactly one testcase to
satisfy one functional scenario. Clearly, the number of
directed tests required to reach a coverage goal would
be several orders of magnitude less than using random
test vectors.

While directed test generation is a well studied prob-
lem for digital designs [5], in case of hybrid systems
it is mostly performed by human intervention that is
cumbersome and error prone. In fact, it may not be



possible to develop a directed test manually if the design
is complex and/or it involves complex interactions.

In this paper, we present an automated method for
generating directed testcases that uses a search technique
based on Rapidly Exploring Random Tree (RRT). RRT
algorithm is widely used in robotics path planning do-
main. Existing RRT based methods search in the forward
direction. Forward searches are not effective in situations
when the initial region is large but the target region is
small. In contrast, backward search will be promising
to reach the initial region starting from a small target
region. The primary contribution of this paper is develop-
ment of a RRT based directed testcase generation method
that employs tree exploration in reverse direction. In
order to enable reverse RRT algorithm, we also transform
the system model. Experimental results using bouncing
ball and thermostat demonstrate the effectiveness of our
automated generation of directed tests.

The rest of the paper is organized as follows. Section
II presents the system model and outlines the problem
statement. Section III presents related approaches. Sec-
tion IV describes our directed test generation technique
using reverse RRT. Section V presents two case studies.
Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION

We first define the system model for hybrid systems.
Next, we formally define the problem of directed test
generation.

A. System Model

The model M is defined by the tuple
(X,Q,U, f, Inv, Iinit, E,G,R) where.

• X : finite set of bounded continuous variables ⊂ Rn

• Q : finite set of discrete states {q1, q2, q3....qn} ⊂ Z
• U : finite set of bounded control inputs ⊂ Rm

• f = {fq | q ∈ Q} such that fq is a vector field
that defines the time derivative of the continuous
variables x ∈ X given by ẋ = fq(x, u). We assume
u ∈ U to be piecewise continuous. We also assume
all fq to be Lipschitz continuous [11] and integrable
in reverse time.

• Inv : assigns to each q an invariant set.
• Iinit : is the initial region of interest for the system.
• E ⊆ Q×Q : is a set of edges denoting the discrete

transition of the system.
• G : is a set of guard conditions assigned to each

edge e = (q, q′) ∈ E. A transition is taken when
the guard condition is satisfied.

• R : (x, q)→ (x
′
, q′) is a reset map defined for each

edge e = (q, q′) ∈ E. It defines how x changes
when that transition is taken.

State of the system is defined by (x, q) with the initial
state being (xinit, qinit) ∈ Iinit. We assume that reset
map R can be inverted such that there is a corresponding
relation R′ for each edge e = (q, q′) ∈ E which is
inverse of R. R′ defines transition from x′ to x such
that normal system operation will cause transformation
(x, q)→ (x′, q′) with reset map R.

B. Problem Statement

Given a model M = (X,Q,U, f, Inv, Iinit, E,G,R)
for hybrid system and a specific functional scenario S,
the goal is to come up with one possible set of control
inputs (u1, u2, . . . , un) and a start location I0 ∈ Iinit
such that the set of inputs applied over a finite time
interval {0 → T} guide the system from I0 to a state
where functional scenario S is satisfied. A testcase for
functional scenario S would then consist of the set
(I0, u1, u2, . . . , un).

For systems without any control inputs the testcase
consists only of the start location I0 such that functional
scenario S is activated if we let the system evolve
unforced from I0 for some finite time interval T .

We assume that the system start region Iinit and the
functional scenario S can be specified using inequality
operators {≤,≥} and logical operators (∧,∨) over the
system variables X . A testcase is considered valid only
if it originates from Iinit.

III. RELATED WORK

We can classify related work in two main categories.
One of the approaches address testcase generation prob-
lem by doing safety validation through reachability anal-
ysis of the system model. This approach is used by tools
like HYTECH [8], CheckMate [12], d/dt [2], PHAVer
[6], SpaceEx [7]. These tools suffer from the system
scalability issues. In addition, they also employ over
approximations of reachable sets to contain state space
explosion that can lead to false positives.

The other class of tools are based on random search
techniques. RRT (Rapidly Exploring Random Tree) [10]
is one of the popular algorithms in this class which is
used by many researchers [3], [4], [1]. Both [4] and
[1] use RRT algorithm that starts from a point in the
initial region and grows in the forward direction towards
a target goal region. In [4], a coverage based criteria is
used to bias the goal region sampling. In [1], the results
of a learning phase, based on stable system states, are
used for goal sample biasing. As described in Section



IV and V, forward RRT algorithms, even with their goal
biasing heuristics, become inefficient while searching for
a specific system state as they rely on random search in
the whole state space. In [3], a bidirectional RRT tree
(forward and backward) growth algorithm is used but
their focus is hybrid system analysis and not testcase
generation.

Closest related work to our technique is [9]. In contrast
with [9], we use a reverse RRT growth algorithm that
starts from the functional scenario region and grows
towards the initial region. As demonstrated in Section
V-C, our reverse RRT based test generation performs
significantly better than the forward RRT approach of
[9].

IV. DIRECTED TEST GENERATION

Our directed test generation method is shown in Al-
gorithm 1.

Algorithm 1: Directed test generation
Input: i) The design model, M

ii) A functional scenario S in the form
an ≤ Xn ≤ bn

Output: i) An initial region I0 ∈ Iinit
ii) Path from I0 to S as part of tree structure Γ

for i is from 1 to Max iter do1
I0 = {}, Γ = {};2
Add edge UDF (S) to Γ;3
for j is from 1 to Max nodes do4

if Iinit /∈ Γ then5
Xrand = Goal Sample(P (x, µinit, α));6
Xnear = Nearest Node(Xrand,Γ);7

Xsim ={
∫ t

0
f(xnear, UDF (u))};8

Xnew = Nearest Node(Xrand, Xsim);9
if Xnew /∈ Γ then10

add Xnew to Γ;11
end12
else13

(α(σ)) = Dynamic Bias Adjust(κ);14
end15

end16
else17

I0 = Iinit ∈ Γ;18
break;19

end20
end21
if Iinit ∈ Γ then22

break;23
end24

end25
return I0,Γ;26

Our algorithm constructs a tree structure (Γ) consisting
of nodes and edges. Each node stores the system state
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and edges denote the control input values that lead
one system state to the other. Fig. 2 and Fig. 3 show
search tree growth in forward (existing approaches) and
reverse RRT (our approach), respectively. In contrast to
forward RRT algorithm (Fig. 2), that sets a specific initial
system state as the root of the tree (start point), our
algorithm (Fig. 3) sets the root of the tree in the system
state where target functional scenario (denoted by S)
is satisfied. The algorithm then tries to grow the tree
towards a region of interest. This region of interest in
our algorithm is the initial region Iinit. At each step
of the iteration a new edge Xnew is added to the tree
starting from a nearest node Xnear with respect to a
random goal region point Xrand. Xrand is selected as
per a distribution function P (x, µinit, α) whose aim is
to bias the tree growth towards the region of interest.
System is simulated for a small time starting from the
state in Xnear by variation of control inputs U , resulting
in a set (Xsim) of intermediate nodes. Xnew is then
selected from Xsim by means of a metric function that
grows the tree towards Xrand. UDF as mentioned in
Algorithm 1 refers to the uniform random distribution
function. It should be noted that when our algorithm



grows the RRT in reverse, at every step it is trying to
explore one out of many possible conditions that can
make present state reachable by variation of control
inputs. A hybrid system that is composed of discrete
transitions and Lipschitz continuous function is expected
to be completely reversible in both forward and reverse
directions. Thus our test generation algorithm remains
unaffected by the fact that there could be multiple ways
of reaching a functional scenario from an initial region,
as we need to explore only one of the many ways in
which such a path can be traversed.

The remainder of this section describes in detail the
important steps of our algorithm: goal sampling distribu-
tion (Xrand), dynamic bias adjustment of goal sampling
and nearest node selection (Xnear).

A. Goal Sample Distribution

Our goal sample generation scheme attempts to bias
the tree growth so that it quickly reaches the initial
region (Iinit) of the system. We use bounded normal
distribution function for goal generation. The spread of
the distribution function in this case can be dynamically
adjusted to result in relatively more uniform distribution
if required as explained in subsection IV-B. The goal
distribution function P for each system variable x in
this case is given by

P =

{
N(x, µ, α) + Cnorm, bl ≤ x ≤ br
0 otherwise

N(x, µ, α) is the normal distribution function with mean
µ and standard deviation given by function α(σ). α(σ) is
an adaptive function that controls the standard deviation
σ of the spread from a range of user provided values.
We take the mean of a variable specified by inequalities
bl ≤ x ≤ br as µx = bl+br

2
Cnorm is a normalization factor that is added to make

the area under the distribution become unity for the
bounded interval. Fig. 4 shows the plot of P (x, µ, α)
for different standard deviation values with a particular
mean in a bounded region of a variable.

B. Dynamic Bias Adjustment

During tree growth phase (lines 10− 15 in Algorithm
1), a routine keeps track of instances when generated
goal fails to extend the tree. Referring to Fig. 3, tree
growth is unsuccessful when selected node Xnew is
already contained in the tree. Dynamic bias adjustment
helps in this case to steer the tree towards the direction
where it keeps growing.

As described in subsection IV-A and depicted in Fig.
4, goal sample generation for testcases is controlled
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Fig. 4. Probability distribution curves for different standard devia-
tions in a bounded region [0, 10] with mean 2

by the bounded normal distribution function P (x, µ, α).
The dynamic bias is adjusted by the standard deviation
function α(σ) so that it becomes more uniform in case
of undesirable tree growth direction. The scheme of
dynamically adjusting the spread of goal samples is a
reasonable compromise between faster convergence and
avoiding local minima.

C. Nearest Node Selection

Function Nearest Node(), shown in Algorithm 1, is
implemented by using a metric function λ. To enable
guided tree growth, this function provides a measure
of distance for a tree node with respect to the goal
region (Iinit). We use Euclidean norm as our metric
function. The Euclidean norm for distance between two
n dimensional vectors ~x and ~y is given by

λ(~x, ~y) =
{

(x1 − y1)2 + (x2 − y2)2 + ....(xn − yn)2
} 1

2

For situations, when the generated testcase does not
meet the requirements of initial region and hence is not a
valid testcase, we explore the functional scenario region
for a uniformly random different start location.

V. CASE STUDIES

We demonstrate the applicability of our approach in
this section through case studies of two different hybrid
systems, namely bouncing ball and thermostat.

ẋ1 = x3

ẋ2 = 1

ẋ3 = g

bounce

e1

x2 = x2∧
(x1 = x1∧
r1 =

x3 = 0.5 ∗ x3)

(x1 = 0 ∧ x3 ≤ 0)
g1 =

Fig. 5. Model of bouncing ball system



A. Bouncing Ball

The system shown in Fig. 5 models a bouncing
ball system similar to the one shown in Fig. 1. The
state variables (x1, x2, x3) denote the vertical position,
horizontal position and the velocity of the ball. The
system has a single discrete state labeled “bounce”. As
it is an unforced system, U is an empty set. Dynamics
of the system variables are shown in Fig. 5 as equa-
tions for ẋ1, ẋ2, and ẋ3. Edge e1 has guard condition
g1 = (x1 = 0 ∧ x3 < 0). It indicates that the transition
happens when the ball hits the floor (x1 = 0) with a
negative velocity. Reset map r1 indicates that the velocity
of the ball reverses and reduces to half the previous value
on transition e1.

Consider generating a testcase for this system when
ball hits some specific region (plank section) on the floor
with certain velocity so that the ball bounces towards
a specific section on the opposite wall. We state this
scenario as:
“Starting from a height range of [0, 1.35] and velocity
range of [−2.2, 1.1] generate a testcase to hit floor
section [3.9, 4.1] such that the velocity of the ball while
hitting this region is in the range [−0.4,−0.2]”.

Functional scenario region (S) becomes our start re-
gion and can be stated with the following inequalities:
S = 0 ≤ x1 ≤ 0 ∧ 3.9 ≤ x2 ≤ 4.1 ∧ −0.4 ≤ x3 ≤
−0.2 ∧ q = 1
Initial region (Iinit), towards which we grow the tree, is
defined as: Iinit = 0 ≤ x1 ≤ 1.35∧0 ≤ x2 ≤ 0∧−2.2 ≤
x3 ≤ 1.1 ∧ q = 1.

The testcase generated by our Algorithm 1 is shown
highlighted in Fig. 6. The algorithm identifies point
[x1, x2, x3, q] = [1.0313,≈0, 0.3465, 1] within Iinit that
will satisfy the scenario. Average memory usage and
testcase generation time are shown in Table I for multiple
attempts to generate this testcase. Fig. 6 also highlights
the randomly explored state space used for goal selection
during testcase generation.

It should be noted that since this is a system with no
control inputs (unforced), the tree grows in a predictable
manner depending on the start conditions of the system.
Although this example is simple for exploration using
RRT algorithm, it demonstrates the applicability of our
algorithm to such a system. A relatively more complex,
controlled system, is described in next section.

B. Thermostat

Consider an example of a thermostat system with
model as shown in Fig. 7.

It has two discrete states namely “on” and “off”.
System variables are {x1, x2} where x1 is the system
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Fig. 7. Model of thermostat system

temperature and x2 is the total amount of time system
is in operation. U = {uon, uoff} where uon = [2, 4] and
uoff = [−3,−1] are the heating and cooling rate inter-
vals when the system is in “on” (q = 1) and “off” (q = 2)
state, respectively. System transitions from “on” state to
“off” state whenever system temperature becomes equal
to upper bound of 3. Similarly transition from “off” to
“on” state happens when system temperature equals a
lower bound 1. None of the variables change values when
transition is taken.
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Let us consider the test generation for a scenario when



TABLE I
TEST GENERATION TIME AND MEMORY USAGE COMPARISON (‘?’ IMPLIES FORWARD RRT FAILED)

System Test Test Generation time(sec) Memory Used (MByte)
Fwd. RRT Rev. RRT Improvement Fwd. RRT Rev. RRT Improvement

[9] (our method) (times) [9] (our method) (%)
bouncing 1 926.66 57.23 16.19 512.08 509.78 0.45

ball 2 152.54 47.25 3.23 510.32 509.81 0.1
3 > 1 Hr? 52.73 −? > 1 Hr? 510.05 −?

4 123.31 55.53 2.22 509.89 509.71 0.03
5 > 1 Hr? 48.59 −? > 1 Hr? 509.84 −?

Avg. 400.84 53.34 7.52 510.76 509.77 0.2
thermostat 1 587.33 17.84 32.92 516.75 509.81 1.34

2 > 1 Hr? 53.31 −? > 1 Hr? 510.91 −?

3 > 1 Hr? 27.29 −? > 1 Hr? 510.11 −?

4 4317.83 428.02 10.09 541.28 517.25 4.44
5 363.75 56.73 6.41 515.62 510.98 0.9

Avg. 1756.3 167.53 10.48 524.55 512.68 2.26

“Start system temperature is in the range [1, 2] and
temperature reaches 2.11 in the on state after a run time
of 5.7 time units”.

Functional scenario region (S) and initial region (Iinit)
are set in this case with the following inequalities: S =
2.11 ≤ x1 ≤ 2.11 ∧ 5.7 ≤ x2 ≤ 5.7 ∧ q = 1
Iinit = 1 ≤ x1 ≤ 2 ∧ 0 ≤ x2 ≤ 0 ∧ q = 1 ∨ 2

Our algorithm generates a point [1.41, 0, 1] within
Iinit as the testcase start point in this case. It also
returns the tree structure from which heating/cooling
rates and corresponding times can be extracted. The
extracted testcase is shown highlighted in Fig. 8. Area
of the state space explored for generating the goal points
is also highlighted in Fig. 8. Average memory usage and
testcase generation time are listed in Table I for multiple
attempts to generate this testcase.

C. Comparison

We compare the test generation time and memory
usage of our algorithm with our implementation of
existing forward RRT algorithm [9]. We generated five
testcases for each of the systems presented in the case
studies. Results are listed in Table I. For results of Table
I, each algorithm was allowed to run for a maximum
time of approx. 1 hour on a linux 2.4 GHz machine. It
is clearly visible from the results that our algorithm is
upto 33 times faster (10 times on average) and requires
less memory (upto 4%, 2% on average) compared to
forward RRT. It must be highlighted that in many cases,
the forward RRT algorithm did not find the required
testcase even after running for the maximum allowed
time. These cases, highlighted with ‘?’ in Table I, are
not considered for improvement computations. In other
cases, forward RRT generated an approximate testcase
which failed to activate the functional scenario in reality.

These results are expected because our algorithm starts
from the functional scenario region and grows towards
a wide initial region. A wide initial region helps quick
convergence of random search for reverse RRT algorithm
because finding any point in the initial region during ran-
dom search would result in a valid testcase that leads to
target functional scenario. Forward RRT algorithm on the
other hand tries to randomly search the target functional
scenario in the complete system space and takes time to
converge, often settling for an approximately close point.

VI. CONCLUSION

In this paper, we introduced a directed testcase gen-
eration method for hybrid systems. The technique is
based on RRT algorithm. Instead of using a forward
growth RRT, we have used a reverse RRT algorithm
that starts from the region of desired functional scenario
and grows towards the initial region. We have combined
this technique with an adaptive bias adjustment method
that helps in efficient convergence of random search.
We demonstrated the applicability of this technique on
models of varying complexity. As our algorithm starts
from the region of target functional scenario, it converges
quickly when growing towards a wide initial region.
Corner case scenarios are generally of this nature where
designers are interested in a specific final system state
starting from a range of initial conditions. In comparison
with the forward RRT, our algorithm is upto 33 times
faster and requires less memory (upto 4%).
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