
14 Int. J. Embedded Systems, Vol. 1, Nos. 1/2, 2005 

Copyright © 2005 Inderscience Enterprises Ltd. 

A methodology for validation of microprocessors 
using symbolic simulation 

Prabhat Mishra* 
Department of Computer and Information Science and Engineering, 
University of Florida, Gainesville FL 32611, USA 
E-mail: prabhat@cise.ufl.edu 
*Corresponding author 

Nikil Dutt 
Center for Embedded Computer Systems, Donald Bren School of Information and 
Computer Sciences, University of California, Irvine CA 92697, USA 
E-mail: dutt@uci.edu 

Narayanan Krishnamurthy 
Qualcomm, San Diego, CA 92121, USA 
E-mail: narikrish@gmail.com 

Magdy Abadir 
Freescale Semiconductor, Austin TX 78729, USA 
E-mail: M.Abadir@freescale.com 

Abstract: Functional validation is one of the most complex and expensive tasks in the current 
processor design methodology. A significant bottleneck in the validation of processors is the lack 
of a golden reference model. Thus, many existing approaches employ a bottom-up methodology 
by using a combination of simulation techniques and formal methods. We present a top-down 
validation approach using a language-based specification. The specification is used to generate 
the necessary reference models for processor validation using symbolic simulation. We applied 
our methodology for property checking as well as equivalence checking of microprocessors. 

Keywords: processor validation; symbolic simulation; microprocessor; hardware synthesis; 
architecture description language. 

Reference to this paper should be made as follows: Mishra, P., Dutt, N., Krishnamurthy, N.  
and Abadir, M. (2005) ‘A methodology for validation of microprocessors using symbolic 
simulation’, Int. J. Embedded Systems, Vol. 1, Nos. 1/2, pp.14–22. 

Biographical notes: Prabhat Mishra is an Assistant Professor in the Department of Computer 
and Information Science and Engineering at the University of Florida. His research interests 
include system level modeling, architecture synthesis, design space exploration, and functional 
validation of embedded systems. He has a BE from Jadavpur University, India; an MTech  
from the Indian Institute of Technology, Kharagpur; and PhD from University of California, 
Irvine - all in Computer Science and Engineering. He is a member of the ACM, IEEE, ACM 
SIGDA, and ASEE.  

Nikil Dutt is a Professor in the Donald Bren School of Information and Computer Sciences at the 
University of California, Irvine. His research interests include embedded-systems design 
automation, computer architecture, optimizing compilers, system specification techniques, and 
distributed embedded systems. He has a BE in mechanical engineering from the Birla Institute of 
Technology and Science, India; an MS in computer science from Penn State University; and a 
PhD in from the University of Illinois at Urbana-Champaign. He is a senior member of the IEEE, 
serves on the advisory boards of ACM SIGBED and ACM SIGDA, and is vice chair of IFIP  
WG 10.5. 

Narayanan Krishnamurthy is a Staff Engineer in the ASIC Design Automation group at 
Qualcomm. Prior to Qualcomm, he was a Principal Staff Engineer in the Global Strategy and 
Future Technologies group at Freescale Semiconductor. His research interests include  
hardware-software design methodologies for microprocessors and SOC platforms, formal 
methods and verification techniques, and CAD for VLSI systems. He holds a BTech in 
Instrumentation from the Indian Institute of Technology, India, and an MS and PhD in Electrical 
and Computer Engineering from the University of Texas at Austin. 



 A methodology for validation of microprocessors using symbolic simulation 15 

Magdy Abadir is the Manager of the Global Strategy, Tools, and Methodology Group at 
Freescale Semiconductor, and is an adjunct faculty member of the Computer Engineering 
Department at the University of Texas at Austin. His research interests include microprocessor 
test and verification, test economics, EDA tools, and DFT. Abadir has a BS in computer science 
from the University of Alexandria, Egypt; an MS in computer science from the University of 
Saskatchewan, Canada; and a PhD in electrical engineering from the University of Southern 
California. He is a senior member of the IEEE. 

 

1 Introduction 

Shrinking time-to-market coupled with short product 
lifetimes create a critical need to drastically reduce 
microprocessor design cycle time. Since verification and 
design analysis are major components of this cycle time, 
any effort that improves verification effectiveness and 
design quality is crucial for meeting customer deadlines and 
requirements. Design validation techniques can be broadly 
categorised into simulation-based approaches and formal 
techniques. Due to the complexity of modern designs, 
validation using only traditional scalar simulation cannot be 
exhaustive. Formal techniques do an exhaustive analysis of 
the design but cannot be applied on the complete design 
because of the state space explosion. Symbolic simulation 
has proven to be an efficient technique, bridging the gap 
between traditional simulation and full-fledged formal 
verification. 

Figure 1 shows a traditional architecture validation flow. 
In current validation methodology, the architect prepares an 
informal specification of the microprocessor in the form of 
an English document. The logic designer implements the 
modules in the register-transfer level (RTL). The RTL 
design is validated using a combination of simulation 
techniques and formal methods. Simulation is the most 
widely used form of microprocessor validation: millions of 
cycles are spent during simulation using random  
(or pseudo-random) test cases. Model checking is applied 
on the high-level description of the design abstracted from 
the RTL implementation. Formal verification is performed 
by describing the system using a formal language.  
The specification for the formal verification is derived  
from the architecture description. The implementation for 
the formal verification can be derived either from the 
architecture specification or from the abstracted design. The 
existing techniques employ a bottom-up approach to 
validation, where the functionality of an existing processor 
is, in essence, reverse-engineered from its RTL 
implementation. Our validation technique is complementary 
to these bottom-up approaches. We leverage the system 
architects’ knowledge about the behaviour of the processor 
through Architecture Description Language (ADL) 
constructs, thereby allowing a powerful top-down approach 
to microprocessor validation. 

The contribution of this paper is a top-down validation 
methodology for microprocessors using automatic reference 
model generation. We specify the processor using 
EXPRESSION ADL (Halambi et al., 1999). The reference 
model of the processor is generated from the ADL 
specification. A symbolic simulator is used to verify the 

equivalence between the generated reference model and the 
implementation (RTL design). We applied our methodology 
in two validation scenarios: verification of a memory 
management unit of a microprocessor that is compliant with 
the PowerPC instruction-set, and verification of a RISC 
DLX processor. 

Figure 1 Traditional bottom-up validation flow 

 

The rest of the paper is organised as follows. Section 2 
briefly describes the symbolic simulation technique.  
Section 3 presents related work addressing validation  
of microprocessors. Section 4 presents our top-down 
validation methodology. Section 5 describes our reference 
model generation technique followed by a case study in 
Section 6. Finally, Section 7 concludes the paper. 

2 Symbolic simulation 

Symbolic simulation combines traditional simulation  
with formal symbolic manipulation (Bryant, 1990). Each 
symbolic value represents a signal value for different 
operating conditions, parameterised in terms of a set of 
symbolic Boolean variables. By this encoding, a single 
symbolic simulation run can cover many conditions that 
would require multiple runs of a traditional simulator. 
Figure 2(a) shows a simple n-input and gate. Exhaustive 
simulation of the and gate requires 2n binary test vectors. 
However, the ternary simulation (Bryant and Seger, 1990) 
(uses 0, 1 and x) requires (n + 1) test vectors for the and 
gate. Figure 2(b) shows the vectors: n vectors with one input 



16 P. Mishra, N. Dutt, N. Krishnamurthy and M. Abadir  

set to ‘0’ and the remaining inputs set to ‘x’, and one vector 
with all inputs set to ‘1’. Finally, symbolic simulation 
(Bryant, 1990) requires only one vector using n symbols  
(s1, s2, ..., sn), as shown in Figure 2(c). 

Figure 2 Test vectors for validation of an and gate 

 

Researchers at IBM first introduced symbolic simulation  
to reason out properties of circuits described at the  
register-transfer level (Carter et al., 1979). With the advent 
of binary decision diagrams (BDD), the technique became 
much more practical (Bryant, 1986). Providing a canonical 
representation for Boolean functions, BDDs enabled the 
implementation of an efficient event-driven logic simulator 
that operated over a symbolic domain. By encoding a 
model’s finite domain using a Boolean encoding, it is 
possible to symbolically simulate the model using BDDs. 
Bryant’s formal state transition model for a ternary system 
(Bryant and Seger, 1990) and Seger’s work on symbolic 
trajectory evaluation renewed further interest in symbolic 
execution (Seger and Bryant, 1995). 

Symbolic trajectory evaluation (STE) is a modified form 
of symbolic simulation that operates over the quaternary 
logic domain 0, 1, X and T (Seger and Bryant, 1995).  
A state of the circuit is defined as the set of all node values 
at a particular time instant. The value domain is partially 
ordered and forms a complete lattice, X ⊆ 0 indicates that X 
has less information than 0, or X is weaker than 0. The 
information content of 0 and 1 are not comparable. If r ⊆ q 
and r ⊆ t, we can think of r as representing both q and t. 
Any property that holds for a state such as r will also hold 
for all states above it in the lattice, for example q and t. 

STE differs from symbolic simulation in that it  
provides a mathematically rigorous method for establishing 
that properties (assertions) of the form antecedent (A) ⇒  
consequent (C) hold for a given simulation model of a 
circuit. For the test vector shown in Figure 2(c), the 
antecedent is: (I1 is s1, I2 is s2, …, In is sn) from time 0 to 1, 
and the consequent is: out is s1&s2& … &sn from time 1 to 2. 

Circuit state holders are initialised with symbolic  
values specified by the antecedent. The model is then 
simulated, typically for one or two clock cycles, while 
driving the inputs with symbolic values during simulation. 
The resulting values, appearing on selected internal nodes 
and primary outputs, are compared with the expected values 
expressed in the consequent. In general, the values could be 
functions over a finite set of variables. A trajectory is a 
sequence of states such that each state has at least as much 
information as the next-state function applied to the 
previous state. Intuitively, a trajectory is a state sequence 
constrained by the system’s next-state function.  

A successful simulation of assertion A ⇒ C establishes that 
any sequence of assignments of values to circuit nodes that 
is both consistent with the circuit behaviour and consistent 
with antecedent A is also consistent with consequent C. 

Symbolic trajectory evaluation is used to verify whether 
an implementation satisfies its specification. Necessary 
assertions are extracted from the specification. If the 
implementation is correct, these assertions should hold 
during symbolic simulation of the RTL design. An assertion 
(A ⇒ C) holds if the weakest antecedent trajectory that the 
implementation goes through during simulation (using A) is 
at least as strong as the weakest sequence satisfying the 
consequent C. Informally, the outputs produced during 
simulation (using A) should be at least as strong as the 
expected outputs (given in C). 

3 Related work 

Several approaches for formal or semi-formal verification of 
processors have been developed in the past. Theorem 
proving techniques, for example, have been successfully 
adapted to verify processors (Cyrluk, 1993; Sawada and 
Hunt, 1997; Srivas and Bickford, 1990). However, these 
approaches require a great deal of user intervention, 
especially for verifying control-intensive designs. Burch  
and Dill (1994) presented a technique for formally verifying 
processor control circuitry. Their technique verifies the 
correctness of the implementation model of a pipelined 
processor against its ISA model based on quantifier-free 
logic of equality with uninterpreted functions. The 
technique has been extended to handle more complex 
pipelined architectures by several researchers (Skakkebaek 
et al., 1998; Velev and Bryant, 2000; Velev, 2000).  
The approach of Velev and Bryant (2000) focuses on 
efficiently checking the commutative condition for complex 
microarchitectures by reducing the problem to checking 
equivalence of two terms in a logic with equality, and 
uninterpreted function symbols. 

Hosabettu (2000) proposed an approach to decompose 
and incrementally build the proof of correctness of pipelined 
microprocessors by constructing the abstraction function 
using completion functions. Huggins and Campenhout 
verified the ARM2 pipelined processor using Abstract State 
Machine (Huggins and Campenhout, 1998). 

In 1997, Levitt and Olukotun presented a verification 
technique called unpipelining, which repeatedly merges  
the last two pipe stages into a single stage, resulting  
in a sequential version of the processor. A framework  
for microprocessor correctness statements about safety  
that is independent of implementation representation and 
verification approach is presented by Aagaard et al. (2001). 
Ho et al. (1998) extracted controlled token nets from  
a logic design to perform efficient model checking.  
Jacobi (2002) used a methodology to verify out-of-order 
pipelines by combining model checking for the verification 
of the pipeline control and theorem proving for the 
verification of the pipeline functionality. Compositional 
model checking is used to verify a processor 



 A methodology for validation of microprocessors using symbolic simulation 17 

microarchitecture containing most of the features of a 
modern microprocessor (Jhala and McMillan, 2001). There 
has been a lot of work in the area of module level validation 
such as verification of floating-point unit (Ho et al., 1996), 
and protocol validation such as verification of cache 
coherence protocol (Pong and Dubois, 1997). 

Traditionally, validation of a microprocessor has been 
performed by applying a combination of random and 
directed test programs, using simulation techniques. Many 
techniques have been proposed for generation of directed 
test programs. Aharon et al. (1995) have proposed a test 
program generation methodology for functional verification 
of PowerPC processors in IBM. Shen et al. (1999) have 
used the processor to generate tests at run-time by  
self-modifying code, and performed signature comparison 
with the one obtained from emulation. Ur and Yadin (1999) 
presented a method for generation of assembler test 
programs that systematically probe the micro-architecture  
of a PowerPC processor. Iwashita et al. (1994) used a  
FSM-based processor modelling to automatically generate 
test programs. Campenhout et al. (1999) have proposed a 
test generation algorithm that integrates high-level treatment 
of the datapath with low-level treatment of the controller. 
Mishra et al. (2004) have proposed a graph-based functional 
test program generation technique for pipelined processors. 

Symbolic simulation has proven to be an efficient 
technique, bridging the gap between traditional  
simulation and full-fledged formal verification. Versys2 
(Krishnamurthy et al., 2001) serves as the mainstream 
custom-memory verification tool for checking Register 
Transfer Language (RTL) designs against schematics at 
Motorola’s Somerset Design Center. Beatty (1993) verified 
a switch-level non-pipelined processor description by using 
Binary Decision Diagrams (BDDs) and symbolic 
simulation. Bhagwati and Devadas (1994) verified a 
pipelined implementation of the DLX processor architecture 
using BDDs and symbolic simulation. 

4 Top-down validation methodology 

Figure 3 shows our top-down validation methodology. 
Logic designers implement the architecture at register-transfer 
level (RTL design). The structure and behaviour of the 
processor are captured using an architecture description 
language (ADL). The ADL specification is validated to 
ensure that it specifies a well-formed architecture  
(Mishra et al., 2002, 2003a). The validated ADL specification 
can be used for top-down validation of microprocessors. 
The specification can be used for generating a software 
toolkit (including compiler and simulator) to perform 
exploration of processor-memory architectures (Mishra  
et al., 2001b, 2001c). The specification can also be used to 
generate test programs for functional validation of pipelined 
processors (Mishra et al., 2001a; Mishra and Dutt, 2004).  
In this paper, we present a specification-driven validation 
methodology using symbolic simulation. 
 

Figure 3 Top-down validation methodology 

 

We use the EXPRESSION ADL (Halambi et al., 1999) in 
our framework. Our methodology is independent of the  
ADL used. We can use any ADL that captures both 
structure and behaviour of the processor. The reference 
model (HDL description) is automatically generated from 
the ADL specification. The generated reference model is 
used as specification by the symbolic simulator. 

We use Versys2 symbolic simulator (Krishnamurthy  
et al., 2001) to establish equivalence between the  
generated reference model and the actual implementation  
(RTL Design). Versys2 uses symbolic trajectory evaluation 
to perform equivalence checking. It is necessary to 
manually specify the state mappings between the reference 
model and the implementation. This involves mapping of 
both latches and bit cells by specifying their names.  
The assertions are automatically generated from the 
reference model (Wang et al., 1998). Versys2 symbolically 
simulates the RTL design by using the generated assertions 
to ensure that the implementation satisfies the specification. 
A counter-example is generated if an assertion fails in the 
RTL design. The feedback is used to modify the RTL 
design. In case of an ambiguity in the original description 
that leads to the mismatch, the architecture specification 
needs to be updated. 

Consider the validation scenario for an adder. The RTL 
design implements an n-input adder. Our framework 
generates the HDL description of the specification, 

1output input ,n
i i== ∑  that needs to be satisfied by the 

implementation. The RTL design should satisfy this 
specification irrespective of the adder implementation, such 
as ripple-carry adder or carry look-ahead adder. 



18 P. Mishra, N. Dutt, N. Krishnamurthy and M. Abadir  

5 Reference model generation 

We use the functional abstraction technique to generate  
the reference model (HDL description) from the ADL 
specification. The functional abstraction technique was  
first introduced by Mishra et al. (2001b) for generating 
simulation models for a wide variety of architectures. In this 
paper, we have applied the functional abstraction technique 
to automatically generate HDL models from the ADL 
specification. First, we briefly describe the EXPRESSION 
ADL followed by a brief description of the functional 
abstraction technique. Finally, we describe the generation of 
HDL models. 

5.1 The ADL specification 

The EXPRESSION ADL (Halambi et al., 1999) contains 
information regarding the structure, behaviour and mapping 
(between structure and behaviour) of the processor.  
The structure contains the description of each component 
and the connectivity as a netlist. There are two types of 
components: units (e.g., ALUs) and storages (e.g., register 
files). Each component has a list of attributes. For example, 
a functional unit will have information regarding latches, 
ports, connections, supported opcodes, execution timing and 
capacity. The ADL captures two types of edges in the 
netlist: pipeline edges and data transfer edges. The pipeline 
edges specify instruction transfer between units via pipeline 
latches, whereas data transfer edges specify data transfer 
between components, typically between units and storages 
or between two storages. For example, the oval (unit) and 
rectangular (storage) boxes represent components, and the 
solid (pipeline) and dotted (data-transfer) lines represent 
edges in Figure 4. 

Figure 4 Structure of the DLX architecture 

 

The behaviour is organised into operation groups, with each 
group containing a set of operations having some common 
characteristics. Each operation is described in terms of its 

opcode, operands, behaviour and instruction format. Each 
operand is classified either as source or as destination. 
Furthermore, each operand is associated with a type that 
describes the type and size of the data it contains. The 
instruction format describes the fields of the operation in 
binary and assembly. For example, Figure 5 shows the 
description of an ADD operation. 

Figure 5 Behaviour of an ADD operation 

 

5.2 The functional abstraction 

The functional abstraction technique was first introduced  
by Mishra et al. (2001b) for generating simulation models 
from the ADL specification. The notion of functional 
abstraction comes from a simple observation: different 
architectures may use the same functional unit (e.g., fetch) 
with different parameters; the same functionality  
(e.g., operand read) may be used in different functional 
units, or may have new architectural features. The first 
difference can be eliminated by defining generic functions 
with appropriate parameters. The second difference can be 
eliminated by defining generic sub-functions, which can  
be used by different architectures at different stages in the 
pipeline. The last one is difficult to alleviate since it is new, 
unless this new functionality can be composed of existing  
sub-functions (e.g., multiply-accumulate operation by 
combining multiply and add operations). The necessary 
generic functions, sub-functions and computational 
environment needed to capture a wide variety of processor 
and memory features were defined. 

The structure of each functional unit is captured using 
parameterised functions. For example, the fetch unit 
functionality contains several parameters, such as number of 
operations read per cycle, number of operations written per 
cycle, reservation station size, branch prediction scheme, 
number of read ports, number of write ports, etc. Figure 6 
shows a specific example of a fetch unit described  
using sub-functions. Each sub-function is defined using 
appropriate parameters. For example, ReadInstMemory 
reads n operations from instruction cache using current PC 
address (returned by ReadPC) and writes them to the 
reservation station. The notion of generic sub-function 
allows the flexibility of specifying the system in finer detail. 
It also allows reuse of the components. 

The behaviour of a generic processor is captured 
through the definition of opcodes. Each opcode is defined as 
a function with a generic set of parameters, which performs 
the intended functionality. The parameter list includes 
source and destination operands, necessary control and data 
type information. For example, some common  
sub-functions are ADD, SUB, MUL, SHIFT, etc.  
The opcode functions may use one or more sub-functions. 



 A methodology for validation of microprocessors using symbolic simulation 19 

For example, the MAC (multiply and accumulate) uses two 
sub-functions (ADD and MUL) as shown in Figure 7. 

Figure 6 A fetch unit example 

 

Figure 7 Modelling of MAC operation 

 

Similarly, generic functions and sub-functions for memory 
modules, controller, interrupts, exceptions, DMA and 
coprocessor were defined. The detailed description of 
generic abstractions for all of the microarchitectural 
components can be found in Mishra et al. (2001b). 

5.3 Generation of HDL description 

We have implemented all the generic functions and  
sub-functions using HDL. Our framework generates HDL 
description from the ADL specification of the processor  
by composing functional abstraction primitives. In this 
section, we briefly describe how to generate three major 
components of the processor: instruction decoder, datapath 
and controller, using the generic HDL models. The detailed 
description is available in Mishra et al. (2003b). 

A generic instruction decoder uses information 
regarding individual instruction format and opcode mapping 
for each functional unit to decode a given instruction.  
The instruction format information is available in operations 
section of the EXPRESSION ADL. The decoder extracts 
information regarding opcode, operands, etc., from input 
instruction using the instruction format. The mapping 
section of the EXPRESSION ADL captures the information 
regarding the mapping of opcodes to the functional units. 
The decoder uses this information to perform/initiate 
necessary functions (e.g., operand read), and decides where 
to send the instruction. 

The implementation of datapath consists of two parts. 
First, it composes each component in the structure. Second, 
it instantiates components (e.g., fetch, decode, ALU, LdSt, 

writeback, branch, caches, register files, memories, etc.) and 
establish connectivity using appropriate number of latches, 
ports and connections using the structural information 
available in the ADL. To compose each component in the 
structure, we use the information available in the ADL 
regarding the functionality of the component and its 
parameters. For example, to compose an execution unit, it is 
necessary to instantiate all the opcode functionalities  
(e.g., ADD and SUB, for an ALU) supported by that 
execution unit. Also, if the execution unit is supposed to 
read the operands, appropriate number of operand read 
functionalities need to be instantiated, unless the same read 
functionality can be shared using multiplexors. Similarly, if 
this execution unit is supposed to write the data back to 
register file, the functionality for writing the result needs to 
be instantiated. The actual implementation of an execute 
unit might contain many more functionalities, e.g., read 
latch, write latch and insert/delete/modify reservation 
station (if applicable). 

The controller is implemented using a combination of 
distributed (local) as well as centralised control 
mechanisms. A local controller is maintained at each 
functional unit in the pipeline to generate necessary control 
signals based on the input instruction. For example, the 
local controller in an execute unit will activate the add 
operation if the opcode is add, or it will set the busy bit in 
case of a multi-cycle operation. The centralised controller 
maintains the information regarding each functional unit, 
such as busy, stalled, etc. using generic controller function 
with appropriate parameters. It stalls or flushes the pipeline 
based on the list of instructions in the pipeline and hazard 
details. 

6 Experiments 

An important aspect of our methodology is the ability to 
perform both model (property) checking and equivalence 
checking depending on the generated reference model.  
To verify whether the implementation (RTL design) 
satisfies certain properties, our framework generates 
behaviours for the intended properties instead of generating 
the complete reference design. On the other hand, if  
the generated reference model contains the complete 
description of the design, our framework performs 
equivalence checking between the implementation and the 
generated reference model. 

The major advantage of property checking is reduction 
of the verification complexity. However, it raises an 
important question: how to choose the set of properties.  
It can be done in two different ways. First, the designers can 
decide the properties that are important to be verified for the 
design based on their design knowledge and past 
experiences. Second, a set of behaviours can be chosen and 
their effectiveness can be evaluated. For example, to verify 
a memory controller in a microprocessor, it is necessary to 
generate properties to validate each output of the controller. 
To measure the effectiveness of these properties, a set of 
coverage measures can be used during property checking 



20 P. Mishra, N. Dutt, N. Krishnamurthy and M. Abadir  

(Chockler et al., 2001). The discussion on the completeness 
of a set of properties is beyond the scope of this paper. 

6.1 Property checking of a memory management unit 

The PowerPC Memory Management Unit (MMU) supports 
demand-paged virtual memory. It consists of blocks such as 
Segment Registers, Translation Lookaside Buffers (TLBs) 
and Block Address Translation (BAT) arrays. Each of these 
memory blocks is composed of sub-blocks. For example, 
the TLB has three sub-blocks viz., entry (data information), 
LRU (least recently used information) and valid 
(information regarding validity of the data), as shown in 
Figure 8. Each of these sub-blocks is implemented as 
SRAM. The typical operations in SRAM are read and write. 
Therefore, a natural property to verify is to check, read and 
write for each SRAM cell. The generated reference model 
contains the following Verilog code segment to verify the 
read and write properties for an SRAM cell. 

 

Figure 8 TLB block diagram 

 

We modified Versys2 configuration file to give the  
node mapping between the reference model and the 
implementation. For example, the wrClk of the reference 
model is mapped to sramWrClk of the implementation.  
An interesting feature of this validation approach is that the 
same property (without any modification) is applied to all 
the memory blocks in the MMU. We modified the Versys2 
configuration file to provide node mapping between the 
reference model (property) and the implementation. 

To verify whether the RTL design correctly implements 
the TLB miss detection, our framework generated the 
following Verilog code segment. The information needed  
to build this property is directly available from the 
specification of the MMU. 

 

This property verifies miss detection for a two-way  
set-associative TLB. It would be a simple extension to 
generate this property for a n-way set-associative TLB. Here 
vsid (virtual segment id) and ea (effective address) are 
inputs, and pa (physical address) is output of the TLB block. 
The e and vld variables are outputs from the entry and valid 
blocks, respectively, as shown in Figure 8. 

Similarly, we generated and validated the property  
for the BAT array miss detection. There were several 
mismatches found during property checking. The 
architecture specification document does not provide the 
value for the else condition (default value of a signal, for 
example) in some of the cases. As a result, the description 
of the property does not have the default value for a signal, 
whereas the signal has a definite value in its implementation 
under all possible conditions. Symbolic simulation produced 
mismatches in those cases. Consider the following read 
implementation of a SRAM cell. This implementation 
assigns 32’b0 to signal out when condition (rdClk & rdEn) 
is false. However, the architecture document does not 
specify the value in the default case. As a result, the 
generated property does not have the value that caused the 
mismatch. 

 

The architecture document can be updated to add the values 
in all cases. It is also possible to impose certain constraints 
in Versys2 (Krishnamurthy et al., 2001) to avoid the 
detection of such false negatives. For example, we can set 
the condition (rdClk & rdEn) as true in the Versys2 
configuration file to avoid the detection of the mismatch 
mentioned above. 

6.2 Equivalence checking of the DLX architecture 

In a case study, we successfully applied the proposed 
methodology to validate the DLX (Hennessy and Patterson, 
1990) processor. We have chosen DLX processor since it 
has been well studied in academia, and there are HDL 
implementations available that can be used in our validation 
framework. 

The Versys2 symbolic simulator accepts Verilog 
descriptions only. We could not find any publicly available 
Verilog implementation of the DLX processor. We obtained 
a VHDL implementation of the synthesisable 32-bit RISC 
DLX from eda.org (http://www.eda.org/rassp/vhdl/models/ 
processor.html). We converted it to Verilog description 
using Synopsys Design Compiler (http://www.synopsys.com).  
We used this Verilog description as the implementation. 

 
 



 A methodology for validation of microprocessors using symbolic simulation 21 

The structure and behaviour of the DLX architecture  
is captured using EXPRESSION ADL. Our framework 
generated the Verilog description from the ADL 
specification using the method described in Section 5.  
The generated Verilog description is used as the reference 
model (specification) for the validation. 

Versys2 generated assertions from the reference model 
and applied them to the implementation using symbolic 
trajectory evaluation. The equivalence checking process 
took 149.5 seconds on a 296 MHz Sun Ultra-250 with 
1024 M RAM. The node names (inputs, outputs and 
sequential elements) of the specification and the 
implementation are mapped in the Versys2 configuration 
file. We have encountered many mismatches during 
verification. One of them was a mismatch in the output data 
bus at clock cycle 2500. The analysis of the assertion 
(antecedent ⇒ consequent) that caused the failure and the 
signals of both the reference model and the implementation 
revealed that the problem was in the overflow bit of the 
adder. The ripple-carry adder implementation of the DLX 
(http://www.eda.org/rassp/vhdl/models/processor.html) had 
incorrect computation of the overflow bit. 

Design analysis in our framework is very fast once  
we figure out the module that is causing the problem.  
For example, in this particular case, once we know that the 
adder is causing the problem, we can verify the adder 
implementation of the DLX by generating an adder 
specification (HDL description) from our framework and 
applying symbolic simulation. The framework took 5.6 
seconds to produce the error showing differences in the 
overflow bit. 

7 Conclusion 
Verification is one of the most complex and expensive tasks 
in the current microprocessor design flow. A significant 
bottleneck in the validation of such systems is the lack of a 
golden reference model. Thus, many existing approaches 
employ bottom-up validation methodology by using a 
combination of simulation techniques and formal methods. 

We presented a top-down validation approach  
using symbolic simulation. The reference model (HDL 
description) is automatically generated from the ADL 
specification of the processor architecture. An important 
aspect of our methodology is the ability to perform both 
model (property) checking and equivalence checking, 
depending on the generated reference model. Our 
framework generates behaviours of the intended properties 
to enable model checking, and generates the complete 
description of the processor to enable equivalence checking. 
To verify the implementation, Versys2 (Krishnamurthy  
et al., 2001) generates assertions from the reference model 
and applies them to the implementation using symbolic 
trajectory evaluation. We applied our methodology in two 
validation scenarios: property checking of a memory 
management unit of a microprocessor that is compliant with 
the PowerPC instruction-set, and verification of a DLX 

processor. Our future work will focus on improving this 
methodology for verifying real-world microprocessors. 

Acknowledgement 
This work was partially supported by NSF grants,  
CCR-0203813 and CCR-0205712. We would like to 
acknowledge the members of the ACES laboratory for their 
inputs. 

References 
Aagaard, M., Cook, B., Day, N. and Jones, R. (2001)  

‘A framework for microprocessor correctness statements’,  
in Margaria, T. and Melham, T. (Eds.): Proc. of Correct 
Hardware Design and Verification Methods (CHARME),  
Vol. 2144 of LNCS, Springer-Verlag, pp.433–448. 

Aharon, A., Goodman, D., Levinger, M., Lichtenstein, Y.,  
Malka, Y., Metzger, C., Molcho, M. and Shurek, G. (1995) 
‘Test program generation for functional verification of 
PowerPC processors in IBM’, Proc. of Design Automation 
Conference (DAC), pp.279–285. 

Beatty, D.L. (1993) A Methodology for Formal Hardware 
Verification with Application to Microprocessors, PhD 
Thesis, School of Computer Science, Carnegie Mellon 
University, Pittsburgh, USA. 

Bhagwati, V. and Devadas, S. (1994) ‘Automatic verification  
of pipelined microprocessors’, Proc. of Design Automation 
Conference (DAC), pp.603–608.  

Bryant, R. (1986) ‘Graph-based algorithms for Boolean function 
manipulation’, IEEE Trans. Computers, Vol. C-35, No. 8, 
August, pp.677–691. 

Bryant, R. (1990) ‘Symbolic simulation – techniques and 
applications’, Proc. of Design Automation Conference (DAC), 
pp.517–521.  

Bryant, R. and Seger, C. (1990) ‘Formal verification of digital 
circuits using symbolic ternary system models’, Proc. of 
Computer Aided Verification (CAV), pp.121–146. 

Burch, J. and Dill, D. (1994) ‘Automatic verification of pipelined 
microprocessor control’, in Dill, D. (Ed.): Proc. of Computer 
Aided Verification (CAV), Vol. 818 of LNCS, Springer-Verlag, 
pp.68–80. 

Campenhout, D., Mudge, T. and Hayes, J. (1999) ‘High-level  
test generation for design verification of pipelined 
microprocessors’, Proc. of Design Automation Conference 
(DAC), pp.185–188. 

Carter, W., Joyner, W. and Brand, D. (1979) ‘Symbolic simulation 
for correct machine design’, Proc. of Design Automation 
Conference (DAC), pp.280–286. 

Chockler, H., Kupferman, O., Kurshan, R. and Vardi, M. (2001) 
‘A practical approach to coverage in model checking’, Proc. 
of Computer Aided Verification (CAV), Vol. 2102 of LNCS, 
Springer-Verlag, pp.66–78. 

Cyrluk, D. (1993) Microprocessor Verification in PVS:  
A Methodology and Simple Example, Technical Report,  
SRI-CSL-93-12. 

Halambi, A., Grun, P., Ganesh, V., Khare, A., Dutt, N. and 
Nicolau, A. (1999) ‘EXPRESSION: a language for 
architecture exploration through compiler/simulator 
retargetability’, Proc. of Design Automation and Test in 
Europe (DATE), pp.485–490. 



22 P. Mishra, N. Dutt, N. Krishnamurthy and M. Abadir  

Hennessy, J. and Patterson, D. (1990) Computer Architecture:  
A Quantitative Approach, Morgan Kaufmann Publishers Inc, 
San Mateo, CA. 

Ho, P., Hoskote, Y., Kam, T., Khaira, M., O’Leary, J., Zhao, X., 
Chen, Y. and Clarke, E. (1996) ‘Verification of a complete 
floating-point unit using word-level model checking’, in 
Srivas, M. and Camilleri, A. (Eds.): Proc. of Formal Methods 
in Computer-Aided Design (FMCAD), Vol. 1166 of LNCS, 
Springer-Verlag, pp.19–33. 

Ho, P., Isles, A. and Kam, T. (1998) ‘Formal verification  
of pipeline control using controlled token nets and  
abstract interpretation’, Proc. of International Conference  
on Computer-Aided Design (ICCAD), pp.529–536. 

Hosabettu, R.M. (2000) Systematic Verification of Pipelined 
Microprocessors, PhD Thesis, Department of Computer 
Science, University of Utah. 

Huggins, J. and Campenhout, D. (1998) ‘Specification  
and verification of pipelining in the ARM2 RISC 
microprocessor’, ACM Transactions on Design Automation  
of Electronic Systems (TODAES), Vol. 3, No. 4, October, 
pp.563–580. 

Iwashita, H., Kowatari, S., Nakata, T. and Hirose, F. (1994) 
‘Automatic test pattern generation for pipelined processors’, 
Proc. of International Conference on Computer-Aided Design 
(ICCAD), pp.580–583. 

Jacobi, C. (2002) ‘Formal verification of complex out-of-order 
pipelines by combining model-checking and theorem-proving’, 
in Brinksma, E. and Larsen, K. (Eds.): Proc. of Computer 
Aided Verification (CAV), Vol. 2404 of LNCS, Springer-Verlag, 
pp.309–323. 

Jhala, R. and McMillan, K.L. (2001) ‘Microarchitecture 
verification by compositional model checking’, in Berry, G.  
et al. (Eds.): Proc. of Computer Aided Verification (CAV), 
Vol. 2102 of LNCS, Springer-Verlag, pp.396–410. 

Krishnamurthy, N., Abadir, M., Martin, A. and Abraham, J. (2001) 
‘Design and development paradigm for industrial formal 
verification tools’, IEEE Design and Test of Computers,  
Vol. 18, No. 4, July–August, pp.26–35. 

Levitt, J. and Olukotun, K. (1997) ‘Verifying correct  
pipeline implementation for microprocessors’, Proc. of 
International Conference on Computer-Aided Design 
(ICCAD), pp.162–169. 

Mishra, P. and Dutt, N. (2004) ‘Graph-based functional test 
program generation for pipelined processors’, Proc. of  
Design Automation and Test in Europe (DATE), pp.182–187.  

Mishra, P., Dutt, N. and Nicolau, A. (2001a) ‘Automatic validation 
of pipeline specifications’, Proc. of High Level Design 
Validation and Test (HLDVT), pp.9–13. 

Mishra, P., Dutt, N. and Nicolau, A. (2001b) ‘Functional 
abstraction driven design space exploration of heterogeneous 
programmable architectures’, Proc. of International 
Symposium on System Synthesis (ISSS), pp.256–261. 

Mishra, P., Tomiyama, H., Halambi, A., Grun, P., Dutt, N. and 
Nicolau, A. (2002) ‘Automatic modeling and validation of 
pipeline specifications driven by an architecture description 
language’, Proc. of Asia South Pacific Design Automation 
Conference (ASPDAC)/International Conference on VLSI 
Design, pp.458–463. 

 
 
 
 

Mishra, P., Dutt, N. and Tomiyama, H. (2003a) ‘Towards 
automatic validation of dynamic behaviour in pipelined 
processor specifications’, To appear, Kluwer Design 
Automation for Embedded Systems, Vol. 8, Nos. 2–3,  
June–September, pp.249–265. 

Mishra, P., Kejariwal, A. and Dutt, N. (2003b) ‘Rapid exploration 
of pipelined processors through automatic generation of 
synthesizable RTL models’, Proc. of Rapid System 
Prototyping (RSP), pp.226–232. 

Mishra, P., Grun, P., Dutt, N. and Nicolau, A. (2001c)  
‘Processor-memory co-exploration driven by an architectural 
description language’, Proc. of International Conference on 
VLSI Design, pp.70–75. 

Pong, F. and Dubois, M. (1997) ‘Verification techniques for cache 
coherence protocols’, ACM Computing Surveys, Vol. 29,  
No. 1, pp.82–126. 

Sawada, J. and Hunt, J.W.A. (1997) ‘Trace table based approach 
for pipelined microprocessor verification’, in Grumberg, O. 
(Ed.): Proc. of Computer Aided Verification (CAV), Vol. 1254 
of LNCS, Springer-Verlag, pp.364–375. 

Seger, C. and Bryant, R. (1995) ‘Formal verification by  
symbolic evaluation of partially-ordered trajectories’,  
Formal Methods in System Design, Vol. 6, No. 2,  
pp.147–189. 

Shen, J., Abraham, J., Baker, D., Hurson, T., Kinkade, M., 
Gervasio, G., Chu, C. and Hu, G. (1999) ‘Functional 
verification of the equator MAP 1000 microprocessor’,  
Proc. of Design Automation Conference (DAC),  
pp.169–174. 

Skakkebaek, J., Jones, R. and Dill, D. (1998) ‘Formal verification 
of out-of-order execution using incremental flushing’, in  
Hu, A. and Vardi, M. (Eds.): Proc. of Computer Aided 
Verification (CAV), Vol. 1427 of LNCS, Springer-Verlag, 
pp.98–109. 

Srivas, M. and Bickford, M. (1990) ‘Formal verification of  
a pipelined microprocessor’, IEEE Software, Vol. 7, No. 5, 
pp.52–64. 

Synopsys Design Compiler, http://www.synopsys.com. 
Synthesizable DLX: Generic 32-bit RISC Processor, 

http://www.eda.org/rassp/vhdl/models/processor.html. 
Ur, S. and Yadin, Y. (1999) ‘Micro architecture coverage directed 

generation of test programs’, Proc. of Design Automation 
Conference (DAC), pp.175–180. 

Velev, M. and Bryant, R. (2000) ‘Formal verification of 
superscalar microprocessors with multicycle functional units, 
exceptions, and branch prediction’, Proc. of Design 
Automation Conference (DAC), pp.112–117. 

Velev, M.N. (2000) ‘Formal verification of VLIW 
microprocessors with speculative execution’, in  
Emerson, E. and Sistla, A. (Eds.): Proc. of Computer  
Aided Verification (CAV), Vol. 1855 of LNCS, Springer, 
pp.296–311. 

Wang, L., Abadir, M. and Krishnamurthy, N. (1998) ‘Automatic 
generation of assertions for formal verification of  
PowerPC microprocessor arrays using symbolic trajectory 
evaluation’, Proc. of Design Automation Conference (DAC), 
pp.534–537. 




