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Abstract—A key problem in post-silicon validation is to
identify a small set of traceable signals that are effective for debug
during silicon execution. Structural analysis used by traditional
signal selection techniques leads to poor restoration quality. In
contrast, simulation-based selection techniques provide superior
restorability but incur significant computation overhead. In this
paper, we propose an efficient signal selection technique using
machine learning to take advantage of simulation-based signal
selection while significantly reducing the simulation overhead.
Our approach uses (1) bounded mock simulations to generate
training vectors set for the machine learning technique, and (2) an
elimination approach to identify the most profitable signals set.
Experimental results indicate that our approach can improve
restorability by up to 63.3% (17.2% on average) with a faster or
comparable runtime.
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I. INTRODUCTION

The goal of post-silicon validation is to ensure that the
fabricated, pre-production silicon functions correctly while
running actual applications under on-field operating conditions.
Post-silicon validation is a complex activity performed under
aggressive schedule, accounting for more than 50% of the
overall validation cost of a modern integrated circuit [10], [16].
A fundamental challenge in post-silicon validation is limited
observability and controllability. Limitations in the number of
output pins, coupled with restrictions imposed by area and
power constraints on internal trace buffer sizes imply that only
a few hundreds among the millions of internal signals can be
traced during a silicon execution. Furthermore, in order for
a signal to be observed, the design must be instrumented a
priori with appropriate hardware that routes the signal to an
observation point. It is therefore crucial to develop techniques to
identify trace signals that maximize design visibility and debug
information under the constraints imposed by the post-silicon
observability restrictions.

Research in post-silicon validation has attempted to address
the above issue by developing algorithms for selecting trace
signals through automatic analysis of pre-silicon (RTL or gate-
level) designs. The idea is to select a set of signals S that
maximizes state restorability, i.e., the set of states that can
be reconstructed based on the observation of the signals in S.
Traditionally, signal selection has entailed defining a metric
based on the structure, which is then used in a (typically greedy)
selection process to evaluate a candidate signal set [9], [1],
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[6], [13]. These approaches are fast but the restoration quality,
i.e., the number of design states that can be reconstructed
based on the observation of traced signals, has been low.
Recent work on simulation-based signal selection [4] provides
superior restoration quality but incurs prohibitive computation
overhead. A hybrid signal selection approach [8] has been
proposed which incorporated a combination of metric-based and
simulation-based signal selection approaches. However, using
less simulation to save selection time sacrifices the restoration
performance.

In this paper, we develop a novel signal selection technique
that retains (and improves upon) the restoration quality of
simulation-based signal selection while in a faster or comparable
signal selection time. Our approach is characterized by two key
components: (1) a machine learning technique to model the
restoration strength of the signals, and (2) an elimination based
selection technique to find the most profitable set of signals.
Our experiments demonstrate that our approach can improve
restoration quality by 63.3% (17.2% on average).

The remainder of the paper is organized as follows.
Section II presents the relevant background. We present the
technical details of our approach in Section III followed by
experimental results in Section IV. Section V discusses related
work. We conclude in Section VI.

II. BACKGROUND AND MOTIVATION

A. Signal Restoration

Restoration entails inferring values of untraced signal states
from a sequence of traced signals sampled over a period of
time. This is achieved by forward and backward propagation
of signal values of circuit elements (e.g., gates, latches, etc.):
forward propagation involves reconstructing the output of a
circuit element from traced inputs, while backward propagation
involves inferring input values from the observed output. Note
that backward reconstruction may be partial. Restoration Ratio
(RR), defined below, is a popular metric for measuring the
quality of a set of selected trace signals.

Restoration Ratio =
No. of traced and restored signals

No. of traced signals

B. Simulation-based Signal Selection

Our work is motivated by simulation-based signal selection
proposed by Chatterjee et al. [4]. They showed that mock
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simulations are more effective in identifying trace signals
than metrics based on the circuit structure. Simulation-based
signal selection is tractable for two key reasons. First, there is
negligible overall variation in restoration quality over different
random input vectors. Second, restoration ratio is insensitive to
the trace buffer depth beyond a certain size. The first observation
permits the use of a single simulation with one random input
vector for evaluation of restoration quality; the latter reduces the
evaluation time by using a smaller trace buffer depth in mock
simulations. Chatterjee et al.’s approach involves an iterative
removal process. They start with a set of candidate signals
which is initialized with all the flip-flops. In each iteration,
their algorithm attempts to remove one of the signals which
seems to be least important based on simulation results. The
process continues until the number of remaining candidates
equals to the trace buffer width.

Note that if the initial candidates set includes N flip-flops,
O(N2) simulations are required to reach the final set. The cost
of simulations makes the approach computationally prohibitive
for large circuits. To address this issue, they propose a pruning
phase prior to running the algorithm. In each iteration of their
pruning phase, dstep flip-flops are removed from the candidates
set, instead of just one flip-flop. The pruning phase continues
until the average restorability of the candidates set drops below
PT×Rmax, where PT is the cutoff threshold (typically PT =
0.95) and Rmax is the maximum restorability when all the flip-
flops are present in the candidates set.

There are two primary issues with such a pruning ap-
proach. First, the coarse-grained elimination parameter dstep
can be detrimental to the quality of selection process, as
some important signals may be removed during preprocess.
Furthermore, even with pruning, the complexity of the approach
is Ω(N2/dstep); since for most large circuits N >> dstep, the
algorithm is still computationally prohibitive for industial-scale
circuits.

III. LEARNING-BASED SIGNAL SELECTION

Our approach makes use of machine learning techniques
to ameliorate the cost of mock simulations identified above
in simulation-based signal selection. In particular, we propose
a two-step signal selection approach using semi-supervised
learning: in the first (pre-processing) step, a small number
of mock simulations is used as a training set; in the second
(selection) step, we use prediction to replace expensive mock
simulations with simple calculations.

A. Problem Formulation

The goal of a selection algorithm is to construct a set S of
w flip-flops (out of N flip-flips in the circuit) so that restoration
ratio during post-silicon debug is maximized. Here w is the
width of the trace buffer and is a parameter to the algorithm. To
motivate our approach, we first provide a rigorous formulation
of signal selection as a constrained optimization problem. First
note that the selected signal set S can be mapped to a feature
vector v = 〈f1, f2, ..., fN 〉, with fi ∈ {0, 1}. Informally, fi = 1
if and only if the i-th flip-flop is selected in S, otherwise 0.
Note that v completely identifies the set S and vice versa; we
will refer to S as the candidate signal set of v and v as the
candidate feature set of S. We then define rm(v) to be the

number of signal states that can be restored over a window
of m cycles by tracing the candidate signal set of v. We then
formulate the problem of signal selection as the following
constrained optimization problem.

max rm(v)

under constraint

N∑

k=1

fk = w (1)

The problem as posed above includes both the trace
buffer width (w) and simulation window (m) as parameters.
Clearly, a larger value of m yields more accurate restoration
estimation, and consequently, higher restoration ratio during
debug. However, previous work [4] showed that even choosing a
small value of m (e.g., for m = 64), there is a strong correlation
between the restoration quality in m cycles and that in a real
post-silicon debug scenario. Thus, for the rest of this paper,
we treat m as a small constant.

B. Overview of Our Approach

Solving the above optimization problem requires an esti-
mation of rm(v) given a feature vector v. Indeed, both metric-
based and simulation-based selection approaches can be seen
as approaches to estimate this function, through structural
analysis of the circuit, and applying mock simulation with
restoration, respectively. The lower restoration quality of metric-
based approaches are attributed to the fact that extracting this
function from circuit structure alone is often infeasible due
to complicated overlaps between restorable states of different
flip-flops. On the other hand, simulation-based techniques are
expensive for industrial circuits, even for a small simulation
window, since the circuit size (and therefore the size of the
feature vector v) is large.

Our approach uses machine learning techniques to estimate
rm(v). Many machine learning techniques, e.g., regression
analysis, use a small set of training vectors to estimate a model
of the function, which is then used to predict the results. In
our case, the training vectors come from restoration estimates
obtained from mock simulations for given feature vectors.
If the training set is small (i.e., only a small set of mock
simulations is necessary), and the predicted model is accurate,
then the technique can provide high restoration quality at low
computation cost. Regression analysis techniques are effective
in predicting the parameter estimates in cases where (1) the
number of parameters is large, and (2) estimation through
exhaustive (or even significant) simulation of all the parameters
is infeasible. Thus these techniques are appropriate for solving
the signal selection problem as posed in our formulation.

Nevertheless, applying these techniques directly on the
problem is challenging. In particular, the regression analysis
techniques require generation of training vectors such that
(1) generation time is reasonable, and (2) a reasonable number
of vectors is generated to avoid deviation of the estimated model
of the function from the (unknown) actual model. Note that if
the number of training vectors is too small, it is possible to fit
a large number of regression models to this set, and can lead
to underfitting (i.e., fitting a model that is too simplistic), or
overfitting (fitting a model that is too complex), leading to high
prediction error. Furthermore, the class of curves that model
the function is another important factor. For example, linear
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Fig. 1. Real values of rm(v) versus predicted values for 130 random vectors
in s5378 benchmark using support vector regression. Each random vector
represents a set of randomly selected trace signals.

fitting may not be a good choice for modeling the complicated
non-linear relationships between the flip-flops of the circuit.

We investigated the effectiveness of three regression tech-
niques; linear regression, neural network regression, and
support vector regression. As expected in theory, support vector
regression produced most accurate results for the set of our
benchmarks.1 Figure 1 shows the relationship between the
real value of rm(v) (calculated using simulation) and the
predicted value for 130 random vectors where m = 64 in
s5378 benchmark. Each random vector represents a set of
randomly selected trace signals. The support vector regression
is used for modeling and prediction. Observe that although the
real and predicted values do not match exactly, the relative
pattern over the vectors is consistent for both of them. In fact, in
a selection process, only the relative relation between different
rm(v) values is enough to choose the most effective vector.
This enables us to use the predicted values instead of the real
ones without significant loss in quality.

C. Signal Selection Algorithm

In order to increase the accuracy of the prediction as well as
to reduce the runtime of modeling/prediction in large circuits,
we propose a two-step modeling scheme. Figure 2 illustrates
the framework. In the first step, a linear modeling is applied
to eliminate less important flip-flops and to reduce the size of
feature vector. Although the accuracy of linear modeling is low,
it is fast and can be used to quickly prune out the non-beneficial
signals and determine top candidates using simple calculations.
In the second step, a non-linear regression is applied on the
reduced set to produce a finer model of the remaining flip-
flops. The reduced number enables us to use a more accurate
non-linear model with fewer training vectors. Finally, a further
elimination-based selection is applied to remaining flip-flops
to select top w candidates. We now discuss the different steps
of the algorithm in more detail.

Linear Pruning Signal Selection

Pruning Training Vectors Selection Training Vectors

All Signals Pruned Signals

Selected Signals

Fig. 2. Proposed signal selection process. A quick linear model is used to
eliminate most of the non-beneficial flip-flops. A more accurate non-linear
model is used to select w flip-flops out of the remaining flip-flops where w is
the trace buffer width.

1The circuit modeling problem is not linear separable to be modeled using
linear regression. In addition, neural network regression may get stuck in a
local extreme, if it can find such a point.

1) Generating Training Vectors: Algorithm 1 outlines the
pseudo-code for training vector generation. Our implementation
entails an X-simulator in C++ which can conduct the simulation
as well as forward/backward restoration in the circuit. To
consider the effect of each flip-flop on total restorability, two
vectors are generated. First a vector in which only a particular
flip-flop is selected, and second a vector in which all the flip-
flops are selected except that particular flip-flop. In addition,
to include the vectors with different number of flip-flops,
N − 1 vectors with 2, 3, . . . , N randomly chosen flip-flops
are generated. This process continues until a total number
of t vectors are generated. This unbiased random vector can
model the correlation between the effect of different flip-flops.
After generating training vectors, the corresponding rm(v) is
generated using a mock simulation followed by a restoration
process over m cycles. Finally, we have t pairs 〈vi, rm(vi)〉
that are used as training vectors for the regression technique.
The set of generated vectors S and corresponding restorability
R are returned as the output of algorithm.

Algorithm 1 Training Vector Generation

1: procedure GENERATEVECTORS(circuit,m, t)
2: Create training vectors set S
3: Create restoration power set R
4: totalGenerated = 0
5: for each flip-flop f in circuit do
6: Add a vector to S in which only f is selected
7: Add a vector to S in which only f is omitted
8: totalGenerated=totalGenerated+2
9: end for

10: for i = 2; i <= N ; i++ do
11: Add a vector to S in which exactly i random flip-

flops are chosen
12: totalGenerated++
13: end for
14: while totalGenerated < t do
15: length= a random number between 1 and N
16: randomV ector=a vector in which exactly length

random flip-flops are chosen
17: if randomV ector �∈ S then
18: Add randomV ector to S
19: totalGenerated++
20: end if
21: end while
22: for each vector v in S do
23: R(v) = Restoration power of v using a mock

simulation followed by a restoration process over m cycles
24: end for
25: return S, R
26: end procedure

2) Linear Pruning: In order to improve the prediction
accuracy and also decrease the runtime of simulation/modeling
we apply a pruning phase which is equivalent to feature
selection in machine learning. In this step, a linear modeling is
used to quickly eliminate most of the non-beneficial flip-flops
(in term of restorability effectiveness). Given the training set
〈vi, rm(vi)〉, the support vector regression solution is a set of
j support vectors which is used for predicting new vectors.
Denoting the predicted rm(v) as r̂m(v), we have the following
equation.
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r̂m(v) = ŵ0 +

j∑

k=1

αkk(vk, v) (2)

In Equation 2, v is the vector whose restorability we wish to
predict, vk is the kth support vector, and αk is the corresponding
coefficient. In addition, k(vk, v) is the output of the kernel
function used in support vector regression. In linear mode, the
kernel function is of the form k(vk, v) = vTk .v, where vTk is the
transpose of vk. Then we can rewrite Equation 2 as follows.

r̂m(v) = ŵ0 +

j∑

k=1

αkv
T
k .v (3)

⇒ r̂m(v) = ŵ0 + ŵT .v (where ŵ =

j∑

k=1

αkvk) (4)

Equation 4 illustrates the simplified version of the prediction
formula when a linear kernel is used. In fact, the model is a
simple hyperplane which has the minimum error amongst all
the hyperplanes over the training set. Although this linear model
may not be the best fit for the non-linear function rm(v), it can
be used to quickly detect and eliminate non-beneficial flip-flops.
Algorithm 2 outlines the linear pruning process. First, a set
of training vectors is generated followed by a linear modeling
using support vector regression. Next, the weight vector ŵ of
predicted function is calculated as illustrated in Equation 4.
Those flip-flops with most effect on restorability have largest
values in corresponding index of weight vector. Therefore, the
index of p × N largest values in weight vectors are kept as
most useful flip-flops in terms of restorability and the rest is
removed. Here, N is the number of flip-flops in the circuit
and p is the pruning factor. Smaller p means less features in
next step which leads to a more accurate and faster non-linear
model. However, due to lower accuracy of linear model, lower
value of p will also increase the chance of eliminating a useful
flip-flop by mistake. In our experiments, we set p = 0.15. The
output of the process is the preserved flip-flops set S.

Algorithm 2 Linear Pruning Algorithm

1: procedure LINEARPRUNING(circuit,m, t, p)
2: Create selected features set S
3: trainV ectors =GenerateVectors(circuit,m, t)
4: Model r̂m(v) using support vector regression with

trainV ectors and linear kernel

5: Calculate the weight vector ŵ =
j∑

k=1

αkvk

6: S = the index of top p×N values in vector ŵ
7: return S
8: end procedure

3) Signal Selection: The reduced number of flip-flops in
feature vector enables us to create a more accurate non-linear
model of the circuit with significantly less number of training
vectors. The effective number of required training vectors in
second step is reduced by 1 − p, where p is the pruning
factor. The second step is the actual signal section procedure.
Therefore, in this step, having an accurate model of the rm(v)
is essential in order to select most profitable set of signals.
Using kernel trick along with a non-linear kernel function,
we can model complex non-linear functions using support
vector regression. This function is replaced by linear function

(k(vk, v) = vTk .v), which is used in pruning step. Although new
kernels are being proposed by researchers, there are general-
purpose well-known functions which are shown to be effective
in most of the scenarios. We investigated polynomial, radial
basis function (RBF), and sigmoid kernel functions. However,
sigmoid function demonstrated to be the best fit for restoration
prediction in our experiments. This function is defined as
k(vk, v) = tanh(γvTk .v + r)2, where γ and r are the kernel
parameters.

Algorithm 3 outlines the step involved in our proposed
signal selection algorithm. First, a linear pruning is applied
to circuit using tpruning training vectors. Next, a new set of
tselection training vectors is generated and a non-linear model
is created using pruned features set. After the pruning and
modeling phases, all the remaining flip-flops are set to be
selected in signals vector v (i.e., are set to 1). In each iteration
of the algorithm, a signal which has the minimum impact on
restoration performance of the v is eliminated from the vector
(i.e., is set to 0). Here, instead of evaluating rm(v) using
mock simulations, the predicted value r̂m(v) is used. This
enables the algorithm to proceed very fast, while utilizing the
high prediction accuracy of a non-linear model. This process
continues until the number of remaining flip-flops is equal to
trace buffer width w. The set of selected signals S is returned
as the algorithm output.
D. Complexity and Scalability

Simulation of large industrial designs incurs high cost in
running time. Indeed, simulation time is the primary bottleneck
in the usability of simulation-based signal selection on large-
scale designs. Therefore, a good metric of the complexity of
such algorithms is the number of mock simulations/restoration
processes required in the computation. Assume that there are
N flip-flops in the circuit. In our approach, mock simulations
are required in generating the training vectors, including
pruning and the selection steps. Therefore, a total number
of tpruning + tselection simulations are conducted. In pruning
phase, since the model is a simple linear one, our experiments
demonstrated that choosing tpruning = 4 × N is enough in
order to eliminate non-beneficial flip-flops when p = 0.15. We
also discovered that tpruning = 10×Nselect is the beneficial
number of training vectors for non-linear model which prevents
overfitting and underfitting, where Nselect = p×N . Therefore,
in our experiments, tpruning = 10× 0.15 × N = 1.5×N .
It means, the total number of mock simulations in our
approach is 5.5 × N , which is much less than Ω(N2/dstep)
reported in previous work [4], where dstep = 50 in their
experiments. On the other hand, the hybrid approach [8],
uses simulation/restoratin computation only for top k% of
the candidate signals, where k = 5% in their experiments. The
complexity of their approach is O(kwN) where w is the trace
buffer width. It can be observed that once the parameters are
fixed, the asymptotic complexity of our approach and [8] is
identical (θ(N)), with potentially different constant coefficients.

IV. EXPERIMENTS

A. Experimental Setup

In order to investigate the effectiveness of our proposed
approach, we have developed a cycle-accurate simulator for

2
tanh(x) =

1− e
−2x

1 + e−2x
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Algorithm 3 Learning-based Signal Selection

1: procedure SELECT(circuit,m, tpruning, p, tselection, w)
2: Call LinearPruning (circuit,m, tpruning, p)
3: trainV ectors =GenerateVectors(circuit,m, tselection)
4: Model r̂m(v) with pruned features using support vector

regression, trainV ectors, and a non-linear kernel
5: Create selected signals set S
6: Create initial vector of v =< 1, 1, ..., 1 >, |v| = N × p
7: remainedSignals = N × p
8: while remainedSignals > w do
9: maxRestorability = −∞

10: maxIndex = −1
11: for i = 1; i <= N × p; i++ do
12: if v[i] = 1 then
13: v[i] = 0
14: if r̂m(v) > maxRestorability then
15: maxRestorability = r̂m(v)
16: maxIndex = i
17: end if
18: v[i] = 1
19: end if
20: end for
21: v[maxIndex] = 0
22: remainedSignals = remainedSignals− 1
23: end while
24: for i = 1; i <= N × p; i++ do
25: if v[i] = 1 then
26: Add i to S
27: end if
28: end for
29: return S
30: end procedure

ISCAS’89 benchmarks using C++. Our simulator also conducts
restoration in both forward and backward directions. The
simulator iterates on the unknown signals queue and attempts to
restore them leveraging both forward and backward restoration
techniques. This process terminates when it is not possible to
restore any more states. In addition, we checked the correctness
of our simulator by comparing its output with the output of
Verilog simulation of the identical circuits using Icarus Verilog
[14]. We used LIBSVM [3] as the support vector regression
modeling/prediction tool. In addition, we used 5-fold cross
validation technique to choose the best set of parameters in
the support vector regression and the kernel functions.

In our experiments, we compared our approach with our
implementation of [4] and [8]. We used our implementation of
[4], [8] for the comparison for two reasons. First, their reported
results used their own synthesized/optimized version of the
ISCAS’89 benchmarks which are inaccessible to us, while
we used the standard, publicly available versions of ISCAS’89
benchmarks.. In addition, to make the comparison of the runtime
fair, same simulation/restoration platform needs to be used in
all the approaches. We used the same parameters c = 64 and
PT = 95% as reported in [4]. In addition, we used the same
parameters M = 64, k = 5%, and an initialization simulation
of 10K cycles as reported in [8]. We also used m = 64,
p = 0.15, tpruning = 4×N , and tselection = 1.5×N as our
approach parameters where N is the number of flip-flops in the
circuit. For reporting the restoration ratios, we fed the simulator

with 100 sets of random input vectors and noted the average
restoration ratios for the selected set of signals. However, we
forced the circuits to operate in their normal mode by fixing
the relevant control (reset) signals, while assigning random
values to all the other inputs. The control signals include active
low reset signals RESET in s35932 and g35 in s38584 which
was set to 1 in our experiments.

B. Signal Selection Time

The run-time result comparison used an Ubuntu 10.04.4
machine with a Dual-Core AMD Opteron 222SE (3000 MHz)
processor and 16 GB of memory for all the experiments.
Although [4] and [8] used a multi-thread or GPU-based imple-
mentation for their simulation core, to make the comparison
fair, we used a single thread program for all the techniques.
This enables us to highlight the significant runtime differences
of the approaches. The runtime of our approach is calculated as
the summation of required time for generating training vectors
(simulations), modeling, and signal selection process itself.

TABLE I. RUNTIME COMPARISON OF OUR APPROACH COMPARED WITH

EXISTING SELECTION APPROACHES

Circuit
#Flip-

flops

Buffer

Width

Simulation-based

[4]
Hybrid [8]

Learning-

based

s5378 179

8 00:01:53 00:00:03 00:00:13

16 00:01:52 00:00:14 00:00:13

32 00:01:48 00:00:19 00:00:13

s9234 228

8 00:08:52 00:00:15 00:00:47

16 00:08:43 00:00:33 00:00:47

32 00:08:10 00:00:52 00:00:47

s15850 597

8 03:44:12 00:00:59 00:07:19

16 03:44:04 00:03:39 00:07:19

32 03:43:39 00:04:30 00:07:19

s13207 669

8 01:21:41 00:01:08 00:05:46

16 01:21:35 00:03:17 00:05:45

32 01:21:13 00:04:07 00:05:44

s38584 1452

8 28:43:02 00:13:54 01:31:59

16 28:42:16 00:42:56 01:31:00

32 28:38:59 01:01:33 01:30:03

s38417 1636

8 196:51:50 00:16:07 02:00:32

16 196:50:44 00:47:52 02:00:25

32 196:48:27 01:15:09 02:00:16

s35932 1728

8 11:39:36 00:17:27 01:41:34

16 11:39:09 00:52:12 01:41:30

32 11:38:01 01:22:08 01:41:23

Table I presents the runtime of our approach compared with
previous techniques [4], [8] using different ISCAS’89 bench-
marks. The reported runtime format is ‘hour:minute:second’.
From the table, as expected, it is clear that our approach
is significantly faster than pure simulation-based approach
presented in [4]. Moreover, we note that our approach runtime
is comparable to hybrid approach [8], specially for the larger
trace buffer widths. The reason is that once the circuit is
modeled in our approach, the selection process can be done
in negligible time using simple calculations. This makes our
approach runtime independent of the trace buffer width which
is not the case in [8]. This makes our approach more scalable
in industry-scale circuits where larger trace buffer widths are
used.

Finally, iterations in pure simulation-based and hybrid
approaches are interdependent and cannot be executed con-
currently. In contrast, all the simulations in our approach are
independent and can be conducted at the same time. Therefore,
we expect that our approach would be even faster if a paralleled
implementation is incorporated. This makes our approach more
scalable for very large industry-level circuits by running them
in parallel in a multi-processor environment.
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C. Restoration Quality

Table II presents the restoration ratios of our approach
compared with previous techniques [4], [8] using different
ISCAS’89 benchmarks. The trace buffer sizes used in our
experiment are 8×4k, 16×4k, and 32×4k. The corresponding
restoration ratio for each technique is reported. The last column
indicates the percentage of improvement using our approach
compared with the best (shown in bold) result provided by
existing approaches. The results indicate that our approach
performs significantly better compared to existing approaches.
Compared to [4], our fine-grained pruning reduces the chance of
removing effective flip-flops prior to selection itself. Similarly,
[8] incorporated simulations for only top 5% of the candidate
flip-flops, which sacrifices the precision of the selection process.
The improvement in restoration performance is up to 63.3% in
s38584 and 17.2% on average. In short, our approach not only
produces better restoration quality, but also it is significantly
faster than [4] and has a comparable runtime to [8].

TABLE II. RESTORATION RATIOS USING OUR APPROACH COMPARED

WITH EXISTING SELECTION APPROACHES

Circuit
#Flip-

flops

Buffer

Width

Simulation-based

[4]

Hybrid

[8]

Learning-

based

Imp. over

the best

s5378 179

8 13.41 13.32 13.84 3.2%

16 7.35 7.26 7.83 6.5%

32 4.47 4.27 4.47 0.0%

s9234 228

8 13.98 14.58 15.33 5.1%

16 8.3 8.55 8.76 2.5%

32 4.46 4.46 4.84 8.5%

s15850 597

8 26.33 27.38 42.48 55.1%

16 19.89 20.65 21.9 6.1%

32 13.19 13.19 13.92 5.5%

s13207 669

8 35.52 39.21 47.18 20.3%

16 20.13 22.47 29.00 29.1%

32 11.25 12.52 15.42 23.2%

s38584 1452

8 19.73 25.87 29.36 13.5%

16 28.39 29.01 47.37 63.3%

32 32.45 34.62 43.66 26.1%

s38417 1636

8 29.23 51.01 52.33 2.6%

16 17.02 19.22 24.25 26.2%

32 15.14 13.25 16.73 10.5%

s35932 1728

8 132.00 139.52 157.18 12.7%

16 67.45 71.36 81.00 13.5%

32 34.63 35.08 44.64 27.3%

V. RELATED WORK

Limited observability of internal signals is the primary issue
in post-silicon validation. Trace buffers have been widely used
in post-silicon debug. The primary challenge is to compute
a priori a small set of signals that can be traced in order to
maximize reconstruction of internal states. Ko et al. [6] and Liu
et al. [9] have proposed efficient signal selection algorithms
based on partial restorability. Basu et al. [1] improved their
methods by proposing an efficient algorithm that selects signals
based on their total restorability. Shojaei et al. [13] proposed a
metric-based signal selection technique to enhance the timing
and logic visibility in the circuit. Prabhakar et al. [11] proposed
a logic implication based trace signal selection technique that
uses the primary inputs in restoration process. The use of scan
chains in post-silicon debug has been extensively studied in
[15], [5]. Various approaches [7], [2], [12] divided trace buffer
bandwidth into two parts, one for the trace signals and the
other one for the scan signals.

Chatterjee et al. [4] demonstrated that simulation-based sig-
nal selection is a promising approach. However, their approach

requires O(N2) simulations where N is the number of flip-
flops in the circuit. This makes their approach computationally
expensive for large circuits. To address this issue, they propose
a pre-processing phase namely pruning process, prior to running
the algorithm. Basically, the pruning phase is the algorithm
itself with less accuracy. The pruning phase reduces the initial
candidate flip-flops set but still requires long signal selection
time. In addition, it may sacrifice the signal selection quality.
Li et al. [8] proposed a hybrid (metric-based and simulation-
based) signal selection technique. However, to save selection
time, [8] uses simulation for a small fraction of the signals and
thereby sacrifices restoration performance.

VI. CONCLUSIONS

Post-silicon validation is an expensive phase in designing
integrated circuits. Success in post-silicon validation and debug
crucially depends on effective signal selection that makes
effective use of the limited available observability. Thus it
is critical to develop effective signal selection techniques that
provide high state reconstruction and can scale to large indus-
trial designs. Existing metric-based signal selection techniques
are computationally efficient, but often yield signals with poor
restorability. Simulation-based techniques, while superior in
restoration quality, suffer from major computational drawbacks.
We presented a learning-based signal selection approach which
mitigates the computation overhead of existing simulation-
based approach. Our experiments demonstrated that our fast
signal selection provides up to 63.3% (17.2% on average)
improvement in restoration ratio compared to existing signal
selection approaches.
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