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Abstract—Spectre and Meltdown attacks exploit security
vulnerabilities of advanced architectural features to access
inherently concealed memory data without authorization.
Existing defense mechanisms have three major drawbacks:
(i) they can be fooled by obfuscation techniques, (ii) the
lack of transparency severely limits their applicability, and
(iii) it can introduce unacceptable performance degrada-
tion. In this paper, we propose a novel detection scheme
based on explainable machine learning to address these
fundamental challenges. Specifically, this paper makes
three important contributions. (1) Our work is the first
attempt in applying explainable machine learning for
Spectre and Meltdown attack detection. (2) Our proposed
method utilizes the temporal differences of hardware
events in sequential timestamps instead of overall statistics,
which contributes to the robustness of ML models against
evasive attacks. (3) Extensive experimental evaluation
demonstrates that our approach can significantly improve
detection efficiency (38.4% on average) compared to state-
of-the-art techniques.

Index Terms—Spectre, Meltdown, Hardware Security,
Explainable Machine Learning, Side-Channel Analysis

I. INTRODUCTION

Processing speed of computing devices has been sig-
nificantly boosted by speculative execution properties
such as branch prediction and out-of-order execution.
As depicted in Figure 1, processors are able to per-
form parallel processing of predicted tasks with excess
system resources by utilizing speculative execution. Un-
fortunately, these performance enhancement techniques
introduces security vulnerabilities that are exploited by
Spectre and Meltdown attacks. Spectre attack [1] can
successfully break devices’ memory isolation capabilities
by abusing the ‘branch prediction’ capability. Similarly,
Meltdown attack [2] exploits the vulnerability arising
from the ‘out-of-order execution’ feature. Both attacks
enable a malicious process to access memory locations
without authorization. According to the study in [2],
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Fig. 1: Typical strategies applied in speculative execution

the Meltdown attack is able to dump kernel memory
at a speed of 503 KB/s! Therefore, it is critical to
detect Spectre and Meltdown attacks in order to enable
trustworthy computing.

There are a large number of existing efforts for
defending against Spectre and Meltdown attacks. Exist-
ing approaches focus on mitigation techniques [3]-[6],
such as enforcing the processor to empty branch target
buffer during task switching, or occasionally shutting
down speculative execution. However, these techniques
can lead to unacceptable performance degradation. A
recent approach utilizes machine learning for detection
of Spectre and Meltdown attacks [7]. While it provides
promising results, it has two inherent weaknesses. (1)
It cannot detect Spectre and Meltdown attacks in the
presence of obfuscation techniques or other deviation
capabilities [8]. (2) Due to the black-box nature of ma-
chine learning models, the results cannot be interpreted
in a meaningful way.

A. Threat Model

In this paper, we make the following assumptions that
are consistent with the related efforts in Section II.

Goals: The attacker’s goal is to reveal values in con-
cealed memory locations to cause information leakage.

Knowledge: We assume that the adversary has so-
phisticated knowledge in both Spectre and Meltdown
vulnerabilities. For the target device, we assume that
the adversary possess information about the operating



system and hardware architecture. We also assume that
the attacker is aware of specific patterns that are utilized
by existing detection techniques.

Attack Modes: The adversary will attack the target de-
vice with well-crafted Spectre/Meltdown attack codes.
The attack starts with raising exceptions during program
execution, which is followed by a side-channel attack
to achieve the adversary’s goal. We assume that the
adversary is able to measure the system’s reaction time
towards memory fetching operations. We also assume
that the evasive Spectre and evasive Meltdown attacks
can exploit the knowledge of specific patterns used by
detection techniques to devise obfuscation methods.

B. Motivation

There are two major problems that affect the perfor-
mance of existing detection efforts [7], [9]-[12]: high
overhead and poor robustness.

High Overhead: Passive prevention of Spectre at-
tacks [9], [10] relies on selectively turning off speculative
execution to prevent possible attacks, which inevitably
leads to significant reduction in performance. The study
in [13] highlights that software patches to mitigate Melt-
down (such as KPTI [14]) can introduce unacceptable
overhead. Similarly, architectural alteration [11], [12]
increases the burden on the pipeline. Moreover, it takes
considerable time for the detection to complete before
normal execution can proceed.

Poor Robustness: Recent efforts rely on hardware-based
detection methods due to their low latency compared to
software-based solutions. A majority of these approaches
utilize Hardware Performance Counter (HPC) values.
HPCs are components in microprocessors to monitor
hardware events, such as cache misses and branch mis-
prediction. Since Spectre and Meltdown attacks rely on
triggering exception and cache access measurements,
they leave noticeable traces in HPCs. An ML classifier
would be able to detect malicious attacks by observing
specific patterns in HPC values. However, this type of de-
tection is vulnerable towards obfuscation techniques [8].
The basic idea is to invoke benign functions between
malignant payloads and inserting instructions that in-
crease the specific HPC values (e.g., number of branch
mispredictions) to fool the detectors. Results in [8]
revealed that the state-of-the-art classifier can provide
less than 60% detection rate, which is comparable to a
random guess. Our proposed approach effectively fulfils
these requirements as outlined in Section III.

C. Major Contributions

In this paper, we propose a hardware-assisted Spectre
and Meltdown detection framework that takes advantage
of explainable machine learning. Specifically, this paper
makes the following four important contributions.

1) To the best of our knowledge, our approach is the
first attempt in hardware-assisted Spectre and Melt-
down detection using explainable machine learning.

2) We provide theoretical analysis on the close re-
lationship between hardware events and inherent
features of Spectre and Meltdown attacks, which
enables the attack detection with high credibility
and robustness against obfuscation.

3) We utilize hardware events as time sequential in-
puts to mitigate the misprediction induced by ob-
fuscation techniques, making the trained machine
learning model resistant against evasive attacks.

4) Experimental results demonstrate that our proposed
approach can provide significant improvement in
detection accuracy and robustness compared to the
state-of-the-art methods.

The rest of this paper is organized as follows. Sec-
tion II surveys related efforts to motivate the need for this
work. Section III describes our proposed attack detection
technique. Section IV presents the experimental results.
Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

Given the importance of trustworthy computing, there
are many research efforts in efficient detection and miti-
gation of security vulnerabilities [15]-[29]. This section
provides background on Spectre and Meltdown attacks.
It also provides an overview of explainable machine
learning.

A. Spectre and Meltdown Attacks

The operating system has one of the most fundamental
security requirements — it must prevent user programs
from accessing the memory locations of the kernel or any
other programs. Once a user program tries to perform
illegal access, the CPU will detect the permission viola-
tion during the execution, and throw an exception leading
to the termination of current program. However, during
this permission checking and scene clearing process,
the information about accessing target is retained in
the cache. These are inherent vulnerabilities in most of
modern chips, which can be exploited by attackers to
reveal kernel memory information. Specifically, a simple
template of Meltdown attack code is shown in Listing 1.



mov rax byte[x] // illegal access
shl rax 0xC // page alignment
mov rcx rbx[rax] // probe data

Listing 1: Example Meltdown Attack

In this example, ‘byte[x]’ is a private memory loca-
tion, illegal access to this location shall raise exception
during execution. Ideally, ‘rax’ should be cleared before
executing the subsequent instructions. However, due to
the speculative execution property, the second and third
instructions will be partially executed before the excep-
tion handling takes effect. Also, according to the modern
cache designs, if ‘rax’ is not in the cache, the CPU will
bring it into the cache to hide the latency of subsequent
accesses. Although ‘rax’ will be cleared by exception
handling, the cache will not be flushed immediately.
Therefore, the information of the latest illegal access is
temporarily stored in the cache. An attacker can restore
this address by a cache-based side channel attack as
shown in Figure 2. This is achieved by simply traversing
the entire array headed by ‘rbx’ and measuring the access
time — the page with the shortest access time is the one
addressed by ‘rax’, thereby this kernel value is obtained.
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Fig. 2: In a cache-based side-channel attack, an adversary can

identify the data corresponding to the index with the shortest
access time since it is likely to be pre-stored in the cache [2].
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Spectre attack is very similar but it exploits branch
prediction instead, which is shown in Listing 2. Obvi-
ously, if index ‘x’ is out of range, the second line should
not be executed. Due to branch prediction scheme, it will
still be “pre-executed”. Once this pre-execution occurs, it
will inevitably leave traces in the cache, where the same
cache-based side-channel attack can be used. Compared
to Meltdown, Spectre is more dangerous since it has a
wider attack range [1].

if(x < arrl_size); //boundary check
y = arr2[arrl [x]%4096]; //array

Listing 2: Example Spectre Attack

access

B. Explainable Machine Learning

Machine Learning (ML) has shown its potential in
security domain for tasks like malware detection and
post-sillicon validation [30], which makes it a promising
choice for detecting Spectre and Meltdown attacks. Due

to the black-box nature of ML models, no additional
information apart from detection result is available. Most
importantly, security practitioners gain no clue from
incorrect predictions. This lack of transparency hinders
its adoption in many safety-critical domains. Moreover,
to detect evasive attacks, the ML model needs to reveal
why false negatives evade the detection. We address
this challenge by a data augmentation method utilizing
explainable machine learning.

In general, explainable ML seeks to provide inter-
pretable explanation for the results of ML model. Specif-
ically, given an input instance x and a traditional ML
model, the classifier will generate a corresponding output
y for x during the testing time. Explanation techniques
then aim to illustrate why instance x is classified into y.
This often involves identifying a set of important features
inside x that make key contributions to the classification
result. If the selected features are interpretable by human
analysts, these features can offer an “explanation”.

Gradient-based method [31] is a successful attempt
in enabling interpretable machine learning. It computes
an image-specific class saliency map corresponding to
the gradient of output neurons. Integrated Gradients [32]
is a variation of saliency map where integral methods
are adopted to improve the information acquisition.
Various explainable ML techniques [33]-[35] utilize
‘deconvolution’ concept to inverse and visualize the
features learning in convolution neural networks (CNNs).
DeepLIFT [36] is another popular algorithm that was
designed to observe the activation effects of each neuron,
and assign contribution scores to each of them.
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Fig. 3: The goal of model distillation is to minimize the
difference of input-output mapping behaviors. Interpreting
the distilled model can provide insights into the internal
representation to explain how it makes a decision.

We apply “model distillation” [37] method as the EML
technique. The basic idea of model distillation is that it
develops a separate model called as “distilled model”
to be an approximation of the input-output behavior of
the target machine learning model. This distilled model



is inherently explainable, which helps a user to identify
the decision rules or input features influencing the final
decision, as depicted in Figure 3. Therefore, lightweight
structures are preferred, such as linear regression [38],
decision tree [39] or object graph [40].

Explainability is an important property for our pro-
posed work since it provides two major advantages
compared to traditional ML-based detection of Spectre
and Meltdown attacks.

e Our proposed method uses explainability to help
identify critical features. In other words, only a
small set of crafted samples satisfies the need for
adversarial training. In the absence of explainability,
one would need extensive training with a large
number of samples that can be expensive in terms of
both space and time. For example, Figure 8 shows
how explainability helps in crafting synthesized
samples with similar patterns to evasive samples.

« Explainability also helps in interpreting the predic-
tion in a human understandable way that can be
used to handle incorrect classification results.

Due to the importance of explainability in security
analysis, explainable machine learning has received sig-
nificant attention in recent years. However, the existing
approaches face two fundamental challenges:

o Existing approaches consider input data that are
discrete values. In security domain, we need to
handle input data that are time-sequential records.

« Existing approaches focus on computer vision tasks
using CNN. However, CNN model is not suitable
for security applications with time-sequential data.

There are recent attempts in applying explainable ML
for malware detection [41]. To the best of our knowledge,
our proposed approach is the first attempt in applying
explainable machine learning for detecting Spectre and
Meltdown attacks.

III. HARDWARE-ASSISTED DETECTION OF SPECTRE
AND MELTDOWN ATTACKS

This section is organized as follows. First, we provide
an overview of our approach that consists of four major
tasks. Next, we describe these four tasks in detail.

A. Overview

Figure 4 shows an overview of our proposed detec-
tion mechanism using explainable machine learning that
satisfies the following two requirements.

e Design Overhead: Efficient utilization of hardware

features with minimal impact on overhead.

e Detection Robustness: Effective countermeasures to

protect against obfuscation techniques.

Our proposed detection framework is an iterative
process comprising four major tasks.

Data Collection: We first run both benign and mali-
cious programs to collect hardware event records using
HPCs (Section III-B). These records are considered as
the initial sample pool. Next, we select several important
events as critical features to be fed into a machine
learning training process.

Model Training: Our ML model structure is based on
recurrent neural network. The model is trained with
stochastic gradient descent. Section III-B provides de-
tails on model training using selected features.

Result Interpretation: The trained model is tested
through sufficient number of test samples to produce
classification results. These results are utilized by result
interpretation task as outlined in Section III-D. This task
provides crucial information regarding the input features
that are most relevant (or misleading) for classification.

Adversarial Training: Based on the analysis obtained
from result interpretation, we craft adversarial samples
and mix them into the original pool of training samples
to retrain the model (Section III-E). The model con-
tinuously improves itself until the convergence of the
testing accuracy. This well-trained model is utilized for
automatic attack detection.

B. Data Collection

The first step for training of ML model is to collect
and determine the format of model inputs. According to
the discussion in Section I-B, it is promising to utilize
hardware events. Considering the fact that there are a
wide variety of hardware events monitored by a large
number of hardware performance counters (HPC), it is
a major challenge to select a small set of HPCs that
are beneficial for ML-based attack detection. For both
type of attacks, we need to record the total number of
instructions, which can provide system-wide information
of the current process. The out-of-order memory lookup
in Meltdown attack generates significantly high number
of page faults which can be used as an effective indicator.
For Spectre attack, due to its abuse of branch prediction
property, we record the total number of branch instruc-
tions and mispredictions to compute branch miss rate.
Moreover, since both attacks rely on a cache-based side
channel attack, we collect the total number of low-level
cache (LLC) references and misses to detect suspicious
cache events. Based on these observations, we have
selected six critical features as shown in Table I.
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Fig. 4: Overview of our detection framework that utilizes hardware events to predict potential attacks. The training process of
the ML model consists of four major activities: data collection, model training, result interpretation and data augmentation.
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Fig. 5: Distribution of LLC references, LLC misses and branch miss rate for different types of samples.

TABLE I: Selected hardware performance counters for detec-
tion of Spectre and Meltdown attacks

Hardware events Event ID | Spectre | Meltdown
Total number of instructions INS v v
Total page faults PGF X v
Total branch instruction BRC v X
Branch Miss-Predictions BMP v X
Low-Level cache references LLCR v v
Low-Level cache misses LLCM v v

A straightforward way of formatting these events
would be crafting vectors composed of the above se-
lected features. Interestingly, this naive strategy works
in reality, and is adopted by state-of-the-art works [7],
[42]. An illustrative example is shown in Figure S5a,
where we plot the distribution of normal and malicious
Spectre attack samples with LLC references, LLC misses
and branch miss rate. As we can see, the cluster of
malicious samples are clearly distinguishable from that

of normal ones, both the regions and boundary between
two classes are obvious. This observation validates that
fact that the chosen features are indeed helpful in
detecting attacks. However, this naive approach fails
against evasive attacks. In evasive attacks, the adver-
sary can simply add redundant non-profitable loops or
cache-access statements, which enables the malicious
program to mimic the pattern collected from benign
programs, making the overall statistics indistinguishable
from normal programs. This is depicted in Figure 5b,
where the distribution of evasive Spectre samples are also
plotted. This time the cluster of evasive samples mingled
with normal ones, and there is no clear boundary to
distinguish them. As demonstrated in Section IV, evasive
attacks drastically reduces the performance of state-of-
the-art methods.

To address this, two strategies were applied. First, the
data format in our approach is designed as an event-



TABLE II: An example record of event trace differences

Time
IEvents To | 1 T2 T3
A BMR 05| 1.1 | -0.1
A LLCR 59 | 83 46
A LLCM 11 26 16

tracing table as shown in Table II. The key idea is
that instead of directly utilizing the overall statistics,
we use HPC to sample hardware events in multiple
timestamps and record their differences. Each row rep-
resents a specific selected hardware event, and we use
‘A’ symbol to denote that each entry represents the
increase of corresponding event compared to previous
timestamp. Since we consider the hardware events in
sequential timestamps instead of overall statistics, a
natural advantage of this strategy is that it grants the
model with potential information concealed in consec-
utive adjacent inputs. The second strategy is applying
data augmentation in ML training process, which will
be discussed in Section III-E.
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Fig. 6: Recurrent Neural Network (RNN)

C. Model Training

Since we are providing time-sequential data, the major
structure of our model is selected as Recurrent Neural
Network (RNN). The neural network is represented by
A, where xg,x1,xo,... means the time series inputs
(columns of event-tracing table in our case), and h;s
are the outputs of hidden layers. Instead of finishing
the input-output mapping in one forward pass, the RNN
accepts sequential inputs. For each single input x;,
RNN not only provides immediate response h; but also
information corresponding to the previous step will be
fed into the architecture to supply extra information.
This mapping can be understood by unrolling the RNN
structure as shown in Figure 6. To avoid the vanishing
gradient and the exploding gradient problems detailed
in Bengio et al. [43], we choose to implement RNN
as long-short term memory (LSTM). LSTM is a special
type of RNN that utilizes special units in addition to
basic configuration. LSTM adopts a ‘memory cell’ that
can maintain information in memory for long periods of

time. At the same time, a set of gates is used to con-
trol the information flow inside LSTM’s structure. This
architecture lets them learn longer-term dependencies.

The LSTM works as an auto-encoder to map the
original data to the outputs of hidden features, yet we
still need an extra structure to play the role of mapping
the learned “distributed feature representation” to a more
sophisticated feature space. Therefore in our design, the
output of the last layer of LSTM passes through a multi-
layer perceptron (MLP) neural network.

Finally, the output of the MLP is normalized by a soft-
max layer to generate binary prediction labels, where a
cross_entropy function is applied to produce the training
loss. The gradient of loss is fed into stochastic gradient
descent (sgd) method to update model parameters. The
overall structure of the proposed method is outlined
in Figure 7, and the training process is described in

Algorithm 1.

Softmax % %

MLP

Events Tracing Table LSTM

AINS XXX XXX

ATCA XXX XXX
ATCS XXX = XXX

1

Predictions

Fig. 7: The structure of the proposed ML model consists of
two major components, LSTM and MLP. The output of the
last hidden layer passes through softmax function to produce
prediction labels for input samples.

D. Result Interpretation

The trained model from previous step can be directly
applied for detection task, but it is still vulnerable
towards obfuscation techniques as discussed in Sec-
tion I-B. To address obfuscation challenge, we first apply
explainable ML to interpret the detection outcome, which
can be further utilized to synthesize evasive data samples.
Next, these samples are merged into the pool of training
set to retrain the ML model, thereby enhancing the
robustness of model against known attacks. Intuitively,
this process is similar to ‘vaccine treatment’. It starts



with diagnosing the ‘patient’ to detect the pathogen, and
the immunity towards a particular disease is enhanced
by preventive vaccination.

To achieve result interpretation, we utilize model
distillation technique which is composed of three ma-
jor steps: model specification, model computation, and
outcome explanation.

Algorithm 1: Model Training
Input : Model Inputs {x;}
Output: Trained Model A

1 initialize(A)

2 ho = A($0)

3 repeat

4 fori=1..t do

5 L hi = A(:I)Z, hi—l)

6 res = softmax(hy)

7 loss = cross_entropy(res, label)

8 A =sgd(A, Vioss)

9 until converge;
10 Return A

Model Specification: First, the type of distilled model has
to be specified. This often involves a trade-off between
transparency and expression ability. A complex model
can offer better performance in mimicking the behavior
of the original model. However, increasing complexity
also leads to the drop of model transparency, where the
distilled model itself becomes hard to explain, and vice
versa. In this task, due to demands for low-latency and
high-transparency, we choose linear regression model for
its simplicity and interpretability.

Model Computation: Once the type of distilled model
(denoted by A*) is determined, the original model A has
to be passed through test samples to produce sufficient
number of input-output pairs. Next, the model computa-
tion task aims at searching for optimal parameters 6 to
minimize the difference between A and A*. Since we
are applying linear regression, this task is in fact a least
square problem and can be solved efficiently.

n
0= i Af(x) — Alx;
argmgm; [AG(x:) — A(z;)]]2
where vector x; = [z;1, T2, ..

(D

.| is the i-th input.

Outcome Explanation: Based on the computed distilled
model, the explanation boils down to measuring the
contribution of each input feature in producing the model
output. In this case, linear regression model is applied
which can always be expressed as a polynomial. Then

by sorting the terms with amplitude of coefficients, we
have access to information regarding the input features
it found to be most discriminatory. For instance, assume
we have Aj(x;) = a1241+azx;0+azw;3+... after regres-
sion, then we sort the terms by absolute value of their
coefficients. For example, if a; is the largest coefficient
in the term a;x;;, the most important contributor is x;;.

In this task, by listing and sorting the contributions
of the input features, the ML model is able to identify
the most important elements of each input x;. In fact,
it represents which entries of the i-th column from
event tracing table are main contributors to the model
output, i.e, the hardware events occurred in the i-th
timestamp are considered by the ML model. This is
crucial for model improvement especially in handling
incorrect classification. It clearly points out the critical
location that led to the misprediction. Next, we show how
to craft synthesized samples based on these observations.

E. Data Augmentation

By interpreting the result, we obtain clues from incor-
rect predictions. The next step is improving the model
to prevent similar mistakes in the future. This can be
achieved by data augmentation, where new synthesized
evasive samples are generated based on original mali-
cious samples. The process of data synthesis consists of
five major steps.

1) Slicing: With the help of explainable ML, it starts
by marking and slicing codes corresponding to the
most important timesteps from evasive samples that
are incorrectly labeled by the classifier. These code
slices are denoted as ‘inducements’.

2) Deleting: For original sample, randomly delete non-
important and irrelevant parts to prune the size.

3) Padding: Non-profitable code slices were randomly
generated and augmented in the sample to mess-up
the overall statistics.

4) Inserting: Bootstrapping method was applied to
sample the pool of ‘inducements’ and to insert them
into the target sample.

5) Permuting: Function blocks are permuted to re-
order hardware events, making the fluctuation of
HPC records different from original samples.

This process is demonstrated in Figure 8, and Algo-
rithm 2 describes the entire data augmentation method
along with result interpretation technique.

F. HPC Reliability Concerns

We have considered the pitfalls outlined in [44] since
our proposed work is based on HPC values. Our pro-
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Fig. 8: Illustrative examples of data augmentation used in our
work. Each row is a small fragment of the full execution
log. Each box represents one basic function block. Crafting
synthesized sample consists of five stages. First, important
misleading activities were sliced from evasive attack codes.
Next, non-important blocks from target sample are randomly
deleted to prune the size, followed by padding of non-
profitable blocks. Then, the misleading blocks are inserted into
target sample. Finally, permutation of basic blocks completes
the synthesis of new evasive samples.

Algorithm 2: Training with Data Augmentation

Input : Original model (A), distilled model
(A*), sample pool P, number of
iterations (k)

Output: Optimized model, A’

i=1

repeat

P’ = {x € P|A(x) # lable(x)}

rank = sort(A*.coeff)

P,q = craft(P', rank)

samples

P =PU Py,

A = train(A, P)

A* = distill(A, P)

i++

10 until 7 > k;

11 Return A
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posed algorithms have addressed the four pitfalls as
follows.

o External Sources: The system status gets reset af-
ter each run to ensure that the measurements are
independent across different runs.

e Non-determinism: To reduce the impact of non-
determinism, we ran each program for 200 runs.

e Overcounting: We have selected important counters
as shown in Table I. Figure 5 demonstrates that
these counters avoid overcounting problem.

e Implementation Variations: Our proposed method
is an online method which utilizes RNN to accept
time-sequential data as input. Therefore, it avoids
the data acquisition pitfall across runs.

IV. EXPERIMENTS

This section demonstrates the effectiveness of our pro-
posed framework for detection of Spectre and Meltdown
attacks. First, we describe the experimental setup. Next,
we present the detection results.

A. Experimental Setup

The experimental evaluation is performed on a host
machine with Intel i7 3.70GHz CPU, 32 GB RAM
and RTX 2080 256-bit GPU. We developed code using
Python for model training. We used PyTorch as the
machine learning library. To enable fair comparison
with existing approaches, we deploy the experiments
on the same benchmarks applied in [7] from SPEC
integer benchmark [45]. During program execution, we
extract performance counter values with ‘perf” tool at a
sampling rate of 100ms.

The machine learning model consists of a LSTM
network and a MLP. The architecture of LSTM contains
a one-hot encoding layer, a hidden layer with 32 nodes
and a 50% dropout. The MLP is composed of 3 layers
and 64 nodes. For input data, data samples consist of
hardware performance counter values collected during
the execution of both malicious (with implanted Spec-
tre/Meltdown attack) and benign programs. The initial
pool of evasive attack samples were manually crafted by
the following obfuscation techniques introduced in [8]:

1) Strategy 1: Put attack into sleep between memory-
flush.

2) Strategy 2: Insert redundant instructions for obfus-
cation.

The sampling happens at a rate of 100ms. For each
program, the collected traces are further formatted into
event-tracing table as illustrated in Table II. In terms
of the size, our training data set contains data collected
from 200 runs of malicious programs as well as 200 runs
of benign programs. Average collected data size of each
run is approximately 19.2 KB. Therefore, the total data
size is 3840 (200 *19.2) KB for each program. We have
considered a realistic scenario for data collection. The
system status was reset after each run to ensure that the
measurements were independent across different runs.



TABLE III: Comparison of Spectre attack detection by various approaches

RDSM [7] AT-RDSM ODSA-MLP [42] Proposed
Methods DR FP FN | DR FP FN DR FP FN | DR | FP | FN improvement
(P) | () | (F) | () | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | over ODSA (%)
Spectre 89.1 | 7.7 32 | 941 | 43 1.6 | 992 | 0.8 00 | 962 | 24 1.4 -3.0
Evasive-Spectre | 22.1 | 393 | 38.6 | 584 | 27.5 | 14.1 | 594 | 204 | 202 | 88.1 | 44 | 7.55 28.7
Average 55.6 | 23.5 | 209 | 76.2 | 159 | 79 | 793 | 10.6 | 10.1 | 944 | 23 | 33 18.5

Based on the above configuration, we compare per-
formance in terms of detection accuracy and robustness
between the following methods:

« RDSM: State-of-the-art detection framework for

both Spectre and Meltdown attacks [7].

o« AT-RDSM: We extended RDSM by training with

adversarial samples to enable fair comparison.

e« ODSA: State-of-the-art detection approach for

Spectre attack using various implementations [42].

e Proposed: Our proposed detection technique using

LSTM and explainable machine learning.

B. Detection of Spectre Attacks

ODSA [42] supports five implementations for Spectre
detection. Table IV summarizes the effectiveness of these
variations in detecting Spectre attacks. For each imple-
mentation, we provide detection rate (DR), false positive
(FP) and false negative (FN) rates. Since MLP provided
the best performance among ODSA implementations, we
us the MLP implementation for subsequent comparison
with our approach in Table III.

TABLE 1IV: Different ODSA implementations [42]

Implementations | DR (%) | FP (%) | FN (%)
LR 92.8 3.8 34
Tuned LR 96.4 1.1 2.5
SVM 96.8 0.7 2.5
Kernel SVM 98.3 0.7 1.0
MLP 99.2 0.8 0
Average 96.7 14 1.9

Table III compares the performance of our approach
with state-of-the-art methods in detecting Spectre as
well as evasive Spectre attacks. ODSA (MLP) performs
better compared to both RDSM and AT-RDSM. Al-
though ODSA (MLP) provides outstanding detection
performance for normal Spectre attacks, its performance
drops to about 50% facing evasive attacks, which is
comparable a random guess. In other words, ODSA is
not suitable for deployment due to its lack of robustness
against evasive Spectre attacks. The failure of ODSA
in the presence of evasive attacks is likely due to the
fact that the features extracted from evasive samples are
almost identical with that from the benign programs.
This is consistent with the feature analysis discussed
in Figure 5, when features are mingled in space, linear
classifiers like LR, SVM or MLP are not expected to

succeed. Our proposed approach significantly outper-
forms both RDSM and AT-RDSM for detecting Spectre
attacks. While the performance of our approach (96.2%
in Table V) is comparable with ODSA (96.7% average
in Table IV) for detecting Spectre attacks, our approach
significantly outperforms (28.7%) ODSA in detecting
evasive Spectre attacks.

To demonstrate the effectiveness of our proposed
explainable framework, we plot the distribution of in-
correct classification for four categories. The category
on false positive (FP) represents the misclassified benign
programs. The false negative (FN) category represents
the attacks that bypassed detection, and we further divide
it into three subcategories: evasive attacks and two ob-
fuscation strategies (Strategy 1 and Strategy 2 from Sec-
tion IV-A). We observe that ODSA is extremely sensitive
to Strategy 2, where appending redundant instructions
into the original program often mislead ODSA to make
false negative predictions. This is expected from the
mechanism of ODSA, where two hardware events (LLC
miss rate, branch miss rate) are treated as the dominant
measurement for classification. Therefore, Strategy 1
makes little contribution to the misclassification since
randomly putting program into sleep will not affect
the above events. However, the branch selection and
cache references induced by redundant execution are
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Fig. 9: Distribution of incorrect Spectre classification for both
false positive (FP) and false negative (FN) results.
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C. Detection of Meltdown Attacks

Table V compares our proposed method with RDSM
and AT-RDSM for detection of Metldown attacks. Note
that ODSA did not report any results for Meltdown




TABLE V: Comparison of Meltdown attack detection by various approaches

RDSM [7] AT-RDSM Proposed
Methods DR FP FN | DR FP FN DR | FP | FN improvement
(P) | () | (P) | (Po) | (Po) | (Po) | (Po) | (%) | (%) | over AT-RDSM (%)
Meltdown 935 | 29 36 | 959 | 25 | 1.66 | 99.0 0 1.0 3.1
Evasive-Meltdown | 19.2 | 25.6 | 55.2 | 55.6 | 22.8 | 21.6 | 945 | 23 | 3.2 38.9
Average 564 | 142 | 294 | 759 | 12.7 | 114 | 96.7 | 1.2 | 2.1 20.8
attacks. Since AT-RDSM outperforms RDSM in both rate. We can observe two major reasons for our approach

categories, we compare the improvement with AT-RDSM
in the last column. While AT-RDSM model provides
95.9% performance in detecting Meltdown attacks, its
performance with evasive Meltdown drops to 55.6%,
which is comparable to random guess. Such huge gap
clearly indicates the instability of these methods with
respect to obfuscation techniques. In contrast, our ap-
proach achieves more than 96% detection rate for non-
evasive attacks. When we consider evasive ones, our
approach still maintains a high detection accuracy. Most
importantly, our approach provides superior performance
for detecting both evasive Spectre (88.1%) and evasive
Meltdown (94.5%) attacks.
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Fig. 10: Distribution of incorrect Meltdown classification
results for both false positive and false negative results.

Table V also reveals the weakness of previous works
in terms of high false positive results. Figure 10 shows
the distribution of all misclassified inputs for four differ-
ent categories. Clearly, RDSM is very vulnerable towards
Strategy 2, since RDSM is based on the overall statistics
from HPC. Inserting redundant instructions can hide the
patterns of malicious behaviors such that a classifier
cannot distinguish between malicious attacks and benign
programs. While AT-RDSM improves the robustness
against evasive attacks to some extent, it still has high
false positive rate due to the lack of interpreting the
reason for misclassification. Without the interpretation,
users have no idea what is the exact reason for wrong
prediction, and only blindly feed adversarial samples.
This is expected to cause serious ‘overfitting’ problem
- the model is likely to learn some benign features in
these samples, and is likely to induce high false positive

outperforming the state-of-the-art methods.

1) Alternative Structure: RNN handles time-sequential
data so that it makes decisions utilizing potential in-
formation concealed in consecutive adjacent inputs,
which provides more reliable classification results.

2) Explainable Interpretation: The critical difference
between our method and AT-RDSM is that we
perform outcome interpretation before adversarial
training, so that we can carefully craft adversarial
samples. This ‘diagnose’ before ‘prescribe’ guaran-
tees the model robustness.

V. CONCLUSION

Spectre and Meltdown vulnerability coupled with the
cache-based side channel attacks arise as serious threat
to modern computer systems and have dramatically
changed our perception of hardware security vulner-
abilities. While existing defense mechanisms provide
promising results, they have serious limitations including
significant performance penalty and hardware overhead.
Recently proposed machine learning based solutions are
also not effective in the face of evasive attacks with ob-
fuscation or other deviation capabilities. In this paper, we
address these limitations by developing an explainable
machine learning based detection framework. Our ma-
chine learning model is able to make decisions utilizing
hardware events generated from hardware performance
counters. Moreover, our proposed approach is also able
to find the major contributors among all input features to
help interpret the classification results, which is further
utilized to defend against obfuscation techniques through
adversarial training. Experimental results demonstrated
that our approach provides comparable performance
in detecting Spectre and Meltdown attacks, while it
achieves drastic improvement (28.7% for evasive Spectre
and 38.9% for evasive Meltdown) in defending evasive
attacks compared to state-of-the-art approaches.
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