Scalable SoC Trust Verification using Integrated
Theorem Proving and Model Checking

Xiaolong Guo*, Raj Gautam Dutta*, Prabhat Mishra', and Yier Jin*
*Department of Electrical and Computer Engineering, University of Central Florida
TDepartment of Computer and Information Science and Engineering, University of Florida
{guoxiaolong, rajgautamdutta} @knights.ucf.edu, prabhat@cise.ufl.edu, yier.jin@eecs.ucf.edu

Abstract—The wide usage of hardware Intellectual Property
(IP) cores and software programs from untrusted vendors have
raised security concerns for system designers. Existing solutions
for detecting and preventing software attacks do not usually
consider the presence of malicious logic in hardware. Similarly,
hardware solutions for detecting Trojans and/or design backdoors
do not consider the software running on it. Formal methods
provide powerful solutions in detecting malicious behaviors in
both hardware and software. However, they suffer from scala-
bility issues and cannot be easily used for large-scale computer
systems. To alleviate the scalability challenge, we propose a new
integrated formal verification framework to evaluate the trust
of computer systems constructed from untrusted third-party
software and hardware resources. This framework combines an
automated model checker with an interactive theorem prover
for proving system-level security properties. We evaluate a
vulnerable program executed on a bare metal LEON3 SPARC V8
processor and prove system security with considerable reduction
in effort. Our method systematically reduces the effort required
for verifying the program running on the System-on-Chip (SoC)
compared to traditional interactive theorem proving methods.

I. INTRODUCTION

The changing landscape of the semiconductor industry has
increased the demand for intellectual property (IP) cores.
Various factors, such as reduced time to market (TTM) and
lower design cost, have led to the proliferation of the IP
market. Another contributor to this growth is the use of
System-on-Chip (SoC) platforms for mobile applications. SoC
is a monolithic chip containing all the essential components for
mimicking the functionality of a computer. It is designed by
integrating multiple IP cores from trusted and untrusted third
party vendors. Similarly, many software systems are designed
by third-party developers.

Increasing number of third-party vendors have raised secu-
rity concerns in both the hardware and the software industry.
Consequently, security researchers in their respective domains
have started putting in considerable effort to ensure trust-
worthiness of third-party resources. In the software domain,
methods have been developed for the detection of malicious
kernel extensions and kernel integrity defense. In the hard-
ware security industry, multiple countermeasures have been
developed for verification and validation of SoC’s at pre- and
post-silicon level [1]-[11].

Among all the existing techniques, formal methods (both
automated and deductive) have been most effective in detecting
vulnerabilities in both software and hardware [4]-[12]. For
example, model checking is used for detecting malicious logic

that corrupts data in critical registers of third-party IP cores
[11]. In a model checker, security properties such as integrity
(related to safety) and availability (related to liveliness) are
represented as fraces and it checks all the possible traces
generated by the system (software or hardware). If all the
traces are good then the system is said to satisfy the security
properties. However, not all security properties can be ex-
pressed as traces. Moreover, model checkers run into the state
space explosion problem when the system under consideration
is very large. Due to these limitations of model checkers,
theorem provers are being mostly used for verification of large-
scale hardware designs [5]-[7], [10].

Although these methods have proved effective in securing
either the software or the hardware, system-level solutions
targeting the entire computer system (particularly composed of
third-party software programs and hardware IPs) are lacking.
Moreover, existing formal verification frameworks such as
proof-carrying hardware (PCH), which rely on an interactive
theorem prover for evaluating trustworthiness of IP cores, are
not scalable to SoC designs [5]-[7]. The reason behind the
scalability problem is the lack of efficient methods for con-
structing machine proofs. As the size of the design increases,
time required for proving security properties on the design
grows exponentially. To solve these problems, we propose an
integrated formal verification framework where we combine a
model checker with an interactive theorem prover for proving
security properties on entire computer systems. Integrating
these two techniques overcomes the state-space explosion
problem in model checking approaches and it reduces the time
required for constructing machine proofs of the properties in
the theorem prover.

The main contributions of this paper are as follows.

+« We combine the interactive theorem prover, Coq, with
the Cadence IFV model checker for verifying system-
level security on SoC designs. It is the first attempt to
verify security properties on large-scale hardware designs
through the combination of both techniques.

e We describe the method for decomposing the hard-
ware design and the security specification into sub-
modules and sub-specifications, respectively. These sub-
modules and sub-specifications are verified using the
model checker. In Coq, we combine the sub-specifications
to prove the security property. Following this strategy, our
approach can verify large systems and, thus, help alleviate
the scalability issue.

The rest of the paper is organized as follows: In Section
I, we discuss previous work on malicious logic detection
using formal techniques. In Section III, we introduce the
threat model and provide some relevant background on formal
languages for specifying security properties, theorem prover,
and model checker. We explain our integrated framework,
semantic translation of VHDL language, and elaborate on
the proof construction procedure in section IV. Section V
presents demonstrations of our approach and final conclusions
are drawn in Section VI.

II. RELATED WORK

Currently, formal methods have been extensively used for
verification and validation of security properties at pre- and
post-silicon stages [4]-[11]. In [4], a multi-stage approach
was adopted for identifying suspicious signals using assertion
based verification, code coverage analysis, redundant circuit
removal, equivalence analysis, and sequential Automatic Test
Pattern Generation.The PCH framework has been effective in
ensuring trustworthiness of soft IP cores [5]-[7], [9], [10]. This
method was inspired from the proof-carrying code (PCC) ap-
proach of Necula [13]. Drzevitzky et al. proposed the first PCH
framework for dynamically reconfigurable hardware platforms
[10]. They used runtime combinational equivalence checkingto
verify the equivalence between the design specification and
the design implementation. However, instead of using security
properties, the approach verified safety policies on the design.
Another PCH framework was proposed for security property
verification on soft-IP cores [5]-[7], [9]. In this framework,
the Coq proof assistant [14] was used to represent security
properties, hardware designs, and formal proofs. However, this
framework was not scalable to large SoC designs because
of the extremely high conversion and verification efforts in
proving security properties on large designs.

In semiconductor industry, automated tools like equivalence
checker and model checker have been consistently used for
functional verification of hardware designs [15]. Using these
tools, a model represented as a transition system is verified
against a set of behavioral specification stated in a temporal
logic. Recently, model checkers have been used for detecting
malicious signals in third-party IP cores [4], [11]. However,
these tools suffer from the state space explosion problem and
hence cannot be used exclusively for verifying large designs.

Some efforts have been made to combine theorem provers
with model checkers for verification of hardware and soft-
ware systems [16], [17]. These methods try to overcome the
limitations of both techniques. Some of the popular theorem
provers such as higher order logic (HOL Light) and prototype
verification system (PVS) have integrated model checkers.
These tools have been used for functional verification of
hardware systems. However, to the best of our knowledge, this
combined technique has not been extended toward verification
of security properties on third-party soft IP cores.

In this paper, we have combined a model checker with an
interactive theorem prover for verifying security properties
on SoCs. Through the proposed method, we are able to
significantly reduce the time required for security verifications
on SoCs.

III. BACKGROUND
A. Attack Model and Assumptions

Malicious logic is inserted by an adversary at the design
stage of the supply chain. We assume that the rogue agent at
the third-party IP design house can access the hardware de-
scription language (HDL) code and insert a hardware Trojan or
backdoor to manipulate critical registers of the design. Such a
Trojan can be triggered either by a counter at a predetermined
time, by an input vector, or under certain physical conditions.
Upon activation it can leak sensitive information from the
chip, modify functionality, or cause a denial-of-service to the
hardware. In this paper, we only consider Trojans which can
be activated by a specific “digital” input vector.

We assume that the verification tools (e.g., Coq and Cadence
IFV) used in our integrated framework produce correct results.
The existence of proofs for the security theorems indicates the
genuineness of the design whereas its absence indicates the
presence of malicious logic. However, the framework does not
provide protection of an IP from Trojans whose behaviors are
not captured by the set of security properties. Furthermore,
we assume that the attacker has intricate knowledge of the
hardware to identify critical registers and modify them for
carrying out the attack.

B. Formal Specification Languages

Specifications are used for representing (using natural lan-
guage or experimental data) security properties of a system
at a high level of abstraction. In formal specification, these
properties are translated from non-mathematical description to
a mathematical format using logic. This conversion helps to
overcome any ambiguity in the security specifications. There
are many formal specification languages including proposi-
tional logic, temporal logic, etc.

In the Coq proof assistant [14], behavioral specifications are
written using the Gallina specification language. This language
can also be used to represent the hardware design. In case of an
automated tool such as a model checker, specification language
such as the Property Specification Language (PSL) is used for
specifying properties or assertion of hardware designs. The
directives of the PSL language, assert, assume, and cover, are
understood by a verification tool such as the Cadence IFV.
By using the assert construct a user can check at run time
or at simulation time if a certain condition holds and reports
a warning or an error if it does not hold. To put constrains
on inputs of the design, assume is used and cover is used for
specifying scenarios.

The PSL language is divided into four layers: (i) Boolean
layer, (ii) temporal layer, (iii) verification layer, and (iv) mod-
eling layer [18]. The Boolean layer is composed of Boolean
expressions that either hold or not hold over a given clock
cycle. The temporal layer allows to relate the Boolean expres-
sion with time. This layer is further divided into (i) foundation
language (FL) and (ii) optional branching extension (OBE).
The FL is used to describe linear properties in which there is
only a single successor for a current state. Therefore, FL is
often used to describe traces/path. In the FL, linear temporal
logic (LTL) and the sequential extended regular expression

(SERE) are used to represent behavioral specifications of the
system. Alternatively, OBE is based on computational tree
logic (CTL) and can describe multiple traces (i.e., successor
states) at a time. The verification layer consists of directives,
which describe how the temporal properties should be used
by the verification tool. That is, the verification layer specifies
the semantics for PSL directives and operators in the temporal
layer. It also helps the verification tool to understand the
difference between properties which use assert, assume, and
cover directives. The modeling layer provides a means to
model behavior of design inputs, and to declare and give
behavior to auxiliary signals and variables.

The alphabets of Boolean expressions in the Boolean
layer includes Boolean variables, logical connectives,
relational operators, and bitwise operators. A formula (¢)
in the Boolean layer over Boolean variable (v) is given below,

¢ m=true|v| (o1 A ¢2) [¢
Here A,— are conjunction and negation operators respec-
tively. The rest of the boolean connectives, V (disjunction),
— (implication), and <> (equivalence) can be derived from
A and —. The PSL language also supports suffix implication
operators, — and =, for linking two regular expressions.

C. Interactive Theorem Prover

Theorem provers are used to prove or disprove properties
of systems expressed as logical statements. Over the years,
several theorem provers (both interactive and automated) have
been developed for proving properties of hardware and soft-
ware systems. However, using them for verification of large
and complex systems require excessive effort and time. Irre-
spective of these limitations, theorem provers have currently
drawn a lot of interest in verification of security properties on
hardware. Among all the formal methods, they have emerged
as the most prominent solution for verifying large designs. A
recent application of an interactive theorem prover in order
to ensure the trustworthiness of soft IP cores is called proof-
carrying hardware (PCH) [5], [10].

Coq is an interactive theorem prover/proof-assistant, which
enables verification of software and hardware programs with
respect to their specification. In Coq, programs, properties,
and proofs are represented as terms in the Gallina specification
language. By using the Curry-Howard Isomorphism, the inter-
active theorem prover formalizes both program and proofs in
its dependently typed language called the Calculus of Inductive
Construction. Correctness of the proof of the program is
automatically checked using the inbuilt type-checker of Coq.
For expediting the process of building proofs, Coq provides a
library consisting of programs called factics. However, using
tactics does not significantly reduce the time required for
certifying large (consisting of hundred thousand lines of code)
software and hardware programs.

D. Model Checking

Model checking [19] is a method for verifying and validat-
ing models in software and hardware applications [12], [15].
In this approach, a model (Verilog/VHDL code of hardware)

M with an initial state s(is expressed as a transition system
and its behavioral specification (assertion) ¢ is represented in
a temporal logic. The underlying algorithm of this technique
explores the state-space of the model to find whether the
specification is satisfied. This can be formally stated as, M,
so = ¢. If a case exists where the model does not satisfy
the specification, a counterexample in the form of a trace
is produced by the model checker [20]. The application of
model checking techniques, including symbolic approaches
based on reduced order binary decision diagrams (ROBDD)
and satisfiability (SAT) solving, to SoC has had limited success
due to the state-space explosion problem. For example, a
model with n Boolean variables can have as many as 2™ states,
a typical soft IP core with 1000 32-bit integer variables has
billions of states.

Symbolic model checking using ROBDD is one of the initial
approaches used for hardware systems verification. Unlike
explicit state model checking where all states of the system are
explicitly enumerated, this technique model states (represented
symbolically) of the transition system using ROBDD. The
ROBDD is a unique, canonical representation of a Boolean
expression of the system. Subsequently, the specification to
be checked is represented using a temporal logic. A model
checking algorithm then checks whether the specification
is true on a set of states of the system. Despite being a
popular data structure for symbolic representation of states
of the system, ROBDD requires finding an optimal ordering
of state variables which is an NP-hard problem. Without the
proper ordering, size of the ROBDD increases significantly.
Moreover, it is memory intensive for storing and manipulating
BDDs of system with a large state space.

Another technique called bounded-model checking (BMC),
replaces BDDs in symbolic checking with SAT solving [21].
In this approach, a propositional formula is first constructed
using a model of the system, the temporal logic specification,
and a bound. Then, the formula is given to a SAT solver
to either obtain a satisfying assignment or to prove there is
none. Although BMC outperforms BDD based model checking
in some cases, the method cannot be used to test properties
(specification) when bound is large or cannot be determined.

To overcome limitations of the model checking and the
theorem proving approaches, we propose to combine these
two techniques to verify security properties on SoCs and SoC
based computer systems. Specifically, we have combined an
industrial model checker Cadence IFV with Coq for verifying
hardware designs written in VHDL in this paper.

IV. METHODOLOGY

Existing PCH framework uses an interactive theorem prover
for verifying security properties on soft IP cores which triggers
a large design overhead [5], [6], [22]. Moreover, PCH requires
flattening of the hardware design before translation of the HDL
code to the formal language. Design flattening increases the
verification effort and adds to the risk of introducing errors
during the code conversion process. Also, this framework
cannot be used to verify a computer system which consists
of both software and hardware.

Specifications

o -

Proof of ®
SoC Systems |$ exists for the
(Assembly Code [C) SoC model
& HDL Code) Integrated
Frame-

Contradiction
exists for @

Model Checker I:>
(Cadence IFV)

work
)

Theorem Prover
(Proof Assistant E>
Coq)

Figure 1: Integrated formal verification framework

Meanwhile, model checkers such as Cadence IFV cannot be
used for verifying systems with large state space either because
of the space explosion problem. As the number of state
variables (n) in the system increases, amount of space required
for representing the system and the time required for checking
the system increases exponentially (T (n) = 2°(™),

To overcome the scalability issue and to verify a computer
system, we introduce the integrated formal verification frame-
work (see Figure 1), where the security properties are checked
against SoC designs. In this framework, the theorem prover is
combined with a model checker for proving formal security
properties (specifications). Moreover, the hierarchical structure
of the SoC is leveraged to reduce the verification effort.

In the integrated framework, the hardware design, repre-
sented in a hardware description language (HDL), and the
assembly level instructions of a vulnerable program, is first
translated to Gallina. Then, the security specification is stated
as a formal theorem in Coq. In the following step, this theorem
is decomposed into disjoint lemmas (see Figure 2) based on
sub modules. These lemmas are then represented in the PSL
specification language and are called sub-specifications. Sub-
sequently, the Cadence IFV verifies the sub-modules against
the corresponding sub-specifications. Sub-modules are func-
tions, which have less number of state variables and are
connected to primary output of the design. These functions are
always from the bottom level of SoC and have no dependency
relationship with each other.

The HDL code of a large design consist of many such
sub-modules. If the sub-modules satisfy the sub-specifications,
we consider the lemmas are proved. Checking the truth value
of the sub-specifications with a model checker eliminates the
effort required for proving the lemmas and translating the sub-
modules to Coq. Upon proving these sub-modules, we then use
Hoare-Logic to combine proof of these lemmas to prove the
security theorem of the entire system in Coq.

A. Semantic Translation

The developed semantic translation method is based on the
formal HDL in [22]. Using this method, the HDL code of the

Specification
(@)
¥
Theorem
)

—
Lemma
®n

Lemmal| |Lemma
@, @,

Figure 2: Security specification (¢) decomposed into lemmas

SoC and the informal security properties are translated to Gal-
lina. During the translation process, syntax and semantics of
the HDL are represented in Coq. To preserve the hierarchical
design of the SoC, we use the module functionality of Coq.
We also translate the syntax and the semantics of the assembly
level program to Gallina. In this paper, semantic translation
is manual. We are in the process of developing an automated
framework to support code conversion.

Gallina is also used to represent the security properties
(theorems) in Coq. PSL is used for representing the security
lemmas written in Coq. PSL uses HDL operators, temporal
operators, and regular expressions to represent properties (as-
sertions/specifications) of the hardware design. An industrial
model checker such as Cadence IFV can interpret PSL prop-
erties and use them to verify the HDL code of the design.

B. Distributed Proof Construction

Proof construction procedure limits the scalability of the
PCH framework to large designs [5]. Consequently, we im-
prove scalability by combining a model checker (Cadence
IFV) with a theorem prover (Coq). In Coq, the proof con-
struction process follows Hoare-logic style reasoning, where
the trustworthiness of the designs, represented in HDL code, is
determined by ensuring that the code operates within the con-
straints of the pre-condition and the post-condition. The pre-
condition of the formal HDL code is the initial configuration of
the design and the post-condition is the security theorem. The
security theorem will be divided into lemmas. Then lemmas
are translated to the PSL specification language, so-called sub-
specifications. Similarly, the HDL code is decomposed into
sub-modules. A model checker then determines whether the
sub-module satisfies the corresponding sub-specification. If it
is satisfied then we can state that the lemmas are proved. Such
lemmas are combined at the end to prove the system-level
security theorem.

V. CASE STUDY

For demonstration purpose, we consider a 32-bit LEON3
processor implementing the SPARC V8 architecture. This
processor core is written in the VHDL. The integer-unit of
the core, a 7-stage pipeline, is considered for verification (see

Figure 3). In order to prove the presence/absence of malicious
logic that can trigger buffer overflow, we will check the signals
connecting the integer unit to the register file.

In order to perform stack based buffer-overflow attacks,
we consider the following assembly code of the subroutine,
vulnerable_function.

<vulnerable function>:
save %sp, —200, %sp

mov %gl, %00

call 0x206b4 <strcpy@plt>
nop

nop

restore

retl

This code is assembled and executed on a bare metal LEON3
processor. We only consider those scenarios where the call
instruction is followed by a corresponding return instruc-
tion. Due to this constraint, if a return address is overwritten,
then the callee will not be able to return to the caller. When
a callee is invoked using the call instruction by a caller in
LEON3, the return address of the caller is saved in the 17
register of callee’s register window (we consider the default
setting of 8 register windows from w0-w7).

In the examined subroutine, the vulnerable instruction is
call 0x206b4 <strcpy@plt>, which corresponds to
the strcpy () function of the C library. This function is
used to copy input to a buffer. When the input is longer than
the size of the stack allocated buffer, the space reserved for
a register window on the stack is overwritten. Upon returning
from the function, if this portion of memory is loaded into the
register file, the return address is corrupted.

To detect such a vulnerability, we first measure
the time required for normal execution of the
vulnerable_function. After executing the retl

instruction, this subroutine returns to the main function of
the program. During the execution of the subroutine, we
continuously monitor the register where the return instruction
is stored. If an attempt is made to overwrite the register, we
detect it and report it.

In our experiment, we consider the return address is stored
in the 17 register of the w7 register window. The correspond-
ing address of the register 17 in w7 is “0O1111111”. The
write address signal, rfi.waddr, of the integer unit of the
processor is used for writing the value of the return address
into the 17 register when the write enable signal, rfi.wren
is “1”. Based on this, the informal security specification can
be stated as - rfi.wren and rfi.waddr signals should
not be equal to “1” and “0111 1111”, respectively at the
same time after the caller saves the return address. That is,
the register 17 containing the value of the return address of
the caller should not be overwritten at any clock cycle when
the write enable signal rfi.wren is “1”. This specification
can be also expressed as

Vit dtg, t,, t; EL: (to <t < tn) AN
(rfi.wreny, — rfiwaddry,)N

=(rfiwrens, — rfiwaddry,)

(Registors File) LEON3)
¥

Trace Buffer

Integer Unit

p
(_ru)~

CoProcessor)*| (7 Stages Integer [~{ DebugPort
Multiplier/ |, T
Dividor Pi pel ! ne) Interrupt Port

L C AHB I/F

Figure 3: Block diagram of integer unit of LEON3 core [23]

Architecture of Integer Unit

N
I I I
Procedure Procedure ce o Procedure
rd_gen regaddr op_mux

Figure 4: Sub-modules in the Integer Unit of LEON3

to is the time when the return address is written into the
i7 register, t,, is the time when the return instruction is
executed (used for returning to caller), and all time between
to and t,, is given as t;. The specification is stated in Coq
starting from t = 1 in the following theorem.

Theorem BufferOverflow_Cycle 1:

forall (t : nat),

t=1-—>

ico.data_0 t = sethi_0 g0 —>

rstn t = hi::mnil —>

holdn t = lo::nil —>

irgi.run t = hi::nil—>

irgi.rst t = hi::nil—>

(bv_eqg (rfi.wren t) (hi::nil)=lo\/

bv_eq (rfi.waddr t) (lo::hi::hi::hi::hi::hi::hi::hi::nil)=lo).

The symbols hi and 1o represent the high voltage and low
voltage in the circuit respectively. The function bv_eqg com-
pares two binary codes and returns the result 1o when there
is a match between the codes and hi otherwise. Similarly, we
have written theorems for anytime between t(and t,,. Note
that the time increases at steps corresponding to clock cycles
of the LEON3 processor. By proving these theorems, we can
detect the vulnerability in the sub-function.

In ico.data_0 t = sethi_0_g0, the sethi in-
struction and its operands are stored. Signals, rstn, holdn,
and irqgi, representing reset, hold, and interrupt are not
cosidered in our experiment.

As the VHDL code of the integer unit has a lot of
procedures (shown in Figure 4) and functions, we
allocate their verification task to the Cadence IFV. We verify
the procedure, regaddr, using the model checker for the
corresponding informal specification - when the input signals

cwp equals to “111”, and reqg equals to “01111”, the output
signal rao will be “01111111”. An example specification
(assertion) in the PSL language is shown below.

assert({(cwp_ifv[l:3] = “111”") A
(reg_ifv[l:5] = “01111")} —
(rao_ifv|l:8] = “01111111"))

Here, cwp__1 fv register store value of the current window
pointer w7, the reg_1ifv register store address of the i7
register, the rao_ 1 fv register contain the address of the i7
register of the w7 register window, and — operator means that
when the regular expression at the left hand side holds, then the
expression at the right hand side also holds at the same clock
cycle. The assertion states that - when registers cwp_1fv and
reg_1ifv have values of “111” and “01111” respectively, the
output register rao_1fv has the value “01111111".

The above PSL specification in the VHDL language is given
below.

psl ASSERT_SubModule regaddr:

assert

({ (cwp_1ifv(2 downto 0) = ‘‘'111’") AND
(reg_ifv(4 downto 0) = ‘'01111"")}|—>
(rao_ifv(7 downto 0) = “01111111’7));

We state the above PSL specification as the following
lemma.

Lemma Assert_SubModule_regaddr :

forall (t:nat),
regaddr.cwp t = hi::hi::hi::mnil —>
regaddr.reg t = lo::hi::hi::hi::hi::nil —>
regaddr.rao t= lo::hi::hi::hi::hi::hi::hi::hi::nil.

When the model checker proves that the code satisfies
the specification, we can be assured that the proof of the
lemma exist. By combining proofs of all the lemmas, we were
able to prove the theorem, BufferOverflow_Cycle_l1.
Following this procedure, we were able to reduce the ef-
fort required for proving the security theorem in Coq.
For instance, the Cadence IFV took only 0.03 seconds of
CPU time for verifying the Procedure regaddr against
the ASSERT_SubModule_regaddr specification. If this
Procedure regaddr is verified in interactive theorem
prover, e.g. Coq, it will take much longer to build models
and prove lemmas manually.

VI. CONCLUSION

In this paper, an integrated formal verification framework is
proposed to protect a large-scale SoC design from malicious
attacks. Given that an interactive theorem prover (e.g. Coq)
requires lot of effort to manually verify the design and that
a model checker suffers from scalablity issues, we combine
these two techniques together through the decomposition of
the security property as well as the design in such a way
that the model checker can verify those sub-modules which
have much less state variables. Consequently, we reduced
the amount of effort required for translating the design from
HDL to Gallina and proving the security theorem in Coq. In
future, we plan to use our approach for detecting sophisticated

hardware Trojans with the assistance of automatic semantic
translation tool.

ACKNOWLEDGMENT

This work was partially supported by NSF grants (CNS-
1319105 and CNS-1441667), SRC(2014-TS-2554) and Cisco.

REFERENCES

[1] M. Banga and M. Hsiao, “Trusted RTL: Trojan detection methodology
in pre-silicon designs,” in IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), 2010, pp. 56-59.

[2] Y. Jin and Y. Makris, “Hardware Trojan detection using path delay
fingerprint,” in IEEE International Workshop on Hardware-Oriented
Security and Trust, 2008, pp. 51-57.

[3] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: Identification
of stealthy malicious logic using boolean functional analysis,” ser. CCS
’13, 2013, pp. 697-708.

[4] X. Zhang and M. Tehranipoor, “Case study: Detecting hardware trojans
in third-party digital ip cores,” in HOST, 2011, pp. 67-70.

[5] E. Love, Y. Jin, and Y. Makris, “Proof-carrying hardware intellectual
property: A pathway to trusted module acquisition,” IEEE Transactions
on Information Forensics and Security, vol. 7, no. 1, pp. 25-40, 2012.

[6] Y. Jin, B. Yang, and Y. Makris, “Cycle-accurate information assurance
by proof-carrying based signal sensitivity tracing,” in IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), 2013, pp.
99-106.

[71 Y. Jin, “Design-for-security vs. design-for-testability: A case study on
dft chain in cryptographic circuits,” in IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2014.

[8]1 F. M. De Paula, M. Gort, A. J. Hu, S. J. Wilton, and J. Yang,
“Backspace: formal analysis for post-silicon debug,” in Proceedings of
the 2008 International Conference on Formal Methods in Computer-
Aided Design. IEEE Press, 2008, p. 5.

[9] X. Guo, R. Dutta, Y. Jin, F. Farahmandi, and P. Mishra, “Pre-silicon
security verification and validation: A formal perspective,” in Design
Automation Conference (DAC), 2015 52nd ACM/EDAC/IEEE, June
2015, pp. 1-6.

[10] S. Drzevitzky, “Proof-carrying hardware: Runtime formal verification for
secure dynamic reconfiguration,” in International Conference on Field
Programmable Logic and Applications, 2010, pp. 255-258.

[11] J. Rajendran, V. Vedula, and R. Karri, “Detecting malicious modifica-
tions of data in third-party intellectual property cores,” ser. DAC 15,
New York, NY, USA, 2015, pp. 112:1-112:6.

[12] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software
verification with blast,” in Model Checking Software. Springer, 2003,
pp. 235-239.

[13] G. C. Necula, “Proof-carrying code,” in POPL ’97: Proceedings of the
24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 1997, pp. 106-119.

[14] INRIA, “The coq proof assistant,” 2010, http://coq.inria.fr/.

[15] J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger, “Formally verifying
ieee compliance of floating-point hardware,” Intel Technology Journal,
vol. 3, no. 1, pp. 1-14, 1999.

[16] S. Berezin, “Model checking and theorem proving: a unified framework,”
Ph.D. dissertation, SRI International, 2002.

[17] P. Dybjer, Q. Haiyan, and M. Takeyama, “Verifying haskell programs
by combining testing, model checking and interactive theorem proving,”
Information and software technology, vol. 46, no. 15, pp. 1011-1025,
2004.

[18] C. Eisner and D. Fisman, A Practical Introduction to PSL, ser. Series
on Integrated Circuits and Systems. Springer, 2006.

[19] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT press,
1999.

[20] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement,” in Computer aided verification.
Springer, 2000, pp. 154-169.

[21] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” Advances in computers, vol. 58, pp. 117-148, 2003.

[22] Y. Jin and Y. Makris, “A proof-carrying based framework for trusted
microprocessor IP,” in 2013 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2013, pp. 824-829.

[23] Gaisler Research. LEON3 synthesizable
http://www.gaisler.com.

processor.

