
Towards RTL Test Generation from SystemC TLM Specifications ∗

Mingsong Chen Prabhat Mishra Dhrubajyoti Kalita
Computer and Information Science and Engineering Intel Corporation

University of Florida, Gainesville, FL 32611 1900 Prairie City Road, Folsom, CA 95630

{mchen, prabhat}@cise.ufl.edu dhrubajyoti.kalita@intel.com

Abstract

SystemC Transaction Level Modeling (TLM) is widely used

to reduce the overall design and validation effort of complex

System-on-Chip (SOC) architectures. Due to lack of efficient

techniques, the amount of reuse between abstraction levels is

limited in many scenarios such as reuse of TLM level tests for

RTL validation. This paper presents a top-down methodology

for generation of RTL tests from SystemC TLM specifications.

This paper makes two important contributions: automatic test

generation from TLM specification using a transition-based

coverage metric and automatic translation of TLM tests into

RTL tests using a set of transformation rules. Our initial re-

sults using a router design demonstrate the usefulness of our

approach by capturing various functional errors as well as in-

consistencies in the implementation.

1 Introduction

Increasing complexity of System-on-Chip (SOC) architec-

tures coupled with time-to-market pressure create a critical

need to raise the level of abstraction for SOC designs. SystemC

has been used both in industry and academia for system level

design. SystemC Transaction Level Modeling (TLM) is very

promising for early exploration, hardware-software co-design,

and platform-based design and verification. Due to recent TLM

standardization efforts, transaction-level modeling also offers

extensive design and verification reuse between projects as well

as between abstraction levels in the same project [1].

Due to significant differences between TLM and RTL mod-

els, the degree of reuse is very limited. In the absence of sig-

nificant reuse of design and validation efforts between different

abstraction levels, the overall functional validation effort may

increase since the designer has to verify TLM as well as RTL

models. Furthermore, it is hard to guarantee the consistency

between the abstraction levels. Simulation is the most widely

used form of validation for both TLM and RTL designs using

random and directed-random tests. Certain heuristics are used

to generate directed random tests. However, due to the bottom-

up nature and localized view of these heuristics, the generated

tests may not yield a good coverage. A major challenge is to

develop an efficient coverage metric at TLM level that enables

coverage-driven directed test generation. The goal is to gener-

∗This work was partially supported by grants from Intel Corporation.

ate a small set of directed tests that will cover all the function-

alities of the TLM design and reduce the validation effort at the

TLM level. Complete reuse of such TLM tests will lead to a

drastic reduction of RTL validation effort as well.

This paper presents a top-down methodology for generation

of RTL tests from SystemC TLM specifications. The basic idea

is to use TLM specification to perform coverage-based TLM

test generation and TLM-to-RTL test translation using a set of

transformation rules. The rest of the paper is organized as fol-

lows. Section 2 describes related work addressing TLM-based

validation approaches. Section 3 presents our test generation

methodology followed by a case study in Section 4. Finally,

Section 5 concludes the paper.

2 Related Work

There are several existing validation approaches in the TLM-

based design flow. Jindal et al. [2] present a method to reduce

the verification time by reusing the earlier RTL testbenches.

Wang et al. [3] describe a coverage-directed method that is suit-

able for transaction level verification. The approach is based

on random test generation and the coverage is increased by

using fault insertion method. There are various researches on

validation reuse between TLM and RTL levels. For example,

Bombieri et al. [4] shows that transactor-based verification is at

least as efficient as a fully RTL verification methodology which

converts TLM assertions into RTL properties and creates new

RTL testbenches.

The existing simulation-based approaches cannot fully reuse

the SystemC TLM level validation effort due to lack of a golden

formal reference model. Various researchers have tried to trans-

late SystemC TLM to a formal representation to enable au-

tomated analysis and test generation. Abdi et al. [5] intro-

duce Model Algebra, a formalism for representing SOC de-

signs at system level. The work by Kroening et al. [6] for-

malize the semantics of SystemC by means of labeled Kripke

structures. Moy et al. [7] provide a compiler front-end that can

extract architecture and synchronization information from Sys-

temC TLM design using HPIOM. Karlsson et al. [8] translate

SystemC models into a Petri-Net based representation PRES+.

This model can be used for model checking of properties ex-

pressed in a timed temporal logic. To the best of our knowl-

edge, there are no previous approaches that can automatically

generate RTL tests from the TLM specification to enable im-

plementation validation.

3 RTL Test Generation from TLM Specification

Figure 1 shows our RTL test generation methodology. It as-

sumes that the TLM specification as well as the RTL imple-

mentation is developed manually (hand-written) and both TLM

and RTL models need to be validated.

(Transition Coverage)

Formal Model
(CPN Representation)

Properties

Verify TLM

Verify Specification

(SystemC TLM)

SOC Specification

TLM Tests

Verify RTL

RTL Tests

(RTL)

Implementation

Steps
Validation

Automatic

Test

Translation

Test

Generation

Figure 1. Proposed RTL test generation methodology

This methodology has three important steps: i) formal rep-

resentation of the TLM specification, ii) coverage-based gen-

eration of TLM tests, and iii) translation of TLM tests into

RTL tests using transformation rules. It is necessary to identify

(or develop) a suitable formal representation that can capture

a wide variety of TLM specifications. We have used Colored

Petri Nets (CPN) [9] in our framework. The next step is to de-

fine a procedure that can generate the CPN representation from

the TLM specification. To enable test generation, we need to

define a suitable coverage metric. We have used the CPN tran-

sition coverage in our framework to generate necessary proper-

ties and tests. Finally, we define a set of transformation rules

using timing and input/output mapping information to convert

TLM tests into RTL tests.

The remainder of this section is organized as follows. Sec-

tion 3.1 describes the suitability of CPN for formal represen-

tation. Section 3.2 presents the procedure for converting TLM

specification into CPN representation. Section 3.3 outlines the

TLM test generation approach using model checking. Finally,

Section 3.4 presents the transformation rules for converting

TLM tests into RTL tests.

3.1 Formal Modeling of TLM Specifications

The SystemC TLM specification itself is not formal enough

to enable automated analysis and test generation. Therefore,

it is necessary to convert the given TLM specification into a

formal representation. There are three primary requirements

for the formal model.

• It should be simple enough to allow correlation (one-to-

one correspondence) between the model and the TLM

specification.

• It should be powerful enough to capture a wide variety of

TLM specifications.

• Most importantly, it should be formal enough to enable

automated analysis and test generation.

We have evaluated the suitability of various formal models

including finite state machines, Petri nets, graphs and their vari-

ations (such as CFSM, CDFG etc.) for representing TLM spec-

ifications. We have identified Colored Petri Nets (CPN) as suit-

able for our work. CPN is a variation of Petri net [10] which

allows the use of tokens that carry data values - in contrast to the

tokens of low-level Petri nets which by convention are drawn as

black, “uncolored” dots. CPN provides a framework for con-

struction and analysis of distributed and concurrent systems.

Moreover, CPN offers hierarchical descriptions. Such proper-

ties make the CPN well suited for formal modeling of TLM

specifications.

The CPN uses primarily places and transitions to describe a

system. The ellipses or circles in CPN are called places. They

describe the states of the system. The bars or rectangular boxes

are called transitions which are used to describe actions or tran-

sitions. The transitions may have guards. A transition can only

be enabled if the value of its guard is true. The arrows are

called arcs. The arc expressions describe how the state of the

CPN changes when the transition occurs. Each place contains a

set of markers called tokens. In contrast to low-level Petri nets

(such as Place/Transition Nets), each of these tokens carries a

data value, which belongs to a given type.

3.2 Transformation of SystemC TLM to CPN

Each SystemC statement is represented by one transition in

CPN and each SystemC variable can be represented by a place.

The transition can perform actions of the statement. Each token

carries the value of the corresponding variable (the token also

has the clock information for timed CPN). The tokens in the

input places enable the execution of the transition. The transi-

tion can be fired only when its condition is satisfied and all the

input places have the tokens. When the transition is executed, it

will distribute the resulting tokens according to the expression

and the color set of the outgoing arcs. Based on this seman-

tics, CPN can be used to model the concurrent systems and the

synchronization activities.

[condition 1] [condition 2]

[condition 1] [condition 2]

Statement i

Statement i+1

Statement i Statement i+1

Statement i+1 Statement i+2

Statement i

a) Sequence b) Selection c) Iteration

Figure 2. Three fundamental constructs

It is possible to establish one-to-one mapping from SystemC

to CPN. Figure 2 shows how CPN models three key constructs

in SystemC TLM description: sequence, selection and itera-

tion. A complex CPN can be constructed by composing these

three constructs. For example, Figure 3 shows a segment of

SystemC code and corresponding CPN representation. At first,

only places p1 and p2 have the tokens, so the transition t1 can

be fired. If the loop condition is met, a new token consisting of

variables n and i will be sent to place p3. Otherwise, the loop

will finish and the token of n will be sent to the place p4. The

transition t2 performs the operation n = n + i. In this figure,

all transitions have time delay interval of 0, so the delays are

omitted.

if i<100

i

p2

p4

t1

t2

(n, i)

INT

then n

p1

p3

INT*INT
if i<100

if i>=100

if i<100 then i+1

NOP

n=n+i;

//SystemC Code Segment;

int n=0;

for(int i=0; i<100; i++) {

}
n=n+i;

then (n,i)

INT

INT

if i>=100

then n

then n

Figure 3. An example of generated CPN from SystemC code

It is important to note that each transition can be hierarchi-

cally defined. So it is natural to model a function call by using a

transition. This transition can be refined by a CPN. During the

refinement, it is important to guarantee that the input and out-

put tokens are consistent with the input parameters and return

values of the top level structure.

SystemC TLM descriptions consists of modules, interfaces

and channels described in a hierarchical manner. Similarly,

CPN can capture them in a hierarchical manner which can also

be flattened into a complex CPN representation. The SystemC

TLM use the wait and noti f y to synchronize the system model.

In CPN, the semantics of the transition can do the same job.

The CPN transition can not only synchronize the dataflow and

control flow, but also it can have a time delay constraint which

is corresponding to wait(time) in SystemC TLM.

3.3 Generation of TLM Tests using Model Checking

Algorithm 1 outlines our TLM test generation approach. The

first step is to generate the design and the properties. The SMV

description of the design is generated from the CPN represen-

tation. Properties are generated based on the CPN transition

coverage. In other words, one property is generated for each

CPN transition. Next, the design and the negated version of

the property are applied to the model checker which produces

a counterexample. The generated counterexample can be ana-

lyzed to obtain the TLM test.

Algorithm 1: Test Generation

Inputs: i) Model of the design, M

ii) Set of faults/interactions, F (based on

CPN transition coverage)

Outputs: Test programs

Begin

TestPrograms = φ

for each fault Fi in the set F

Pi = CreateProperty(Fi)

Pi = Negate(Pi)

testi = ModelChecking(Pi, M)

TestPrograms = TestPrograms ∪ testi
endfor

return TestPrograms

End

Section 4.3 presents a detailed example of TLM test gener-

ation using model checking. Clearly, model checking based

approach is promising for automated and directed test genera-

tion but may lead to state space explosion in the presence of

complex design and properties. In these circumstances, vari-

ous design and property decomposition techniques [11] can be

explored to reduce the complexity of test generation.

3.4 Translation of TLM Tests into RTL Tests

A major challenge in TLM-to-RTL test translation is how to

bridge the abstraction gap. We use transformation rules to gen-

erate RTL tests from TLM tests. The transformation rules use

the input/output mapping information as well as timing details

between TLM and RTL. For example, “p → chan” in TLM is

mapped to “data[0 : 1]” in RTL. We have developed transfor-

mation rules to automatically convert TLM tests into RTL tests

using input/output mappings and timing specifications. We use

the following five transformation rules.

• Add Initialization: This part includes initialization of

various input variables at RTL which have no mappings

in TLM.

• Add Reset Sequence: This part includes the sequence of

assignments to the reset signal in RTL for enabling the

normal operation.

• Transformation of Names and Expressions: This part

describes the names and expressions in TLM that need to

be replaced based on the mapping functions.

• Add Delay: Appropriate delays need to be inserted after

each step based on the timing information.

• Application Specific Transformations: This part in-

cludes transformations specific to an application. For ex-

ample, in case of a router the packet valid signal needs to

be initialized to 0 and 1 at specific time to enable data read

and parity check.

4 A Case Study

We applied our methodology on an industrial router exam-

ple. This section is organized as follows. First, we describe

the TLM specification of the router. Next, we present the CPN

representation as well as TLM test generation for the router.

Finally, we discuss the TLM-to-RTL test translation for valida-

tion of the router implementation.

4.1 TLM Specification of The Router

Figure 4 shows an architecture graph of the router specifica-

tion. The router has one input port and three output ports. Each

port is connected to a first-in-first-out (FIFO) buffer (channel)

which stores the packet.

FIFO

FIFO

start_packet_receive

FIFO FIFO

route

packet_receive

Router

Master

put_data

Slave 3

Slave 2

Slave 1

get_data

get_data

get_data

Figure 4. The architecture graph of a router

The master module sends the packet which is in the form as

shown in Figure 7a. The packet consists of 3 parts: header,

payload and parity. The header has 8 bits, bit 0 and bit 1

are used as the address of output port. The other 6 bits indi-

cate the size of the payload. So the maximum payload size

is 63. The last byte of the packet is the parity of both header

and payload. The router has three processes which are imple-

mented by SC MET HOD. Process start packet receive can

be triggered if there are some packets in the input FIFO chan-

nel. Then after the time PACKET GAP, start packet receive

will trigger process packet received to receive the packet. Af-

ter time RCV DELAY , it will trigger process route to distribute

the packet to the respective output channel according to the ad-

dress bits of the header. Finally, the slave modules will read the

packets when data is available in the respective FIFOs.

4.2 CPN Representation of the Router

Figure 5 shows the CPN representation of the router. There

are 17 places and 11 transitions in the CPN. Each transition

is associated with one action of the system. For the condi-

tional branch in the CPN, we consider all the possibilities. For

example, although there are only 3 output channels, we add

the “channel=3” in the CPN because there are 2 bits to decide

the output address. The mapping between CPN transitions and

TLM actions is presented in Table 1.

p16

p10
p9

p8
p7

p6p5

p3

p2 p1

t1

channel=0 channel=1

@+[rcv_delay_time]@+[packet_gap_time]

p12

p17p14 p15

p11

channel=3channel=2

p13

p4

t11t10t8 t9

t7t6

t5t4

t3

t2

Figure 5. CPN model of the router

4.3 Generation of TLM Tests

There are 11 transitions in the CPN model of the router as

shown in Table 1. These transitions are very important since

they either affect the control flow or represent a transaction be-

tween two components. Our test generation framework gener-

ates one temporal logic property for each transition. We use

SMV [12] model checker in our framework. The SMV de-

scription of the router is generated from the CPN model. The

design and the negated version of the properties are applied

using SMV. The generated counterexample is analyzed (using

Table 1. Mapping of CPN transitions and TLM actions

t1 input.peek().to chan;

t2 Find packet time, rcv delay time and packet gap time

t3 fork

t4 receive complete event.noti f y(packet time+
packet gap time,SC NS);

t5 transmit complete event.noti f y(packet time+
rcv delay time,SC NS);

t6 input.nb get(tmp packet);
t7 join

t8 chanX .nb put(tmp packet);
t9 slaveX .get packet.ok to get();
t10 X=0, 1, 2, 3

t11

scripts) to produce the TLM tests. For example, a property

corresponding to transition t9 and the generated TLM test are

shown below. The test generation time is in the order of a few

seconds using a 1 GHz Sun UltraSparc with 8G RAM.

// Property for t9 and its negated version

t9-property: assert G((pkt.to_chan = 1)

-> F(slave1.receivedPkt = pkt))

negate-t9: assert F((pkt.to_chan = 1)

& G(slave1.receivedPkt ˜= pkt))

// TLM Test

pkt->to_chan = 1;

pkt->payload_sz = 2;

pkt->payload[0] = 15;

pkt->payload[1] = 240;

pkt->parity = 246;

4.4 RTL Interface Specifications of the Router

TLM provides the transaction level information of the de-

sign. Therefore, it is necessary to obtain RTL-to-TLM mapping

information and RTL input/output timing information to enable

TLM-to-RTL test translation. Figure 6 shows the input/output

information of the router. This level of information and other

details (such as packet description in Figure 7) is used to per-

form name mapping. For example, “pkt → to chan” in TLM is

mapped to “data[0 : 1]” in RTL.

From the block diagram, it is impossible to figure out the

clock information of the router. So during the test generation,

we need the timing specification of the input and output sig-

nals. The timing specification for the router is as follows. All

input/output signals are active high and are synchronized to the

falling edge of the clock. The packet valid signal has to be as-

serted on the same clock when the first byte of the packet (the

header byte) is driven onto the data bus. Each subsequent byte

of data should be driven on the data bus with each new falling

clock. After the last payload byte has been driven, on the next

falling clock, the packet valid signal must be deasserted (be-

fore the parity byte is driven). The packet parity byte should

be driven on the next falling clock edge. The router asserts the

vld chan x (x ∈ {0,1,2}) signal when valid data appears on the

channelx output. The read enb x input signal must then be as-

serted on the falling clock edge in which data is read from the

channelx bus. As long as the read enb x signal remains active,

the channelx bus drives a valid byte on each rising clock edge.

channel0

packet_valid

data

suspend

clock

err

vld_chan_0

read_enb_0

channel1

vld_chan_1

read_enb_1

vld_chan_2

channel2

read_enb_2

DUT

Figure 6. Block diagram of design under test

// Packet description in TLM

class Packet {

};

 public:

 sc_unit<2> to_chan;

 sc_unit<6> payload_sz;

 sc_unit<8> parity;

 sc_unit<8> payload[63];

length addr

data[2]

data[1]

......

data[N]

parity

Byte 0

Byte 1

Byte N+1

..
..

..

Byte N

P
a

y
lo

a
d

Parity

Header

a) TLM Packet b) RTL Packet

 7 6 5 4 3 2 1 0

Figure 7. The packet format of the router in TLM and RTL

4.5 Rule based Transformation of TLM-to-RTL Tests

We use the mapping and interface information (described in

the previous section) and the transformation rules (described

in Section 3.4) to perform TLM-to-RTL test translation. For

example, Figure 8 shows the TLM test corresponding to transi-

tion t9 (in Table 1) and its RTL counterpart. The first part of the

RTL test contains the initialization of the RTL input variables.

The second part contains the reset sequence. The third part

contains the assignment to packet valid signal. The subsequent

entries in the RTL test is generated by transforming correspond-

ing TLM entry by using a combination of name mapping, delay

insertion and composition of values (used in one case). Finally,

the packet valid signal needs to be low before sending the par-

ity followed by assignment of read enable signals for four time

steps (to read four entries: header, two data elements and par-

ity) so that the slave can read the packet.

#10 data = 8’b11110000;

#10 packet_valid = 0;

data = 8’b11110110;

p −> payload[1] = 240;

p − >parity = 246;

p −> payload[0] = 15;

p −> payload_sz = 2;

p −> to_chan = 1;

Initialization

$finish;

#10 read_enb_1 = 1;

#40 read_enb_1 = 0;

Compose

Goal: Verify whether Channel 1 works well to transmit the packet

Transition: t9

Reset Sequence

Read

#10 data = 8’b00001111;

reset = 0;
read_enb_0 = 0;
read_enb_1 = 0;
read_enb_2 = 0;
packet_valid = 0;

#20 reset = 0;

#5 reset = 1;

#5 packet_valid = 1;

data = 8’b00001001;

Figure 8. TLM and equivalent RTL tests for transition t9

We also generated various other tests (not related to transi-

tions) to increase RTL coverage. These tests are required to

cover the additional functionality in RTL that are not available

in TLM. For example, TLM does not have explicit notion of

FIFO queue and its capacity. Similarly, TLM does not have

any notion of reset signal. Therefore, we needed to generate

tests related to FIFO overflow, reset check, and so on.

4.6 RTL Validation and Analysis

We generated total 15 tests: 11 based on transition coverage

and remaining four based on FIFO overflow, reset check, and

asynchronous read. We applied all the generated tests on the

RTL implementation of the router and measured various cov-

erage metrics using Synopsys VCS tool [13]. Table 2 shows

the coverage obtained using the generated tests. Due to some

unreachable code and missing “else” statements it was not pos-

sible to obtain 100% coverage in all the categories. It is im-

portant to note that only 15 tests were able to give the highest

possible coverage.

Table 2. RTL coverage using transformed TLM tests

Source Condition FSM State (Transition) Toggle Path

99.4% 85.1% 100% (100%) 100% 66.7%

We have identified several fatal errors in the RTL implemen-

tation. The first error is encountered when a FIFO buffer is

empty and slave tries to read the corresponding channel, the

empty FIFO buffer becomes full! The second one occurred if

the destination of packet is “channel 3”. In this case the packet

should be discarded, but in RTL the data is written to the “chan-

nel 0”. Also, one of the test identified an inconsistency between

TLM and RTL FIFO implementations. The overflow in TLM

level is 16 packets whereas the overflow in RTL is 16 bytes.

5 Conclusions

This paper presented an efficient top-down RTL test genera-

tion methodology based on TLM specification. This approach

has various advantages. First, the validation result of the Sys-

temC TLM design can be reused in the RTL validation and

thereby significantly reduce the RTL validation effort. Second,

the generated test contains the information of the system level

requirement which is hard to capture in the RTL level without

ad-hoc reverse engineering efforts. Third, the test and its ac-

companying transformation rules enable consistency checking

between different abstraction levels. Finally, the RTL test can

be ready before the RTL implementation is available.

Clearly, the model checking based approach will not be suit-

able for test generation of complex SOC examples due to state

space explosion. We plan to investigate two complementary

directions to address this issue: development of efficient de-

composition techniques in model checking based test genera-

tion and development of test generation techniques without us-

ing model checking.

References

[1] OSCI TLM WG Whitepaper. Transaction Level Modeling in

SystemC. Available at http://www.systemc.org.

[2] R. Jindal, and K. Jain. Verification of Transaction-Level Sys-

temC models using RTL Testbenches. MEMOCODE, 199–203,

2003.

[3] Z. Wang and Y. Ye. The improvement for transaction level veri-

fication functional coverage. ISCAS, 5850–5853, 2005.

[4] N. Bombieri et al. Transactor-based Verification for Reusing

TLM Assertion and Testbenches at RTL. DATE, 1–6, 2006.

[5] S. Abdi, D. Gajski. A formalism for functionality preserving

system level transformations. ASPDAC, 139–144, 2005.

[6] D. Kroening, N. Sharygina. Formal Verification of SystemC

by Automatic Hardware/Software Partitioning. MEMOCODE,

101–110, 2005.

[7] M. Moy et al. LusSy: A Toolbox for the Analysis of Systems-on-

a-Chip at the Transactional Level. Application of Concurrency

to System Design, 26–35, 2005.

[8] D. Karlsson, P. Eles, Z. Peng. Formal verification of SystemC

designs using a Petri-net based representation. DATE, 1228–

1233, 2006.

[9] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Meth-

ods and Practical Use. Springer, 1995.

[10] J. Peterson. Petri Nets Theory and the Modeling of Systems.

Prentice-Hall, N.J., 1981.

[11] H. Koo and P. Mishra. Functional Test Generation using Property

Decompositions for Validation of Pipelined Processors. DATE,

1240–1245, 2006.

[12] Symbolic Model Verifier. Available at http://www-

cad.eecs.berkeley.edu/˜kenmcmil/smv.

[13] Synopsys. http://www.synopsys.com.

