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Abstract 
Fonnal techniques ofler an opportunity to significantly 

reduce the cost of microprocessor verification. We propose 
a model checking based approach to automatically generate 
functional test programs for pipelined processors. We spec- 
ify the processor architecture in an Architecture Description 
Language (ADL). The processor model is extracted from 
the ADL specification. Specific properties are applied to 
the processor model using SMV model checker to generate 
test programs. We applied this methodology on a single- 
issue DLX processor to demonstrate the usefulness of our 
approach. 

1 Introduction 

Functional verification consumes a significant portion of 
the microprocessor design cycle time. Verification tech- 
niques can be broadly categorized into simulation-based ap- 
proaches and formal techniques. Formal techniques have 
emerged as an alternative approach for ensuring the qual- 
ity and correctness of hardware designs, overcoming some 
of the limitations of traditional simulation. However, simu- 
lation is still the most widely used form of microprocessor 
verification: millions of cycles are spent during simulation 
using random test cases in traditional design flow. Certain 
heuristics and design abstractions are used to generate di- 
rected random testcases. However, due to the bottom-up 
nature and localized view of these heuristics the generated 
testcases may not yield a good coverage. We propose a di- 
rected random test program generation scheme using behav- 
ioral knowledge of the pipelined architecture specified in an 
Architecture Description Language (ADL). 

In this paper, we present an approach for automatic func- 
tional test program generation from an architectural specifi- 
cation using model checking. Similar techniques have been 
proposed in the past to validate software designs [12]. To 
the best of our knowledge, this technique has not been stud- 
ied before in the context of pipelined processor verification. 

The rest of the paper is organized as follows. Section 2 

presents related work addressing verification of pipelined 
processors. Section 3 outlines the test program generation 
ffow followed by a case study in Section 4. Section 5 con- 
cludes the paper. 

2 Related Work 

Several approaches for formal or semi-formal verifica- 
tion of pipelined processors have been developed in the 
past. Theorem proving techniques, for example, have been 
successfully adapted to verify pipelined processors ([SI 
[13] [15]). Burch and Dill presented a technique for for- 
mally verifying pipelined processor control circuitry [4]. 
The technique has been extended to handle more complex 
pipelined architectures by several researchers ([I 11 1141). 
Ho et al. [6] extract controlled token nets from a logic de- 
sign to perform efficient model checking. Hauke et al. [lo] 
proposed a technique, called reverse engineering, which ex- 
tracts the ISA model of a pipelined processor from its im- 
plementation model and compares the extracted ISA with 
user-specified ISA. 

Traditionally, validation of a microprocessor has been 
performed by resorting to functional approaches based on 
exciting all the functions and resources described in its 
data-sheets [ 191. Generation of effective test programs for 
the self-test of a processor has been studied by several re- 
searchers ([2] [IS] [20] [21]). Ur and Yadin [24] presented a 
method for generation of assembler test programs that sys- 
tematically probe the micro-architecture of a PowerPC pro- 
cessor. Iwashita et al. [3] use a FSM based processor mod- 
eling to automatically generate test programs. Aharon et al. 
[25] have proposed a new methodology and test program 
generator for functional verification of PowerPC processors 
in IBM. 

3 Our Approach 

Figure 1 shows the flow in our approach. In our 
specification-driven test program generation scenario, the 
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designer starts by specifying the microprocessor architec- 
ture in an Architecture Description Language (ADL). We 
verify the correcmess of the ADL specification of the archi- 
tecture ([7] [8] [9]).  The verification engineers specify the 
properties that the architecture should satisfy. The proces- 
sor model is generated from the architecture specification. 
Both the processor model and the properties are described 
using the SMV language. The properties are applied to this 
processor model using the S M V  model checker [26] to gen- 
erate testcases. We actually write the negation of the prop- 
erties that we want to verify. For example, to generate a 
testcase for verifying a feedback path fp, we write a prop- 
erty that specifies that the feedback pathfp is not exercised. 
The model checker produces a counter example (instruction 
sequence) that activates the feedback path fp. These coun- 
terexamples (instruction sequences) are converted into com- 
plete tests (instruction sequence followed by expected re- 
sults) using a cycle-accurate structural simulator [ 171. The 
simulator is generated automatically from the ADL specifi- 
cation of the architecture [16]. More properties are added if 
the coverage requirement is not satisfied. 

c _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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Figure 1. Functional Test Program Generation Flow 

In the remainder of this section, we briefly mention the 
category of testcases we consider and our coverage estima- 
tion technique. 

3.1 Classification of Testcases 

We classify the testcases in several categories. Here, we 

Pipeline Flow 

briefly mention some of them. 

- Eming of each operation: Issue only one valid 
operation and insert NOPs. Check the timing of 

the operation in the pipeline. 

- Hazards: Generate testcases that will cause dif- 
ferent kinds of hazards (data, control, and struc- 
tural). Check the committed result in each case 
to ensure that the pipeline works correctly in the 
presence of hazards. 

- Sralls: Stalls are generated due to hazards or ex- 
ceptions. The goal is to create hazardexception 
conditions such that a specific pipeline stage is 
stalled. Check to see whether dependent stages 
are stalled for correct number of cycles. 

- Exceptions: Create testcases that generate excep- 
tions (e.g., cache miss, TLB miss etc.). Check to 
ensure that the exceptions are handled properly 
and appropriate pipeline stages are flushed. 

Feedback Paths: Generate testcases that exercise each 
feedback path in the pipeline. 

Branch Prediction: Generate testcases that would 
cause branch mis-prediction, stall and flushing. 

Execution Style: Generate testcases to verify the exe- 
cution style of the pipeline. For example, if it is an 
in-order execution processor the testcase should vali- 
date or fatsify it. 

Memory Controller: Generate testcases to validate sev- 
eral features of the memory controller e.g., data for- 
warding from store queue to load queue, TLB miss etc. 

3.2 Coverage Estimation 

Measuring progress is one of the most important tasks 
in verification, and is the critical element that enables the 
designer to decide when to end the verification effort. Sev- 
eral coverage measures are commonly used: code coverage, 
toggle coverage, fault coverage etc. Unfortunately, neither 
of these measures described above has any direct relation to 
the functionality of the device, nor there is any correlation 
to common user applications. For example, none .of these 
determine if all possible interactions of hazards, stalls and 
multiple exceptions are tested in a processor pipeline. We 
propose a coverage metric based on functional coverage of 
the specification. This allows the verification engineer to 
define exactly what functionality of the device should be 
monitored. 

4 A Casestudy 

We applied our methodology on a single-issue DLX 
[22] architecture. Figure 2 shows the pipeline structure of 
the DLX architecture. The oval 'boxes represent pipeline 
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latches, rectangular boxes represent functional units, solid 
lines represent pipeline edges, and dotted lines represent 
data-transfer edges. The pipeline latches are also called in- 
struction registers (IR) since they contain instructions being 
executed in the pipeline. A pipeline edge transfers an in- 
struction from a parent unit to a child unit using pipeline 
latches (instruction registers). A data-transfer edge is used 
to transfer data from a functional unit to a storage or from a 
storage to a functional unit. 

First, we describe how we capture the DLX architecture 
in the EXPRESSION ADL [ 11. The S M V  description of the 
DLX processor is generated automatically from this ADL 
specification. Next, we present how to specify the necessary 
properties, followed by an example of test program genera- 
tion using SMV. Finally, we present a coverage estimation 
scenario followed by addition of necessary properties. 

4.1 ADL Specification of the DLX Architecture 

We use the EXPRESSION ADL [l] to specify the DLX 
architecture. Two very important concepts in the ADL are 
pipeline paths and data-transfer paths. A path from a root 
node (e.g.. Fetch unit) to a leaf node (e.g. WriteBack unit) 
consisting of units and pipeline edges is called a pipeline 
path. Intuitively, a pipeline path denotes an execution flow 
in the pipeline taken by an operation. For example, one of 
the pipeline path is {IF; ID, DIY MEM, WB}.  A path from 
a unit to a storage or from a storage to a unit consisting 
of storages and data-transfer edges is called a data-transfer 

path. For example, {MEM, MEMORY} is a data-transfer 
path. 

The ADL captures the structure, behavior and mapping 
(between the structure and behavior) of the architecture 
pipelines. The structure is defined by its components (units, 
storages, ports, connections) and the connectivity (pipeline 
and data-transfer paths) between these components. Each 
component is defined by its attributes e.g., the list of op- 
codes it supports, execution timing for each supported op- 
code etc. The behavior of a processor is defined by its in- 
struction set. Each operation in the instruction-set is de- 
fined in terms of opcode, operands and the functionality of 
the operation. A set of mapping functions correlate the ab- 
stract, high-level behavioral model of the architecture to the 
structural model. For example, unit-to-opcode (opcode-ro- 
unit) mapping is a bi-directional function that maps units 
in the structure to opcodes in the behavior. It defines, for 
each functional unit, the set of operations supported by that 
unit (and vice versa). For example, unit-to-opcode function 
maps the division unit to the opcodes (NOP, DIV}. The 
ADL also captures hazards, stalls, interrupts and exceptions. 

4.2 Generation of SMV Description of the Processor 

We have developed a library of generic architectural 
components that can be used for validation. Each compo- 
nent is described using the SMV language at different lev- 
els of abstraction. For example, a simplified version of the 
instruction fetch unit (IF) is shown below: 

module Fetch (PC, InstMemory, operation) 
I 

input PC : integer; 
input InstMemory : memory; 
output operation : opType; 

init(operation.opcode) := NOP; 
next(operation) := InstMemory[PCl; 

} 

The SMV description of the DLX architecture is gen- 
erated automatically from the ADL specification using the 
component library. The SMV description of the DLX archi- 
tecture has 431 lines of code using the pipeline and cycle- 
accurate components from the library [23]. 

4.3 Specification of Properties 

We have written properties for each category of the test- 
cases mentioned in Section 3.1. Here we show an example 
to stall a particular unit. For example, the following prop- 
erty is used to stall the decode unit (ID). The stall bit for 
the decode unit can be true due to data hazard or when one 
of the children is stalled. 

hazard: assert G(ID.-stall = 0); 
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4.4 Functional Testcase Generation using SMV 

We apply the properties on the processor model using 
SMV. Since we write the negation of the properties we want 
to validate, the counter example (instruction sequence) gen- 
erated by SMV can be used as a testcase. The expected 
result can be obtained by using the simulator. For example, 
to generate the counterexample for the property mentioned 
in Section 4.3 the system took 1.3 seconds on a 359 MHz 
Sun UltraSPARC-I1 with 2048M RAM. The instruction se- 
quence is shown below. The read-after-write hazard sets the 
stall bit in this scenario. The ADD operation is supported 
by integer ALU (EX) unit. The decode unit (ID) will be 
stalled in cycle 4 in this case. 

Fetch Cycle Opcode Dest Srcl Src2 
_ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ -  _ _ _ _  _ _ _ _  _ _ _ _  

1 NOP 
2 ADD R3, R1, R2 
3 ADD R4, R3. R2 

4.5 Coverage Estimation and Specification of New 
Properties 

While analyzing the simulator coverage report we ob- 
served that one specific path in the division unit (DIV) is 
not exercised by any testcase. Further analysis revealed that 
it was necessary to initialize two intemal registers to specific 
values to activate the path. Figure 3 shows a fragment of the 
DLX pipeline containing the intemals of the division unit 
(DIV). The two intemal input registers for DIV unit are A,, 
and Bsn. The intemal output register for DIV unit is Gout. 
The input instruction is in and the output result is out. In this 
particular scenario A,, and B,, receives data from the first 
and second source operands of the input instruction (in) i.e., 
A,, = iri.src1 and B,, = i r i . S T C 2 ;  Gout returns the result 
of the division i.e., Gout = A,, + Bzn; finally the output 
is fed from Cout i.e., out = Cout. However, in general 
these could be any arbitrary functions fi, 52, f3, fd such 

and out = f4(Cout). In effect, this is a controllability prob- 
lem: how to assign specific values to these intemal input 
registers at specific clock cycle using the primary inputs of 
the DLX processor? 

We added the following property that generates instruc- 
tion sequence to initialize A,, and B,, with values 2 and 3 
respectively at clock cycle 9. 

init: assert G((cyc1e = 8) -> X((DIV.Ain -= 2) I 

that Aan = fi(in)y Bm = fi(in)y Covt = f 3 ( A , n , & ) ,  

(DIV.Bin -= 3) ) ) ;  

The system took 75.4 seconds to come up with the coun- 
terexample on a 359 MHz Sun UltraSPARC-I1 with 2048M 
RAM. The instruction sequence is shown below. The DIV 
instruction will be in division unit (DIV) in cycle 9. The 

Figure 3. A fragment of the DLX architecture 

MOVI (move immediate) instruction is supported by integer 
ALU (EX) unit and DIV instruction is supported by division 
(DIV) unit. The A,, will get value from R4, which is 2 and 
Bin will get value from R5, which is 3 in this particular 
case. 

Fetch Cycle Opcode Dest Srcl Src2 
_ _ _ _ _ _ _ _ _ _ _  - - - - - -  _ _ _ _  _ _ _ _  _ _ _ _  
1 NOP 
2 MOVI R4, #2 
3 MOVI R5, # 3  
4 NOP 
5 NOP 
6 NOP 
I DIV RO, R4, R5 

5 Summary 

Functional verification consumes a significant portion of 
the microprocessor design cycle. Formal methods, typically 
used in the verification of microprocessor, offer an oppor- 
tunity to reduce the cost of the validation phase. We pur- 
sued this path by applying model checking to the problem 
of functional test program generation for pipelined proces- 
sors. 

We generate a SMV description of the processor model 
automatically from the ADL specification of the architec- 
ture. The SMV description of the properties are written 
manually. We specify the negation of the properties that we 
want to verify in the architecture. The model checker gen- 
erates counterexamples. The expected results are generated 
for each counterexample using a cycle-accurate structural 
simulator. The simulator is generated automatically from 
the ADL specification of the architecture. More properties 
can be added depending on the required coverage. We ap- 
plied our methodology on a single-issue DLX architecture 
to demonstrate the feasibility of our approach. 

Currently, we apply these tests on the cycle-accurate 
structural simulator of the architecture. We are working to- 
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wards applying these tests on the RTL description of the 
processor. Currently, the properties are written by hand. 
Also, we rely on manual coverage analysis and addition of 
new properties. Our future work includes automatic cover- 
age estimation and generation of properties from the ADL 
specification of the architecture. We are also investigating 
the use of SAT-based bounded model checkers to generate 
functional test programs. 
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