
Automatic Functional Test Program Generation for Pipelined Processors
using Model Checking

Prabhat Mishra
pmishra@cecs.uci.edu

Nikil Dutt
dutt@cecs.uci.edu

Architectures and Compilers for Embedded Systems (ACES)
Center for Embedded Computer Systems, University of Califomia, Irvine, CA, USA

Abstract
Fonnal techniques ofler an opportunity to significantly

reduce the cost of microprocessor verification. We propose
a model checking based approach to automatically generate
functional test programs for pipelined processors. We spec-
ify the processor architecture in an Architecture Description
Language (ADL). The processor model is extracted from
the ADL specification. Specific properties are applied to
the processor model using SMV model checker to generate
test programs. We applied this methodology on a single-
issue DLX processor to demonstrate the usefulness of our
approach.

1 Introduction

Functional verification consumes a significant portion of
the microprocessor design cycle time. Verification tech-
niques can be broadly categorized into simulation-based ap-
proaches and formal techniques. Formal techniques have
emerged as an alternative approach for ensuring the qual-
ity and correctness of hardware designs, overcoming some
of the limitations of traditional simulation. However, simu-
lation is still the most widely used form of microprocessor
verification: millions of cycles are spent during simulation
using random test cases in traditional design flow. Certain
heuristics and design abstractions are used to generate di-
rected random testcases. However, due to the bottom-up
nature and localized view of these heuristics the generated
testcases may not yield a good coverage. We propose a di-
rected random test program generation scheme using behav-
ioral knowledge of the pipelined architecture specified in an
Architecture Description Language (ADL).

In this paper, we present an approach for automatic func-
tional test program generation from an architectural specifi-
cation using model checking. Similar techniques have been
proposed in the past to validate software designs [12]. To
the best of our knowledge, this technique has not been stud-
ied before in the context of pipelined processor verification.

The rest of the paper is organized as follows. Section 2

presents related work addressing verification of pipelined
processors. Section 3 outlines the test program generation
ffow followed by a case study in Section 4. Section 5 con-
cludes the paper.

2 Related Work

Several approaches for formal or semi-formal verifica-
tion of pipelined processors have been developed in the
past. Theorem proving techniques, for example, have been
successfully adapted to verify pipelined processors ([SI
[13] [15]). Burch and Dill presented a technique for for-
mally verifying pipelined processor control circuitry [4].
The technique has been extended to handle more complex
pipelined architectures by several researchers ([I 11 1141).
Ho et al. [6] extract controlled token nets from a logic de-
sign to perform efficient model checking. Hauke et al. [lo]
proposed a technique, called reverse engineering, which ex-
tracts the ISA model of a pipelined processor from its im-
plementation model and compares the extracted ISA with
user-specified ISA.

Traditionally, validation of a microprocessor has been
performed by resorting to functional approaches based on
exciting all the functions and resources described in its
data-sheets [191. Generation of effective test programs for
the self-test of a processor has been studied by several re-
searchers ([2] [IS] [20] [21]). Ur and Yadin [24] presented a
method for generation of assembler test programs that sys-
tematically probe the micro-architecture of a PowerPC pro-
cessor. Iwashita et al. [3] use a FSM based processor mod-
eling to automatically generate test programs. Aharon et al.
[25] have proposed a new methodology and test program
generator for functional verification of PowerPC processors
in IBM.

3 Our Approach

Figure 1 shows the flow in our approach. In our
specification-driven test program generation scenario, the

99

mailto:pmishra@cecs.uci.edu
mailto:dutt@cecs.uci.edu

designer starts by specifying the microprocessor architec-
ture in an Architecture Description Language (ADL). We
verify the correcmess of the ADL specification of the archi-
tecture ([7] [8] [9]). The verification engineers specify the
properties that the architecture should satisfy. The proces-
sor model is generated from the architecture specification.
Both the processor model and the properties are described
using the SMV language. The properties are applied to this
processor model using the S M V model checker [26] to gen-
erate testcases. We actually write the negation of the prop-
erties that we want to verify. For example, to generate a
testcase for verifying a feedback path fp, we write a prop-
erty that specifies that the feedback pathfp is not exercised.
The model checker produces a counter example (instruction
sequence) that activates the feedback path fp. These coun-
terexamples (instruction sequences) are converted into com-
plete tests (instruction sequence followed by expected re-
sults) using a cycle-accurate structural simulator [171. The
simulator is generated automatically from the ADL specifi-
cation of the architecture [16]. More properties are added if
the coverage requirement is not satisfied.

c _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

i Architecture Specifiatwn
Verification ' _________-_________ 8 - .

\ A Processor M a l o l Processor M a l o l w
I ;

I
IFi Counterexamples

I
I

Simulotor +- Aut-tic U Coverage R e p o r t
L - - - - - - - - - - - - -

--b Hanual
Testcases

Figure 1. Functional Test Program Generation Flow

In the remainder of this section, we briefly mention the
category of testcases we consider and our coverage estima-
tion technique.

3.1 Classification of Testcases

We classify the testcases in several categories. Here, we

Pipeline Flow

briefly mention some of them.

- Eming of each operation: Issue only one valid
operation and insert NOPs. Check the timing of

the operation in the pipeline.

- Hazards: Generate testcases that will cause dif-
ferent kinds of hazards (data, control, and struc-
tural). Check the committed result in each case
to ensure that the pipeline works correctly in the
presence of hazards.

- Sralls: Stalls are generated due to hazards or ex-
ceptions. The goal is to create hazardexception
conditions such that a specific pipeline stage is
stalled. Check to see whether dependent stages
are stalled for correct number of cycles.

- Exceptions: Create testcases that generate excep-
tions (e.g., cache miss, TLB miss etc.). Check to
ensure that the exceptions are handled properly
and appropriate pipeline stages are flushed.

Feedback Paths: Generate testcases that exercise each
feedback path in the pipeline.

Branch Prediction: Generate testcases that would
cause branch mis-prediction, stall and flushing.

Execution Style: Generate testcases to verify the exe-
cution style of the pipeline. For example, if it is an
in-order execution processor the testcase should vali-
date or fatsify it.

Memory Controller: Generate testcases to validate sev-
eral features of the memory controller e.g., data for-
warding from store queue to load queue, TLB miss etc.

3.2 Coverage Estimation

Measuring progress is one of the most important tasks
in verification, and is the critical element that enables the
designer to decide when to end the verification effort. Sev-
eral coverage measures are commonly used: code coverage,
toggle coverage, fault coverage etc. Unfortunately, neither
of these measures described above has any direct relation to
the functionality of the device, nor there is any correlation
to common user applications. For example, none .of these
determine if all possible interactions of hazards, stalls and
multiple exceptions are tested in a processor pipeline. We
propose a coverage metric based on functional coverage of
the specification. This allows the verification engineer to
define exactly what functionality of the device should be
monitored.

4 A Casestudy

We applied our methodology on a single-issue DLX
[22] architecture. Figure 2 shows the pipeline structure of
the DLX architecture. The oval 'boxes represent pipeline

100

latches, rectangular boxes represent functional units, solid
lines represent pipeline edges, and dotted lines represent
data-transfer edges. The pipeline latches are also called in-
struction registers (IR) since they contain instructions being
executed in the pipeline. A pipeline edge transfers an in-
struction from a parent unit to a child unit using pipeline
latches (instruction registers). A data-transfer edge is used
to transfer data from a functional unit to a storage or from a
storage to a functional unit.

First, we describe how we capture the DLX architecture
in the EXPRESSION ADL [11. The S M V description of the
DLX processor is generated automatically from this ADL
specification. Next, we present how to specify the necessary
properties, followed by an example of test program genera-
tion using SMV. Finally, we present a coverage estimation
scenario followed by addition of necessary properties.

4.1 ADL Specification of the DLX Architecture

We use the EXPRESSION ADL [l] to specify the DLX
architecture. Two very important concepts in the ADL are
pipeline paths and data-transfer paths. A path from a root
node (e.g.. Fetch unit) to a leaf node (e.g. WriteBack unit)
consisting of units and pipeline edges is called a pipeline
path. Intuitively, a pipeline path denotes an execution flow
in the pipeline taken by an operation. For example, one of
the pipeline path is {IF; ID, DIY MEM, WB}. A path from
a unit to a storage or from a storage to a unit consisting
of storages and data-transfer edges is called a data-transfer

path. For example, {MEM, MEMORY} is a data-transfer
path.

The ADL captures the structure, behavior and mapping
(between the structure and behavior) of the architecture
pipelines. The structure is defined by its components (units,
storages, ports, connections) and the connectivity (pipeline
and data-transfer paths) between these components. Each
component is defined by its attributes e.g., the list of op-
codes it supports, execution timing for each supported op-
code etc. The behavior of a processor is defined by its in-
struction set. Each operation in the instruction-set is de-
fined in terms of opcode, operands and the functionality of
the operation. A set of mapping functions correlate the ab-
stract, high-level behavioral model of the architecture to the
structural model. For example, unit-to-opcode (opcode-ro-
unit) mapping is a bi-directional function that maps units
in the structure to opcodes in the behavior. It defines, for
each functional unit, the set of operations supported by that
unit (and vice versa). For example, unit-to-opcode function
maps the division unit to the opcodes (NOP, DIV}. The
ADL also captures hazards, stalls, interrupts and exceptions.

4.2 Generation of SMV Description of the Processor

We have developed a library of generic architectural
components that can be used for validation. Each compo-
nent is described using the SMV language at different lev-
els of abstraction. For example, a simplified version of the
instruction fetch unit (IF) is shown below:

module Fetch (PC, InstMemory, operation)
I

input PC : integer;
input InstMemory : memory;
output operation : opType;

init(operation.opcode) := NOP;
next(operation) := InstMemory[PCl;

}

The SMV description of the DLX architecture is gen-
erated automatically from the ADL specification using the
component library. The SMV description of the DLX archi-
tecture has 431 lines of code using the pipeline and cycle-
accurate components from the library [23].

4.3 Specification of Properties

We have written properties for each category of the test-
cases mentioned in Section 3.1. Here we show an example
to stall a particular unit. For example, the following prop-
erty is used to stall the decode unit (ID). The stall bit for
the decode unit can be true due to data hazard or when one
of the children is stalled.

hazard: assert G(ID.-stall = 0);

101

4.4 Functional Testcase Generation using SMV

We apply the properties on the processor model using
SMV. Since we write the negation of the properties we want
to validate, the counter example (instruction sequence) gen-
erated by SMV can be used as a testcase. The expected
result can be obtained by using the simulator. For example,
to generate the counterexample for the property mentioned
in Section 4.3 the system took 1.3 seconds on a 359 MHz
Sun UltraSPARC-I1 with 2048M RAM. The instruction se-
quence is shown below. The read-after-write hazard sets the
stall bit in this scenario. The ADD operation is supported
by integer ALU (EX) unit. The decode unit (ID) will be
stalled in cycle 4 in this case.

Fetch Cycle Opcode Dest Srcl Src2
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _

1 NOP
2 ADD R3, R1, R2
3 ADD R4, R3. R2

4.5 Coverage Estimation and Specification of New
Properties

While analyzing the simulator coverage report we ob-
served that one specific path in the division unit (DIV) is
not exercised by any testcase. Further analysis revealed that
it was necessary to initialize two intemal registers to specific
values to activate the path. Figure 3 shows a fragment of the
DLX pipeline containing the intemals of the division unit
(DIV). The two intemal input registers for DIV unit are A,,
and Bsn. The intemal output register for DIV unit is Gout.
The input instruction is in and the output result is out. In this
particular scenario A,, and B,, receives data from the first
and second source operands of the input instruction (in) i.e.,
A,, = iri.src1 and B,, = i r i . S T C 2 ; Gout returns the result
of the division i.e., Gout = A,, + Bzn; finally the output
is fed from Cout i.e., out = Cout. However, in general
these could be any arbitrary functions fi, 52, f3, fd such

and out = f4(Cout). In effect, this is a controllability prob-
lem: how to assign specific values to these intemal input
registers at specific clock cycle using the primary inputs of
the DLX processor?

We added the following property that generates instruc-
tion sequence to initialize A,, and B,, with values 2 and 3
respectively at clock cycle 9.

init: assert G((cyc1e = 8) -> X((DIV.Ain -= 2) I

that Aan = fi(in)y Bm = fi(in)y Covt = f 3 (A , n , &) ,

(DIV.Bin -= 3))) ;

The system took 75.4 seconds to come up with the coun-
terexample on a 359 MHz Sun UltraSPARC-I1 with 2048M
RAM. The instruction sequence is shown below. The DIV
instruction will be in division unit (DIV) in cycle 9. The

Figure 3. A fragment of the DLX architecture

MOVI (move immediate) instruction is supported by integer
ALU (EX) unit and DIV instruction is supported by division
(DIV) unit. The A,, will get value from R4, which is 2 and
Bin will get value from R5, which is 3 in this particular
case.

Fetch Cycle Opcode Dest Srcl Src2
_ _ _ _ _ _ _ _ _ _ _ - - - - - - _ _ _ _ _ _ _ _ _ _ _ _
1 NOP
2 MOVI R4, #2
3 MOVI R5, # 3
4 NOP
5 NOP
6 NOP
I DIV RO, R4, R5

5 Summary

Functional verification consumes a significant portion of
the microprocessor design cycle. Formal methods, typically
used in the verification of microprocessor, offer an oppor-
tunity to reduce the cost of the validation phase. We pur-
sued this path by applying model checking to the problem
of functional test program generation for pipelined proces-
sors.

We generate a SMV description of the processor model
automatically from the ADL specification of the architec-
ture. The SMV description of the properties are written
manually. We specify the negation of the properties that we
want to verify in the architecture. The model checker gen-
erates counterexamples. The expected results are generated
for each counterexample using a cycle-accurate structural
simulator. The simulator is generated automatically from
the ADL specification of the architecture. More properties
can be added depending on the required coverage. We ap-
plied our methodology on a single-issue DLX architecture
to demonstrate the feasibility of our approach.

Currently, we apply these tests on the cycle-accurate
structural simulator of the architecture. We are working to-

102

wards applying these tests on the RTL description of the
processor. Currently, the properties are written by hand.
Also, we rely on manual coverage analysis and addition of
new properties. Our future work includes automatic cover-
age estimation and generation of properties from the ADL
specification of the architecture. We are also investigating
the use of SAT-based bounded model checkers to generate
functional test programs.

6 Acknowledgments

This work was partially supported by grants from Mo-
torola Inc., Hitachi Ltd., and NSF award CCR-0203813. We
would like to thank Prof. Sandeep Shukla for his helpful
comments and suggestions.

References

[11 A. Halambi et al. EXPRESSION: A language for ar-
chitecture exploration through compiler/simulator re-
targetability. In DATE, 1999.

[2] L. Chen et al. DEFUSE: A Deterministic Functional
Self-Test Methodology for Processors. VTS, 2000.

[3] H. Iwashita et al. Automatic test pattem generation for
pipelined processors. ICCAD, 1994.

[4] J. Burch and D. Dill. Automatic verification of
pipelined microprocessor control. CAV, 1994.

[5] D. Cyrluk. Microprocessor verification in pvs: A
methodology and simple example. Technical report,
SRI-CSL-93- 12,1993.

[6] P. Ho et al. Formal verification of pipeline control us-
ing controlled token nets and abstract interpretation.
In ICCAD, 1998.

[7] P. Mishra et al. Automatic Modeling and Validation of
Pipeline Specifications driven by an Architecture De-
scription Language. ASP-DACNLSI Design, 2002.

[8] P. Mishra et al. Automatic Verification of In-Order Ex-
ecution in Microprocessors with Fragmented Pipelines
and Multicycle Functional Units. DATE, 2002.

[9] P. Mishra et al. Modeling and Verification of Pipelined
Embedded Processors in the Presence of Hazards and
Exceptions. DIPES, 2002.

[101 J. Hauke and J. Hayes. Microprocessor design verifi-
cation using reverse engineering. In HLDVT, 1999.

[1 I] M. Velev et al. Formal verification of superscalar mi-
croprocessors with multicycle functional units, excep-
tions, and branch prediction. DAC, 2000.

[121 P. Ammann et al. Using Model Checking to Generate

[13] J. Sawada et al. Trace table based approach for

Tests from Specifications. ICFEM 1998.

pipelined microprocessor verification. CAV, 1997.

[I41 J. Skakkebaek et al. Formal verification of out-of-
CAV, order execution using incremental flushing.

1998.

[IS] M. Srivas et al. Formal verification of a pipelined mi-
croprocessor. IEEE Sofnyare. volume 7(5), pages 52-
64,1990.

[I61 P. Mishra et. al. Functional Abstraction driven Design
Space Exploration of Heterogeneous Programmable
Architectures. ISSS, pages 256-261,2001.

[171 A. Khare et al. V-SAT: A visual specification and anal-
ysis tool for system-on-chip exploration. EUROMI-
CRO, 1999.

[181 F. Como et al. On the Test of Microprocessor IP Cores.
DATE, 2001,

[191 S. Thatte et al. Test Generation for Microprocessors.
IEEE Trans. on Computers, Vol. C-29, pp. 429-441,
June 1980.

[20] K. Batcher et al. Instruction Randomization Self Test
for Processor Cores. VTS, 1999.

[21] J. Shen et al. Functional Verification of the Equator
MAP1000 Microprocessor. DAC, 1999.

[22] J. Hennessy and D. Patterson. Computer Architecture:
A quantitative approach. Morgan Kaufmann Publish-
ers Inc, San Mateo, CA, 1990.

[23] P. Mishra and N. Dutt. Architecture Description Lan-
guage driven Functional Test Program Generation for
Microprocessors using SMV. CECS Technical Report
02-26, University of Califomia, Irvine, 2002.

[24] S. Ur et al. Micro architecture coverage directed gen-
eration of test programs. DAC, 1999.

[25] A. Aharon et al. Test Program Generation for Func-
tional Verification of PowerPC Processors in IBM.
DAC, 1995.

[26] SMV. http://www.cs.cniu.edflmodelcheck.

103

http://www.cs.cniu.edflmodelcheck

