
Memory-based Computing for Performance and Energy
Improvement in Multicore Architectures

Kamran Rahmani
University of Florida

kamran@cise.ufl.com

Prabhat Mishra
University of Florida

prabhat@cise.ufl.edu

Swarup Bhunia
Case Western Reserve Univ.

sxb21@case.edu

ABSTRACT
Memory-based computing (MBC) is promising for improv-
ing performance and energy efficiency in both data- and
compute-intensive applications. In this paper, we propose
a novel reconfigurable MBC framework for multicore archi-
tectures where each core uses caches for computation using
Look Up Tables (LUTs). Experimental results demonstrate
that on-demand memory-based computing in each core can
significantly improve performance (up to 4.7X, 3.3X on av-
erage) as well as reduce energy consumption (up to 4.7X,
2X on average) in multicore architectures.

Categories and Subject Descriptors
C.1 [PROCESSOR ARCHITECTURES]: Adaptable
architectures

General Terms
Design, Performance

Keywords
Multicore systems, memory-based computing, acceleration,
energy optimization

1. INTRODUCTION
There are two common reconfigurable computing cate-

gories, FPGA [1], and CGRA [2]. FPGA suffers from poor
technological scalability of performance and CGRA suffers
from lack of flexibility to map diverse applications. In addi-
tion, both technologies fail to improve performance and en-
ergy efficiency in case of data-intensive applications. MBC
is a promising alternative to address the above challenges.
For ease of comparison, different features of all approaches
are summarized in Table 1.

A promising solution to the challenges above is to use
a reconfigurable memory-based computing (RMBC) frame-
work. A RMBC framework uses dense 2-D memory arrays

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’12, May 3–4, 2012, Salt Lake City, Utah, USA.
Copyright 2012 ACM 978-1-4503-1244-8/12/05 ...$10.00.

Table 1: Comparison of reconfigurable frameworks
Feature FPGA CGRA RMBC
Flexibility
(compute-intensive) High Moderate High
Flexibility
(data-intensive) Poor Poor High
Energy Efficiency Poor Moderate High
Resource Utilization Moderate Moderate High
Reconfiguration
Latency Moderate Low Moderate
Technology
Scalability Poor Moderate High

for computation by configuring them as LUTs to hold the
configuration for the mapped application. RMBC addresses
above challenges by making a trade-off between the flexi-
bility and granularity. It is beneficial due to following rea-
sons: i) it is amenable to efficient functional decomposition
of complex operations (e.g. square root, trigonometric func-
tions etc.) with fewer inputs (one operand often being con-
stant coefficient) which are easier to implement as lookup
table (LUT) than logic block; ii) they typically have larger
than 1-bit pathwidth [3] which is amenable for sparse in-
terconnect structure; and iii) most applications have high
temporal locality in data that can be exploited to reduce
computation overhead. In addition, RMBC leverages on
traditional on-die cache memory which leads to minimum
changes in hardware architecture. Necessary circuit and ar-
chitecture level modifications however need to be incorpo-
rated into the conventional memory array before it can be
used as a reconfigurable framework. This logic-memory du-
ality benefits memory-intensive applications in addition to
compute-intensive ones. In this paper we propose an archi-
tecture that uses RMBC in multicore architectures where
each core has a tightly-coupled RMBC unit.

Paul and Bhunia proposed a novel MBC platform in [4].
This framework is however, primarily optimized for fine-
grained combinatorial logic. In this paper, we optimize the
same for coarse-grained regular data path, common to al-
gorithmic tasks. The only work on MBC in a multicore ar-
chitecture is done by Hajimiri et al. [5]. They proposed an
architecture for improving reliability in multicore architec-
tures using MBC. However, this improvement in reliability
degrades performance. In this paper, our focus is on using
MBC as an accelerator in a multicore architecture.

Partitioning

Scheduling

Mapping

Input DFG

Partitions
(P1, P2, ... , Pn)

Timing Orders

MLB 1
P1 ... Pi

MLB 2
Pi ... Pj

MLB 3
Pj ... Pn

Schedule Table

MLB
Register Bank

Local Routing

Memory Array

Partition Inputs

Partition O
utputs

Function Table
Mapping

Subarray Subarray

Subarray

16

16

1616

32

32 32

P1 P2

P3

P4

P5

P6

P7

P8

P9

P10

L1

L2

L3

L1

L2

L3

L1

L2

L3

S1

S3 S2 S4

[S1,S2][S3,S4]

A B

C

(a) (b)

Figure 1: a) Functional block diagram for memory based computing b) Synchronization across multiple MLBs

2. AN OVERVIEW OF MBC
Figure 1(a) shows the functional block diagram of MBC

model proposed in [4, 6]. The target application is par-
titioned into multi-input multi-output partitions, which are
then mapped to multiple computing elements, each comput-
ing unit being referred to as a Memory Logic Block (MLB).
Inside each MLB, the partitions are evaluated over multi-
ple clock cycles in a topological manner. Intermediate par-
tition outputs are stored in the register bank. LUTs are
mapped to a dense 2-D memory array which is otherwise
referred to as the function table. Schedule Table stores the
microcode which determines the sequence of operations in-
side each computing element. A fast local routing network
is used to select the intermediate partition outputs from
the register bank. Figure 1(b) shows the communication
and synchronization among multiple MLBs through a time-
multiplexed usage of the local and global interconnect in the
MBC model. As shown in Figure 1(b), S1 and S2 are out-
puts of MLB A and B at the end of cycle 1, while S3 and S4
are outputs at the end of cycle 2. Signals at the end of each
cycle are transmitted over the same local/global channel to
MLB C. Furthermore, intra-MLB cycle time is determined
by the time taken to read the operands from the intermedi-
ate registers and the time to read the LUTs mapped to the
subarray inside each MLB. Inter-MLB cycle time is deter-
mined by the LUT read time inside one MLB and its output
to reach the inputs of LUTs in other MLBs.

3. MBC IN MULTICORE SYSTEMS
This section presents our RMBC framework for multicore

architectures. The framework which normally acts as a com-
puting resource can on-demand be transformed into data
memory. Using memory for computation gives the dual ben-
efit that the same can be used as normal storage for memory-
intensive applications. Consequently, by customizing itself
to different application requirements, it can provide speed-
up for a wide range of compute and data-intensive applica-
tions. RMBC framework operates as a Reconfigurable Func-
tional Unit (RFU) in a conventional RISC pipeline. Conse-
quently, it is important to consider the modifications of both

 CORE 1

Task 1

Fetch

Issue

Execute

 CORE n

Task n

Fetch

Issue

Execute

IL1

DL1

IL1

DL1

MAHA

DMA

MAHA

DMA

Main Memory

I+D L2

Figure 2: RMBC in a Multicore Architecture

hardware as well as software in the system. This modifica-
tions should enable the multicore architecture to on-demand
execute a set of applications in the RMBC units. Figure 2
shows the proposed integration scheme of RMBC into a mul-
ticore architecture. In this architecture, each core has an in-
dependent RMBC unit that can be on-demand reconfigured
in order to fulfill the application’s requirements. Required
modifications are discussed in the following sections.

3.0.1 Hardware Architecture
Constructing an RFU around the normal cache architec-

ture imparts the exceptional advantage that the RMBC ar-
chitecture can be interfaced with the main memory as well as
with the processor register file for transfer of working dataset
and configuration data. Since on-chip cache is already provi-
sioned with these interfaces, the design overhead involved is
minimal. However, for data-parallel applications for which
large volume of data need to be loaded onto the RFU, large
number of cycles will be wasted by the processor mediat-
ing between the cache and the main memory. The proposed

framework therefore utilizes a DMA interface between the
RFU and the main memory similar to the scheme proposed
in [7]. A data buffer is used to overlap computation in the
RFU with loading/unloading of data from the main memory
through the DMA controller. It is to be noted here that the
context memory as described in [7] is virtually distributed as
schedule table inside individual MLBs of the RMBC frame-
work. This opens up the opportunity that sets of MLBs can
operate and be reconfigured independently. Thus normal
function in one set of MLBs proceed with the reconfigura-
tion in others, effectively hiding the reconfiguration latency.
Following are the sequence of actions taken by each core to
initiate computation in the RMBC framework.

Write-back dirty blocks: Since the storage which serves
as an RFU on-demand is otherwise part of the on-chip cache,
dirty lines present in this storage need to be written back to
the main memory before any RFU operation can proceed.
This latency can be minimized by periodic cleaning of the
dirty blocks.

Load reconfiguration data: RMBC exploits the large
data bandwidth of memory interface to load the reconfig-
uration data into the MLBs in groups of 128 bits. In the
worst case, when the entire 16KB memory inside an MLB
requires reconfiguration, the total number of cycles required
to configure a single MLB is only 1024. Additional 8 cycles
are required to configure the schedule table. Programming
the PI architecture however cannot be performed in parallel
and requires 128 cycles to program the external connection
for the 32-bit input to each MLB. The configuration data is
brought into the RMBC framework from the main memory
using the DMA controller. The core initiates this transfer
by providing the starting address of reconfiguration data to
the DMA controller.

Load working data: For loading the working data set,
the DMA controller is supplied with the starting address
by the core. Data from the main memory is first moved
onto the data buffer which is then transferred over to se-
lected MLBs. Unlike Morphosys, inputs for the applica-
tion mapped to the RMBC framework also arrive at selected
MLBs from the processor register file via normal load/store
instructions. This helps to speed-up crypto applications and
other combinatorial functions where data-parallelism is not
inherent. In order to hide the latency of data arrival, the
DMA controller is programmed to overlap data pre-fetch
from the main memory with normal RFU operation.

3.0.2 Software Architecture
Integration of an RFU into a dynamic pipeline requires

extension of the instruction set to incorporate the new RFU
opcodes. As illustrated in Figure 3, such an extension is
achieved for an Portable Instruction Set Architecture (PISA)
through identification of the application and modification of
the software toolflow to handle the RFU opcodes at differ-
ent stages of compilation, and linking. The first step in
the methodology is the identification of the hotspot or com-
putational kernels where the code spends major portion of
the execution time. The assembly instructions correspond-
ing to these hotspots are determined from the disassembled
binary. The subsequent step identifies the section of the
C-code corresponding to the assembly instructions. A new
library containing pseudo-assembler instructions is defined
for the RFU functions using GCC inline assembler macro
feature. This library is then used to compile the C-code.

Task i
Executable

Kernel
Extraction

Assembly

Profiler

Disassembler

Define lib for
RFU function

Identify in C
and optimize

Compile

Replace pseudo-
assembler instr.

Final Task i
Executable

Core i

Figure 3: Software architecture for automatic trans-
lation of application kernel to RFU instructions

A post-processing on the compiled executable replaces the
pseudo-assembler instruction with the correct machine op-
code. This approach avoids modifying the C-compiler to
take into account new opcodes corresponding to the RFU
instructions. The correct machine opcode used to replace
the pseudo-assembler instruction utilizes the unused opcode
space of the host processor to define new RFU instructions.

4. EXPERIMENTS
4.1 Experimental Setup

To check the effectiveness of our proposed scheme, we used
a widely used multicore simulator, M5 [8]. We enhanced
M5 to make the required modifications in processor cores to
support on-demand computation transfer to MBC. We con-
figured the simulated system with a two-core, three-core,
and four-core processor each of which runs at 500MHz. The
DerivO3CPU model [8] in M5 is used which represents a
detailed model of an out-of-order SMT-capable CPU which
stalls during cache accesses and memory response handling.
In addition, for MBC part we implemented a mapper using
C that gets the critical-section of the application (kernel)
DFG as input and provides the detailed MBC mapping in-
formation including required number of cycles and energy
consumption per vector. The effectiveness of our proposed
framework was investigated and validated for two different
scenarios: i) improving the performance, and ii) improv-
ing memory sub-system energy consumption. For the sec-
ond part, we applied the same energy model used in [9],
which calculates both dynamic and static energy consump-
tion, memory latency, CPU stall energy, and main memory
fetch energy. We updated the dynamic energy consumption
for each cache configuration using CACTI 6.0. We devel-
oped a Perl script that gets M5 simulation output as input
and provides total consumed energy in memory hierarchy
including all private instruction L1 and data L1 (for each
core) and shared L2 caches in the multicore architecture.

In order to investigate our proposed framework, we formed
different task sets to be executed together in a multicore
environment. The tasks are independent and each task is
assigned to a core. These tasks are collected from both
compute- and memory-intensive applications. In the 2-core
framework, the tasks are organized as set1 (sha, atr), set2
(aes, ci), set3 (me, dwt), and set4 (census, dct). Similarly,
for 3-core scenario they are organized as set5 (aes, sha, me),
and set6 (ci, atr, dwt). Likewise, we formed set7 (aes, sha,
me, atr) for 4-core scenario. We simulated these scenarios
and investigated the effect of using RMBC on performance
as well as memory sub-system energy consumption.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Average

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Figure 4: Performance of the multicore+RMBC
normalized to the multicore only scenario

4.2 Performance Analysis
The metric that we used for performance comparison is

the average of normalized performance improvements (cy-
cle number) in all cores. Figure 4 shows the performance
improvement in an RMBC-enabled multicore system nor-
malized to the multicore system without RMBC. In most
cases we have drastic improvements in performance. How-
ever as can be seen, this improvement depends on appli-
cations and their nature. For example in set1 we have
4.3X improvement in performance while it is 1.02X for set4.
This variation shows that although RMBC is beneficial in
both computation and memory intensive applications, some
applications are not a good-fit when they are mapped to
RMBC. Nonetheless, as it can be observed in most appli-
cations RMBC is a promising framework to improve the
performance in multicore systems. In addition, it can be
observed that generally the performance improvement in-
creases as the number of cores increases. This is because
of sharing resources, doing computation in RMBC in the
cores releases some shared recourses (L2 and shared bus).
In other words, while one or more cores are doing compu-
tation in RMBC, it is not using shared resources. This can
make more resources available for other cores that are using
it (doing computation in CPU); more resources lead to more
performance for these cores. In summary, for our applica-
tion sets the performance improvement is up to 4.7X for set5
and is 3.3X on average.

4.3 Energy Consumption
In order to investigate the effect of using RMBC on energy

consumption, we compared the total energy consumption of
memory sub-system in our proposed multicore framework.
This metric comprises of total energy consumption in all
caches plus RMBC units for RMBC-enabled system nor-
malized to energy consumption in all caches for traditional
multicore scenario. Figure 5 illustrates this metric for the
same application sets discussed before. Like performance
improvement, in most cases we have drastic reduction in
energy consumption. As expected, in most cases there is
a strong relation between improvement in performance and
reduction in energy consumption. For example set1 that has
4X improvement in performance has 4X reduction in energy.
As it can be observed, enabling RMBC in multicore systems
is a promising approach to reduce energy consumption. For
our application sets the energy reduction is up to 4.7X for
set5 and is 2X on average.

5. CONCLUSIONS
We have presented RMBC, an embedded memory-based

computing framework, which can serve as a reconfigurable

0

0.2

0.4

0.6

0.8

1

1.2

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Average

N
or

m
al

iz
ed

 E
ne

rg
y

Co
ns

um
pt

io
n

Figure 5: Energy consumption in multicore+RMBC
normalized to the multicore only scenario

functional unit in multicore systems to provide hardware ac-
celeration. The framework leverages on the high integration
density offered by modern embedded memory and drasti-
cally reduces the requirements of programmable intercon-
nects which impose major bottlenecks in terms of perfor-
mance and technology scalability. Another important bene-
fit of using a memory array is that it can be dynamically con-
figured into a custom logic or memory block, unlike CGRA
or FPGA. Such malleable nature of RMBC can be extremely
useful for compute-intensive as well as data-intensive ap-
plications, which benefits from improved memory latency
and/or bandwidth. Experimental results demonstrated that
the proposed framework achieves significant improvement in
performance (up to 4.7X, 3.3X on average) and energy con-
sumption reduction (up to 4.7X, 2X on average).

6. ACKNOWLEDGMENTS
This work was partially supported by NSF grants ECCS-

1002237, CCF-0903430, and CNS-0915376. We would like
to thank Dr. Somnath Paul for his comments and insights
on memory-based computing in embedded systems.

7. REFERENCES
[1] S. Hauck et al. The chimaera reconfigurable functional

unit. IEE Trans. on VLSI, 2004.

[2] Y. Park et al. Cgra express: accelerating execution
using dynamic operation fusion. In CASES, 2009.

[3] S. Majzoub et al. Reconfigurable platform evaluation
through application mapping and performance
analysis. In IEEE SPIT, 2006.

[4] S. Paul and S. Bhunia. A scalable memory-based
reconfigurable computing framework for nanoscale
crossbar. IEEE Trans. on Nanotechnology, 2010.

[5] H. Hajimiri et al. Reliability improvement in multicore
architectures through computing in embedded
memory. In MWSCAS, 2011.

[6] S. Paul, et al. Nanoscale reconfigurable computing
using non-volatile 2-d sttram array. In IEEE-NANO,
2009.

[7] H. Singh et al. Morphosys: an integrated
reconfigurable system for data-parallel and
computation-intensive applications. IEEE Trans. on
Computers, 2000.

[8] N. Binkert et al. The m5 simulator: Modeling
networked systems. IEEE Micro, 2006.

[9] C. Zhang et al. A highly configurable cache
architecture for embedded systems. In Computer
Architecture, 2003.

