
A Novel Test-Data Compression Technique using
Application-Aware Bitmask and Dictionary Selection

Methods
Kanad Basu

1
 and Prabhat Mishra

2

Computer and Information Science and Engineering Department

University of Florida, Gainesville, FL-32611

E-mail:
1
kbasu@cise.ufl.edu,

2
prabhat@cise.ufl.edu

ABSTRACT

Higher circuit densities in System-on-Chip (SOC) designs have
led to enhancement in the test data volume. Larger test data size
demands not only greater memory requirements, but also an
increase in the testing time. Test data compression addresses this
problem by reducing the test data volume without affecting the
overall system performance. This paper proposes a novel test data
compression technique using bitmasks which provides a
significant enhancement in the compression efficiency without
introducing any additional decompression penalty. The major
contributions of this paper are as follows: i) it develops an
efficient bitmask selection technique for test data in order to
create maximum matching patterns; ii) it develops an efficient
dictionary selection method which takes into account the
speculated results of compressed codes and iii) it proposes a
suitable code compression technique using dictionary and bitmask
based code compression that can reduce the memory and time
requirements. We have used our algorithm on various test data
sets and compared our results with other existing test compression
techniques. Our algorithm outperforms the best known existing
compression technique up to 30%, giving a best possible
compression of 92.2%.

Keywords

Test Data, Compression, Decompression.

1. INTRODUCTION

In case of system-on-chip, higher circuit densities have led to
larger volume of test data generation, which demands large
memory requirement in addition to an increased testing time. Test
data compression plays a crucial role, reducing the memory and
time requirements. It also overcomes the Automatic Test
Equipment (ATE) bandwidth limitation.

 The test compression mechanism should allow small number
of ATE channels to transfer the compressed data from tester to the
chip and be able to drive a large number of internal scan chains.
Thus, it would be suitable for reduced pin count and low cost

Design for Testability (DFT) environment. Our algorithm is able
to achieve all the above advantages without introducing any
additional decompression penalty. Compression ratio, widely
accepted as a primary metric for measuring the efficiency of code
compression, is defined as, Compression ratio = (compressed
program size) / (original program size). Clearly, smaller
compression ratio indicates better compression.

 Dictionary based compression techniques are extremely
popular in embedded systems domain since they provide a dual
advantage of good compression ratio as well as a fast
decompression mechanism. The basic idea is to take advantage of
a number of commonly occurring sequences. Test data
compression using dictionaries of fixed length entries was
proposed by [11]. Many recently proposed techniques [10, 12]
have tried to improve the dictionary based compression
techniques by considering mismatches. However, the efficiency of
these techniques depends on the number of bits allowed to
mismatch. It is obvious that if more number of bit changes is
allowed, more matching patterns will be generated. However, a
serious problem might arise since there is a chance that the final
size of the compressed data becomes greater than the original data
size. Bitmask based code compression [17] addresses this issue by
creating more matching patterns with the aid of bitmasks, while
taking care of the size of the compressed code.

 Application of bitmask based compression in test data might
seem to be attractive, but it presents various challenges. The
primary concern is the presence of don’t cares (‘X’) in the test
data set. Since bitmask based compression techniques [17] were
not designed for these data, application of those techniques to test
data does not result in a good compression ratio. We have to
determine not only the effective bitmasks, but also select a
dictionary that would suffice us with the most optimized result.
We demonstrate in Section 5 that selection of bitmasks or
dictionary using existing procedures [11, 17] are not appropriate
in the case of test data compression using bitmasks. This paper
addresses both issues by selecting suitable bitmasks, as well as
proposing a suitable dictionary selection algorithm, which
improves the compression ratio without introducing any
additional decompression penalty. Our experimental results
demonstrate that it produces up to 30% better compression
compared to the existing dictionary based compression approach
[11], which is the best known result on test data compression.

 The rest of the paper is organized as follows. Section 2
describes related works in the area of test data compression.
Section 3 describes our compression technique. Section 4

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GLSVLSI’08, May 4–6, 2008, Orlando, Florida, USA.
Copyright 2008 ACM 978-1-59593-999-9/08/05...$5.00

describes our decompression mechanism. Section 5 presents the
experimental results. Finally, section 6 concludes the paper.

2. RELATED WORKS

Code compression in embedded systems has been an issue of
concern for a long time. Different researchers have come up with
different compression techniques. The first code compression
technique for embedded processors was proposed by Wolfe and
Chanin [1], which compressed codes using Huffman-coding. The
compressed code was stored in the main memory. A line address
table (LAT) was used to map compressed block addresses to the
original code addresses. A similar code compression scheme
CodePack was introduced by IBM for PowerPC [8] architectures.
A code compression using Markov Model was proposed by
Lekatsas and Wolf [7]. Lie et al. [6] proposed a LZW-based code
compression for VLIW processors using variable sized block
method. Dictionary-based compression techniques were explored
by Liao [15] and Lefurgy [5]. Ishiura and Yamaguchi [13]
proposed a technique where a VLIW instruction is split up into
multiple fields and each field is compressed using a dictionary
based approach. Nam et al. [16] presented a dictionary based
method for an isomorphic VLIW instruction word scheme.

 Various techniques have been proposed to improve the
standard dictionary based compression by considering
mismatches. The basic idea is to store the mismatch information
during encoding. Prakash et al [10] considered one bit change for
16-bit vectors. Ros et al [12] considered a generic scheme for 32
bit vectors and stated that up to 3-bit changes are profitable.
Bitmask based code compression was used in embedded systems
by Seong et al. [17]

 Test data compression has also manifested itself as a serious
problem for a long time. Different compression techniques have
been proposed over the years to reduce the test data volume.
Some of them are statistical coding [18], run length coding [4],
Golomb coding [3], FDR coding [2] and VIHC coding [14].
Several commercial tools have also been available in the market
that utilizes test data compression, some of them being OPMISR,
SmartBIST and TestKompress. Dictionary based compression
techniques have been recently used to reduce the test data volume
in SOCs. Li et al. [11] used fixed length dictionary entries to
reduce test data volume. Our algorithm performs bitmask based
compression to obtain significant better compression ratio than
[11], as demonstrated in Section 5.

3. BITMASK BASED TEST DATA

COMPRESSION

We have developed an efficient test data compression algorithm
using bitmasks. Though bitmask based test data compression
might seem to be a promising scheme, there are some major
challenges in this method like selection of appropriate bitmasks,
dictionary and development of the compression technique.
Subsection 3.1 illustrates why bitmask based test compression
performs better than ordinary dictionary based test data
compression [11]. The other subsections describe three important
components of our approach: determination of uncompressed data
sets, bitmask selections and dictionary selection techniques
respectively.

3.1 A Motivational Example
We consider a test data set of 8-bit entries. The total number of
entries is 10. Therefore, the total test set is of 80 bits. Figure 1
shows the data set as well as the compressed data set under the
application of dictionary based compression. In this case, the
dictionary has 2 entries, each of 8-bits length. Each repeating
pattern is replaced with a dictionary index. (In this example, an
index of 0 refers to the first dictionary entry and an index of 1
refers to the second one.) The final compressed test data set is
reduced to 55 bits and the dictionary requires 16 bits. Thus, the
compression ratio obtained is 68.75%.

00XX11X0 � 0 0

11X010XX � 1 11X010XX 0 - compressed

X10X110X � 0 1 1 - uncompressed

X0XXX100 � 1 X0XXX100

00XX1110 � 0 0

00XX11X0 � 0 0 Index Entry

0XXX0X10 � 1 0XXX0X10 0 00XX1110

X101110X � 0 1 1 X101110X

XXX100XX � 1 XXX100XX

X101XX1X � 1 X101XX1X

Original Program Compressed Program Dictionary

Figure1. Dictionary based Test Data Compression

We now attempt to compress the same data set using our bitmask
based code compression. The compressed data as well as the
dictionary entries are shown in Figure 2 We have used a 2-bit
mask, only on quarter-byte boundaries. It is seen that such a mask
is able to create 90% matching patterns. The compression ratio is
found to be 65%, which is better than the dictionary based
compression method as was described earlier.

0 – compressed 0 – resolve mismatch

1 – uncompressed 1 – no action

00XX11X0 � 0 1 0

11X010XX � 1 11X010XX

X10X110X � 0 1 1

X0XXX100 � 0 0 11 10 0

00XX1110 � 0 1 0

00XX11X0 � 0 1 0 Index Entry

0XXX0X10 � 0 0 10 1X 0 0 00XX1110

X101110X � 0 1 1 1 X101110X

XXX100XX � 0 0 10 11 1

X101XX1X � 0 0 11 1X 1

Original Program Compressed Program Dictionary

Figure 2. Bitmask Based Test Data Compression

3.2 Uncompressed Data Set Determination

Once we get the total test data, our next task would be to divide
them into scan chains of pre-determined length. We perform this
step in accordance with the method prescribed by Li et al. [11].
Let us assume that the test data TD consists of n test patterns. If we
choose to have the uncompressed data as a group of m-bit words,
we divide the scan elements into m-scan chains in the best
balanced manner possible. This results in each vector being
divided into m sub-vectors. Dissimilarity in the lengths of the sub-
vectors are resolved by padding don’t cares to the end of the
shorter sub-vectors. Thus, all the sub-vectors are of equal length,
which is denoted by l. The m-bit data which is present at the same
position of each sub-vector constitute an m-bit word. Thus, we
obtain a total of nxl m-bit words, which is our uncompressed data
set that needs to be compressed. Figure 3 shows how two 4-bit
words are obtained from a 8-bit long test pattern.

01 1X X0 11 � 01X1 � Word1

 1X01 � Word2

Figure 3. Determination of two 4-bit words from a 8-bit word

In this example, m = 4 and l = 2. It is to be noted that since the
words were balanced, padding of don’t cares was not necessary
here.

3.3 Mask Selection

Figure 4 shows the generic encoding scheme of bitmask based
compression technique.

Figure 4. Generic Encoding Format

A compressed code stores information regarding the mask type,
mask location and the mask pattern itself. The mask can be
applied on different places on a vector and the number of bits
required for indicating the position varies depending on the mask
type. For instance, if we consider a 32-bit vector, an 8-bit mask
applied on only byte boundaries requires 2-bits, since it can be
applied on four locations. If we do not restrict the placement of
the mask, it will require 5 bits to indicate any starting position on
a 32-bit vector.

 Bitmasks may be sliding or fixed. A fixed bit mask always
operates on half-byte boundaries while a sliding bitmask can
operate anywhere in the data. It is obvious that generally sliding
bitmasks require more bits to represent themselves compared to
fixed bitmasks. In this paper, we use the alphabets `s` and `f` to
represent sliding and fixed bitmasks respectively.

 As shown by Seong et al. [17], the optimum bitmasks to be
selected for code compression are 2s, 2f, 4s and 4f. However, in
the case of test data compression, the last two need not be

considered. This is because as per Lemma 1, the probability that 4
corresponding contiguous bits will differ in a set of test data is
only 0.02%, which can easily be neglected. Thus, we perform our
compression by using only 2s and 2f bimtasks. The number of
masks selected depends on the word length and the dictionary
entries and is found out using Lemma 2.

Lemma 1: The probability that 4 corresponding contiguous bits
differ in two test data is 0.2 %.

Proof: For two corresponding bits to differ in a set of test data,
none of them should be don’t cares. Let us consider the scenario
in which they really differ, and find out the probability of such an
event. We can see that any position in a test data can be occupied
by 3 different symbols, 0, 1 and X. However, as already
mentioned, to differ, the positions should be filled up with 0 or 1.
Hence, the probability that a certain portion is occupied by either
0 or 1 is 2/3 = 0.67. Therefore, the probability that all the four
positions have either 0 or 1 is

P1 = (0.67)4 = 0.20.

For the other vector, the same rule applies. The additional
constraint here is that the bits in the corresponding positions are
fixed due to difference in the two vectors, that is, the bits in the
second vector has to be exact complement of those of the first
vector. Therefore, the probability of occupancy of a single
position is 1/3 = 0.33

Therefore, the probability of 4 mismatches in the second vector =

P2 = (0.33)4 = 0.01

The cumulative probability of the 4-bit mismatch is a product of
the two probabilities P1 and P2 and is given by:

P = P1 X P2 = 0.2 %

Lemma 2: The number of masks used is dependent on the word
length and dictionary entries.

Proof: Let L be the number of dictionary entries and N be the
word length. If y is the number of masks allowed, then in the
worst case (when all the masks are 2s), the number of bits
required is,

no_bits = 2 + log (L) +
log()

log(2)

y
+y X (2 + (

log()

log(2)

N
))

and this should be less than N. The first two bits are required to
check whether the data is compressed or not, and if compressed,
mask is used or not. So, the maximum number of bitmasks
allowed is

y =

log()

2 log() log(2)

log() log()
2 2

log(2) log(2)

y

N L

N N

− −
−

+ +

We can see that it is not easy to compute y from here since both
sides of the equation contain y related terms. To ease our
calculation, we can replace the y-related term on the right hand
side of the equation with a constant. It is to be noted that since
y<N, a safe measure would be to use 1 as this constant.
Therefore, the final equation for y is:

Decision

(1-bit)

Dictionary

Index

 Number of

 Mask Patterns

Mask

Type

Mask

Location

Mask

Pattern

…

y = (
2 log()

log()
2

log(2)

N L

N

− −

+

-1), floored to the nearest integer.

3.4 Dictionary Selection
The dictionary selection algorithm is a critical part in bitmask
based code compression. Our dictionary selection algorithm is a
two-step process. The first step is similar to that used by [11]. Our
dictionary selection algorithm uses the classical clique
partitioning algorithm of graph theory. A graph G is drawn with
nxl nodes, where each node signifies a m-bit test word. We now
check for the compatibility between the words. Two words are
said to be compatible if for a particular position, the
corresponding characters in the two words are either equal or one
of them is a don’t care. If two nodes are mutually compatible, an
edge is drawn between them. Cliques are now selected from this
set. The clique-partitioning algorithm for our purpose is described
as follows:

1. Copy the graph G to a temporary data structure G’.
2. The vertex in G’ which has the maximum number of

edges is selected. Let’s denote it by v.
3. We create a subgraph that contains all the vertices

connected to v.
4. This subgraph is copied to G’ and v is added to a set C.
5. If (G’==NULL), the clique C has been formed, else go

to step 2.
6. G = G-C
7. If (G==0) STOP, else go to Step 1.

At this point, two possibilities may arise. We have a predefined
number as to the count of the dictionary entries. The number of
cliques selected may be greater than that or vice versa. In the latter
case, we just need to fill in the dictionary entries with those
obtained from clique partitioning.

 However, if the number of cliques is larger, we have to select
the best dictionary entries out of them. To accomplish this, we
perform the following steps:

1. For each entry, calculate the number of bits saved over
the entire data set by compression if that entry was
present in the dictionary. The number of bits saved
should account those due to bitmask based compression
as well.

2. For each entry in the dataset, choose the dictionary
entry which gives the maximum compression. If two
entries give the same compression, the one which has
the maximum saved bits over the entire dataset is given
preference. For all the other dictionary entries, the bit
savings are deducted. This step is used to prevent
aliasing.

3. Sort the dictionary entries in descending order of bits
saved.

4. If the dictionary was predefined to have L entries,
choose the best L dictionary entries.

The following example shows our dictionary selection algorithm.
Table 1 shows the different data sets we have taken into
consideration. As seen, there are 16 sets of data, each of 8-bits.

Table 1. Data Sets

Data Set Entry Data Set Entry

1 11X001XX 9 0XX0X10X

2 01X00X1X 10 1X11X01X

3 1101XXX1 11 1XX10001

4 01X01X1X 12 X1X0XX11

5 XX10001X 13 11X000XX

6 X110X0XX 14 01XX0110

7 0101XX1X 15 010X0X01

8 0X00X110 16 1XXX0011

We proceed to find the dictionary by performing the clique
partitioning algorithm. The graph drawn for this purpose is shown
in Fig. 5.

Figure 5. Graph for dictionary selection algorithm

The cliques selected in this case are {5, 6, 13, 16} and {2, 8, 14}.
The dictionary entries obtained are {11100011, 01000110}. The
original data was of 128 bits. The data when compressed using
ordinary dictionary selection algorithm as proposed by Li et al.
[11] was of 95 bits, which corresponds to a compression ratio of
74.21%. However, when it is compressed using bitmask based
compression, using 2-bit fixed bitmask, the compressed data
obtained is of 86 bits, which corresponds to a compression ratio
of 67.19%, thus providing a significant advantage in compression.

4. DECOMPRESSION MECHANISM

We have proposed the design of a decompression engine (DCE)
that can easily handle bitmasks and provide fast decompression.
The design of our engine is based on the one cycle decompression
engine proposed by Seong et al. [17]. The decompression engine
has also been motivated by that of Li et al. [11], the only addition
being the introduction of XOR gate in addition to the
decompression scheme for dictionary based compression. The

 8 2

4 14

 7

9 15

 5 16

 13 6

 12

 1

 10

3

 11

most interesting feature of the decompression engine is the
generation of a test data length mask, which is then XOR-ed with
the dictionary entry. The test data length mask is created by
applying the bitmask on the specified position in the encoding.
The generation of our mask is done in parallel with accessing the
dictionary, thus reducing additional penalty. The DCE can decode
more than one instruction in one cycle.

5. EXPERIMENTS

To find out the efficacy of our algorithm, we have applied it on
the ISCAS-89 circuits which were obtained from the MINTEST
ATPG program [9]. We have compared our results with those
obtained by employing the algorithms of Li et al. [11] and Seong
et al. [17], which are the best known related works on test data
compression and code compression in embedded systems
respectively. Figure 6 shows the bar chart obtained for
comparison between the 3 techniques. Here, we have considered
only 128 bits words. We have compared for the 5 largest circuits.
All the dictionaries have been selected to have 128 entries each.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

s38584 s13207 s38417 s15850 s9234

C
o
m

p
re

ss
io

n
 R

at
io

Circuits

Bitmask based Dictionary based Proposed Method

Figure 6. Compression Ratio for different circuits

The first bar represents the compression if bitmask based code
technique [17] is directly applied for compressing the test data.
The second bar represents the compression using dictionaries of
fixed-length indices [11]. The third bar, which represents our
proposed method, shows that it gives the best compression ratio.
The key point to be noted here is the difference between the
applications of ours and the algorithm of Seong et al. [17].
Although both rely on bitmasks, yet, due to differences in the
dictionary selection algorithm, our approach outperforms the
conventional bitmask based approach [17] by 30 – 60%. It is also
evident that our proposed algorithm significantly outperforms (up
to 30%) the existing dictionary based compression algorithm [11].
This can be attributed to the introduction of bitmasks in our
technique. Bitmasks allow bit changes (which was absent in the
dictionary based compression) and thus matches a more number
of words. Clearly, more number of words can be compared as
compared to the dictionary based approach.

 We would now like to compare the compression ratios
obtained by Li et al. [11] with ours for all the 7 ATPG circuits

that they have considered. Table 2 shows the exact comparison for
64 and 128 bit words.

Table 2. Comparison of compression ratio for different circuits

64-bit word 128-bit word

Circuit
Dictionary

Based

Our

Method

Dictionary

Based

Our

Method

s5378 26.71 % 20.52 % 37.02 % 11.69 %

s9234 32.54 % 24.68 % 29.28 % 13.22 %

s13207 14.57 % 15.27 % 8.47 % 8.12 %

s15850 24.12 % 21.44 % 18.02 % 11.35 %

s35932 26.24 % 21.32 % 11.07 % 7.80 %

s38417 57.27 % 37.09 % 63.25 % 28.50 %

s38584 29.23 % 25.92 % 29.23 % 23.57 %

The results show that in almost all cases, bitmask based
compression gives a better compression ratio than dictionary
based compression, the best known result in test data
compression.

 The previous experiments have demonstrated that our
method outperforms the existing approaches for test data
compression in the presence of don’t cares in test data. We have
also applied our algorithm in test data sequences which do not
have don’t cares. These circuits are some of the MINTEST ATPG
circuits. We have compared our results with those obtained when
compressed using the ordinary bitmask based compression
method [17].

Table 3. Compression ratio for different circuits.

Best Compression Ratio

Circuit

Number of

Dictionary

Entries
Ordinary

bitmask

based

method

Proposed

Algorithm

c1355 16 65.73% 55.89%

c499 16 40.85% 38.32%

c6288 16 66.36% 60.63%

Table 3 presents the results of test data compression (without
don’t cares). Our algorithm provides much better compression
ratio than the bitmask based compression [17]. This shows the

efficacy of our algorithm as compared to that proposed by [17],
even when dealing with data having only binary values.

6. CONCLUSION

Test data compression is a very critical problem. Different
researchers have proposed different compression algorithms over
the years to compress test data. In this paper, we proposed a
compression algorithm which utilizes the bitmask based
compression technique to compress test data. The contribution of
the paper is two-fold. It describes a suitable bitmask selection
technique for test data, and proposes a dictionary selection
algorithm which is appropriate for test data compression. This
algorithm ensures that no additional decompression penalty is
introduced. We applied this algorithm on test data containing
don’t cares, as well as those not containing them. In both cases,
our technique achieved significant improvements compared to
existing approaches – up to 30% better than the best known
compression algorithms used in this domain, giving a best known
compression of 92.2%. Matching sequences of upto 99% have
been achieved using our algorithm. In the future, we plan to study
the impact of bitmask-based compression on overall cost, power
and performance.

7. REFERENCES

[1] A.Wolfe and A.Chanin. Executing compressed programs on
an embedded RISC architecture. In Proceedings of
International Symposium on Microarchitecture (MICRO),
pages 81-91, 1992.

[2] A. Chandra and K. Chakrabarty. Frequency-directed run-
length (FDR) codes with application to system-on-chip test
data compression. In Proceedings of the VLSI test
Symposium, pages 42-47, 2001.

[3] A. Chandra and K. Chakrabarty, System on a chip test data
compression and decompression architectures based on
golomb codes. IEEE Transactions on Computer Aided
Design, 20: 355-368, 2001.

[4] A. Jas and N.A. Touba. Test vector decompression using
cyclical scan chains and its application to testing core based
design. In Proceedings of International Test Conference,
pages 458-464, 1998.

[5] C. Lefurgy, P. Bird, I. Chen and T. Mudge. Improving code
density using compression techniques. In Proceedings of
International Symposium on Microarchitectures (MICRO),
pages 194-203, 1997.

[6] C. Lin, Y. Xie and W. Wolf. LZW- based code compression
for VLIW embedded systems. In Proceedings of Design
Automation and Test in Europe (DATE), pages 76-81, 2004.

[7] H. Lekatsas and W. Wolf. SAMC: A code compression
algorithm for embedded processors. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
18(12): 1689-1701, December 1999.

[8] http://www.ibm.com. CodePack PowerPC Code
Compression Utility User’s Manual. Version 3.0, 1998.

[9] I. Hamzaoglu and J. H. Patel. Test set compaction algorithm
for combinational circuits. In Proceedings of the
International conference on CAD, pages 283-289, 1998.

[10] J. Prakash, C. Sandeep, P. Shankar and Y. Srikant. A simple
and fast scheme for code compression for VLIW processors.
In Proceedings of Data Compression Conference (DCC),
page 444, 2003.

[11] L. Li, K. Chakrabarty and N. Touba. Test data compression
using dictionaries with selective entries and fixed-length
indices. ACM Transactions on Design Autmation of
Electronic Systems (TODAES), 8(4): 470-490, October
2003.

[12] M Ros and P. Sutton. A hamming distance based
VLIW/EPIC code compression technique. In Proceedings of
Compilers, Architectures, Synthesis for Embedded Systems
(CASES), pages 132-139, 2004.

[13] N. Ishiura and M. Yamaguchi. Instruction code compression
for application specific VLIW processors based on automatic
field partitioning. In Proceedings of Synthesis and System
Integration of Mixed Technologies (SASIMI), pages 105-
109, 1997.

[14] P.T. Gonciari , B. Al-Hashimi and N. Nicolai. Improving
compression ratio, area overhead, and test application time
for system-on-chip test data compression/decompression. In
Proceedings of Design, Automation and Test in Europe
(DATE), pages 604-611, 2002.

[15] S. Liao, S. Devadas and K. Keutzer. Code density
optimization for embedded DSP processors using data
compression techniques. In Proceedings of Advanced
Research in VLSI, pages 393-399, 1995.

[16] S. Nam, I. Park and C. Kyung. Improving dictionary-based
compression in VLIW architectures. IEICE Transactions
Fundamentals, E82-A(11):2318-2324, November 1999.

[17] Seok-Won Seong and Prabhat Mishra. An Efficient code
compression technique using application aware bitmask and
dictionary selection methods. In Proccedings of Design,
Automation and Test in Europe (DATE) , 2007.

[18] V. Iyengar, K. Chakrabarty and T. B. Murray. Deterministic
built in pattern generation for sequential circuits. Journal of
Elcect. Test: Theory and Applications, 15: 97-115, 1999.

