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ABSTRACT 

Higher circuit densities in System-on-Chip (SOC) designs have 
led  to  enhancement in the test data volume. Larger test data size 
demands not only greater memory requirements, but also an 
increase in the testing time. Test data compression addresses this 
problem by reducing the test data volume without affecting the 
overall system performance. This paper proposes a novel test data 
compression technique using bitmasks which provides a 
significant enhancement in the compression efficiency without 
introducing any additional decompression penalty. The major 
contributions of this paper are as follows: i) it develops an 
efficient bitmask selection technique for test data in order to 
create maximum matching patterns; ii) it develops an efficient 
dictionary selection method which takes into account the 
speculated results of compressed codes and iii) it proposes a 
suitable code compression technique using dictionary and bitmask 
based code compression that can reduce the memory and time 
requirements. We have used our algorithm on various test data 
sets and compared our results with other existing test compression 
techniques. Our algorithm outperforms the best known existing 
compression technique up to 30%, giving a best possible 
compression of 92.2%. 
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1. INTRODUCTION 

In case of system-on-chip, higher circuit densities have led to 
larger volume of test data generation, which demands large 
memory requirement in addition to an increased testing time. Test 
data compression plays a crucial role, reducing the memory and 
time requirements. It also overcomes the Automatic Test 
Equipment (ATE) bandwidth limitation.  

 The test compression mechanism should allow small number 
of ATE channels to transfer the compressed data from tester to the 
chip and be able to drive a large number of internal scan chains. 
Thus, it would be suitable for reduced pin count and low cost 

Design for Testability (DFT) environment. Our algorithm is able 
to achieve all the above advantages without introducing any 
additional decompression penalty. Compression ratio, widely 
accepted as a primary metric for measuring the efficiency of code 
compression, is defined as, Compression ratio = (compressed 
program size) / (original program size). Clearly, smaller 
compression ratio indicates better compression. 

 Dictionary based compression techniques are extremely 
popular in embedded systems domain since they provide a dual 
advantage of good compression ratio as well as a fast 
decompression mechanism. The basic idea is to take advantage of 
a number of commonly occurring sequences. Test data 
compression using dictionaries of fixed length entries was 
proposed by [11]. Many recently proposed techniques [10, 12] 
have tried to improve the dictionary based compression 
techniques by considering mismatches. However, the efficiency of 
these techniques depends on the number of bits allowed to 
mismatch. It is obvious that if more number of bit changes is 
allowed, more matching patterns will be generated. However, a 
serious problem might arise since there is a chance that the final 
size of the compressed data becomes greater than the original data 
size. Bitmask based code compression [17] addresses this issue by 
creating more matching patterns with the aid of bitmasks, while 
taking care of the size of the compressed code. 

 Application of bitmask based compression in test data might 
seem to be attractive, but it presents various challenges. The 
primary concern is the presence of don’t cares (‘X’) in the test 
data set. Since bitmask based compression techniques [17] were 
not designed for these data, application of those techniques to test 
data does not result in a good compression ratio. We have to 
determine not only the effective bitmasks, but also select a 
dictionary that would suffice us with the most optimized result. 
We demonstrate in Section 5 that selection of bitmasks or 
dictionary using existing procedures [11, 17] are not appropriate 
in  the case of test data compression using bitmasks. This paper 
addresses both issues by selecting suitable bitmasks, as well as 
proposing a suitable dictionary selection algorithm, which 
improves the compression ratio without introducing any 
additional decompression penalty. Our experimental results 
demonstrate that it produces up to 30% better compression 
compared to the existing dictionary based compression approach 
[11], which is the best known result on test data compression. 

  The rest of the paper is organized as follows. Section 2 
describes related works in the area of test data compression. 
Section 3 describes our compression technique. Section 4 
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describes our decompression mechanism. Section 5 presents the 
experimental results. Finally, section 6 concludes the paper. 

2. RELATED WORKS  

Code compression in embedded systems has been an issue of 
concern for a long time. Different researchers have come up with 
different compression techniques. The first code compression 
technique for embedded processors was proposed by Wolfe and 
Chanin [1], which compressed codes using Huffman-coding.  The 
compressed code was stored in the main memory. A line address 
table (LAT) was used to map compressed block addresses to the 
original code addresses. A similar code compression scheme 
CodePack was introduced by IBM for PowerPC [8] architectures. 
A code compression using Markov Model was proposed by 
Lekatsas and Wolf [7]. Lie et al. [6] proposed a LZW-based code 
compression for VLIW processors using variable sized block 
method. Dictionary-based compression techniques were explored 
by Liao [15] and Lefurgy [5]. Ishiura and Yamaguchi [13] 
proposed a technique where a VLIW instruction is split up into 
multiple fields and each field is compressed using a dictionary 
based approach. Nam et al. [16] presented a dictionary based 
method for an isomorphic VLIW instruction word scheme. 

 Various techniques have been proposed to improve the 
standard dictionary based compression by considering 
mismatches. The basic idea is to store the mismatch information 
during encoding. Prakash et al [10] considered one bit change for 
16-bit vectors. Ros et al [12] considered a generic scheme for 32 
bit vectors and stated that up to 3-bit changes are profitable. 
Bitmask based code compression was used in embedded systems 
by Seong et al. [17] 

 Test data compression has also manifested itself as a serious 
problem for a long time. Different compression techniques have 
been proposed over the years to reduce the test data volume. 
Some of them are statistical coding [18], run length coding [4], 
Golomb coding [3], FDR coding [2] and VIHC coding [14]. 
Several commercial tools have also been available in the market 
that utilizes test data compression, some of them being OPMISR, 
SmartBIST and TestKompress. Dictionary based compression 
techniques have been recently used to reduce  the test data volume 
in SOCs. Li et al. [11] used fixed length dictionary entries to 
reduce test data volume. Our algorithm performs bitmask based 
compression to obtain significant better compression ratio than 
[11], as demonstrated in Section 5. 

3. BITMASK BASED TEST DATA 

COMPRESSION  

We have developed an efficient test data compression algorithm 
using bitmasks. Though bitmask based test data compression 
might seem to be a promising scheme, there are some major 
challenges in this method like selection of appropriate bitmasks, 
dictionary and development of the compression technique. 
Subsection 3.1 illustrates why bitmask based test compression 
performs better than ordinary dictionary based  test data 
compression [11]. The other subsections describe three important 
components of our approach: determination of uncompressed data 
sets, bitmask selections and dictionary selection techniques 
respectively. 

3.1 A Motivational Example  
We consider a test data set of 8-bit entries. The total number of 
entries is 10. Therefore, the total test set is of 80 bits. Figure 1 
shows the data set as well as the compressed data set under the 
application of dictionary based compression. In this case, the 
dictionary has 2 entries, each of 8-bits length. Each repeating 
pattern is replaced with a dictionary index. (In this example, an 
index of 0 refers to the first dictionary entry and an index of 1 
refers to the second one.) The final compressed test data set is 
reduced to 55 bits and the dictionary requires 16 bits. Thus, the 
compression ratio obtained is 68.75%. 

 

 

00XX11X0   �     0  0      

11X010XX   �     1  11X010XX           0 - compressed 

X10X110X   �     0  1                    1 - uncompressed 

X0XXX100  �     1  X0XXX100 

00XX1110    �     0  0 

00XX11X0   �     0  0                             Index             Entry  

0XXX0X10  �     1  0XXX0X10               0   00XX1110 

X101110X    �     0  1                        1   X101110X 

XXX100XX �     1  XXX100XX                       

X101XX1X  �     1  X101XX1X 

Original Program Compressed Program               Dictionary 

Figure1. Dictionary based Test Data Compression  

 

We now attempt to compress the same data set using our bitmask 
based code compression. The compressed data as well as the 
dictionary entries are shown in Figure 2 We have used a 2-bit 
mask, only on quarter-byte boundaries. It is seen that such a mask 
is able to create 90% matching patterns. The compression ratio is 
found to be 65%, which is better than the dictionary based 
compression method as was described earlier. 

 

0 – compressed                                            0 – resolve mismatch                

1 – uncompressed                                        1 – no action  

 

00XX11X0     �     0  1               0 

11X010XX     �     1  11X010XX 

X10X110X     �     0  1               1 

X0XXX100    �     0  0  11   10  0                      

00XX1110      �     0  1               0                   

00XX11X0     �        0  1               0          Index           Entry           

0XXX0X10    �     0  0  10  1X  0                 0     00XX1110 

X101110X      �     0  1               1                     1     X101110X   

XXX100XX   �        0  0  10   11  1      

X101XX1X    �        0  0  11   1X 1 

Original Program   Compressed Program          Dictionary 

Figure 2. Bitmask Based Test Data Compression 



3.2 Uncompressed Data Set Determination 

Once we get the total test data, our next task would be to divide 
them into scan chains of pre-determined length. We perform this 
step in accordance with the method prescribed by Li et al. [11]. 
Let us assume that the test data TD consists of n test patterns. If we 
choose to have the uncompressed data as a group of m-bit words, 
we divide the scan elements into m-scan chains in the best 
balanced manner possible. This results in each vector being 
divided into m sub-vectors. Dissimilarity in the lengths of the sub-
vectors are resolved by padding don’t cares to the end of the 
shorter sub-vectors. Thus, all the sub-vectors are of equal length, 
which is denoted by l. The m-bit data which is present at the same 
position of each sub-vector constitute an m-bit word. Thus, we 
obtain a total of nxl m-bit words, which is our uncompressed data 
set that needs to be compressed. Figure 3 shows how two 4-bit 
words are obtained from a 8-bit long test pattern.  

 

01 1X X0 11  �        01X1 �  Word1 

                                   1X01 � Word2 

 

Figure 3. Determination of two 4-bit words from a 8-bit word 

 

In this example, m = 4 and l = 2. It is to be noted that since the 
words were balanced, padding of don’t cares was not necessary 
here. 

3.3 Mask Selection  

Figure 4 shows the generic encoding scheme of bitmask based 
compression technique.  

 

 

Figure 4. Generic Encoding Format 

 

A compressed code stores information regarding the mask type, 
mask location and the mask pattern itself. The mask can be 
applied on different places on a vector and the number of bits 
required for indicating the position varies depending on the mask 
type. For instance, if we consider a 32-bit vector, an 8-bit mask 
applied on only byte boundaries requires 2-bits, since it can be 
applied on four locations. If we do not restrict the placement of 
the mask, it will require 5 bits to indicate any starting position on 
a 32-bit vector. 

  Bitmasks may be sliding or fixed. A fixed bit mask always 
operates on half-byte boundaries while a sliding bitmask can 
operate anywhere in the data. It is obvious that generally sliding 
bitmasks require more bits to represent themselves compared to 
fixed bitmasks. In this paper, we use the alphabets `s` and `f` to 
represent sliding and fixed bitmasks respectively.  

 As shown by Seong et al. [17], the optimum bitmasks to be 
selected for code compression are 2s, 2f, 4s and 4f. However, in 
the case of test data compression, the last  two need not be 

considered. This is because as per Lemma 1, the probability that 4 
corresponding contiguous bits will differ in a set of test data is 
only 0.02%, which can easily be neglected. Thus, we perform our 
compression by using only 2s and 2f bimtasks. The number of 
masks selected depends on the word length and the dictionary 
entries and is found out using Lemma 2. 

 

Lemma 1: The probability that 4 corresponding contiguous bits 
differ in two test data is 0.2 %. 

Proof: For two corresponding bits to differ in a set of test data, 
none of them should be don’t cares. Let us consider the scenario 
in which they really differ, and find out the probability of such an 
event. We can see that any position in a test data can be occupied 
by 3 different symbols, 0, 1 and X. However, as already 
mentioned, to differ, the positions should be filled up with 0 or 1. 
Hence, the probability that a certain portion is occupied by either 
0 or 1 is 2/3 = 0.67. Therefore, the probability that all the four 
positions have either 0 or 1 is 

P1 = (0.67)4 = 0.20.  

For the other vector, the same rule applies. The additional 
constraint here is that the bits in the corresponding positions are 
fixed due to difference in the two vectors, that is, the bits in the 
second vector has to be exact complement of those of the first 
vector. Therefore, the probability of occupancy of a single 
position is 1/3 = 0.33 

Therefore, the probability of 4 mismatches in the second vector =  

P2 = (0.33)4 = 0.01 

The cumulative probability of the 4-bit mismatch is  a product of 
the two probabilities P1 and P2 and is given by: 

P = P1 X  P2 = 0.2 % 

 

Lemma 2: The number of masks used is dependent on the word 
length and dictionary entries. 

Proof: Let L be the number of dictionary entries and N be the 
word length. If y is the number of masks allowed, then in the 
worst case (when all the masks are 2s), the number of bits 
required is,  

no_bits = 2 + log (L) + 
log( )

log(2)

y
+y X (2 + (

log( )

log(2)

N
)) 

and this should be less than N. The first two bits are required to 
check whether the data is compressed or not, and if compressed, 
mask is used or not.  So, the maximum number of bitmasks 
allowed is  

y = 

log( )

2 log( ) log(2)

log( ) log( )
2 2

log(2) log(2)

y

N L

N N

− −
−

+ +

 

We can see that it is not easy to compute y from here since both 
sides of the equation contain y related terms. To ease our 
calculation, we can replace the y-related term on the right hand 
side of the equation with a constant. It is to be noted that since 
y<N,  a safe measure would be to use 1 as this constant. 
Therefore, the final equation for  y is: 

Decision 

(1-bit) 

Dictionary 

Index 

  Number of 

 Mask Patterns 

Mask 

Type 

Mask 

Location 

Mask 

Pattern 

… 



y = (
2 log( )

log( )
2

log(2)

N L

N

− −

+

-1), floored to the nearest integer. 

3.4 Dictionary Selection  
The dictionary selection algorithm is a critical part in bitmask 
based code compression. Our dictionary selection algorithm is a 
two-step process. The first step is similar to that used by [11]. Our 
dictionary selection algorithm uses the classical clique 
partitioning algorithm of graph theory. A graph G is drawn with 
nxl nodes, where each node signifies a m-bit test word. We now 
check for the compatibility between the words. Two words are 
said to be compatible if for a particular position, the 
corresponding characters in the two words are either equal or one 
of them is a don’t care. If two nodes are mutually compatible, an 
edge is drawn between them. Cliques are now selected from this 
set. The clique-partitioning algorithm for our purpose is described 
as follows: 

1. Copy the graph G to a temporary data structure G’. 
2. The vertex in G’ which has the maximum number of 

edges is selected. Let’s denote it by v. 
3. We create a subgraph that contains all the vertices 

connected to v. 
4. This subgraph is copied to G’ and v is added to a set C. 
5. If (G’==NULL), the clique C has been formed, else go 

to step 2. 
6. G = G-C 
7. If (G==0) STOP, else go to Step 1. 
 

At this point, two possibilities may arise. We have a predefined 
number as to the count of the dictionary entries. The number of 
cliques selected may be greater than that or vice versa. In the latter 
case, we just need to fill in the dictionary entries with those 
obtained from clique partitioning.  

 However, if the number of cliques is larger, we have to select 
the best dictionary entries out of them. To accomplish this, we 
perform the following steps: 

1. For each entry, calculate the number of bits saved over 
the entire data set by compression if that entry was 
present in the dictionary. The number of bits saved 
should account those due to bitmask based compression 
as well. 

2. For each entry in the dataset, choose the dictionary 
entry which gives the maximum compression. If two 
entries give the same compression, the one which has 
the maximum saved bits over the entire dataset is given 
preference. For all the other dictionary entries, the bit 
savings are deducted. This step is used to prevent 
aliasing. 

3. Sort the dictionary entries in descending order of bits 
saved. 

4. If the dictionary was predefined to have L entries, 
choose the best L dictionary entries. 

 
The following example shows our dictionary selection algorithm. 
Table 1 shows the different data sets we have taken into 
consideration. As seen, there are 16 sets of data, each of 8-bits.  

Table 1. Data Sets 

 

Data Set Entry Data Set Entry 

1 11X001XX 9 0XX0X10X 

2 01X00X1X 10 1X11X01X 

3 1101XXX1 11 1XX10001 

4 01X01X1X 12  X1X0XX11 

5 XX10001X 13 11X000XX 

6  X110X0XX 14 01XX0110 

7 0101XX1X 15 010X0X01 

8 0X00X110 16 1XXX0011 

 

We proceed to find the dictionary by performing the clique 
partitioning algorithm. The graph drawn for this purpose is shown 
in Fig. 5.  

 

Figure 5. Graph for dictionary selection algorithm 

 

The cliques selected in this case are {5, 6, 13, 16} and {2, 8, 14}. 
The dictionary entries obtained are {11100011, 01000110}. The 
original data was of 128 bits. The data when compressed using 
ordinary dictionary selection algorithm as proposed by Li et al. 
[11] was of 95 bits, which corresponds to a compression ratio of 
74.21%. However, when it is compressed using bitmask based 
compression, using 2-bit fixed bitmask, the compressed data 
obtained is of 86 bits, which corresponds to a compression ratio 
of 67.19%, thus providing a significant advantage in compression. 

4. DECOMPRESSION MECHANISM  

We have proposed the design of a decompression engine (DCE) 
that can easily handle bitmasks and provide fast decompression. 
The design of our engine is based on the one cycle decompression 
engine proposed by Seong et al. [17]. The decompression engine 
has also been motivated by that of Li et al. [11], the only addition 
being the introduction of XOR gate in addition to the 
decompression scheme for dictionary based compression. The 

  8 2 

4        14 

  7 

9 15 

   5     16 

      13   6 

          12 

 1 

        10 

3 

      11 



most interesting feature of the decompression engine is the 
generation of a test data length mask, which is then XOR-ed with 
the dictionary entry. The test data length mask is created by 
applying the bitmask on the specified position in the encoding. 
The generation of our mask is done in parallel with accessing the 
dictionary, thus reducing additional penalty. The DCE can decode 
more than one instruction in one cycle.  

5. EXPERIMENTS 

To find out the efficacy of our algorithm, we have applied it on 
the ISCAS-89 circuits which were obtained from the MINTEST 
ATPG program [9]. We have compared our results with those 
obtained by employing the algorithms of Li et al. [11] and Seong 
et al. [17], which are the best known related works on test data 
compression and code compression in embedded systems 
respectively. Figure 6 shows the bar chart obtained for 
comparison between the 3 techniques. Here, we have considered 
only 128 bits words. We have compared for the 5 largest circuits. 
All the dictionaries have been selected to have 128 entries each. 
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Figure 6. Compression Ratio for different circuits 

 

The first bar represents the compression if bitmask based code 
technique [17] is directly applied for compressing the test data. 
The second bar represents the compression using dictionaries of 
fixed-length indices [11]. The third bar, which represents our 
proposed method, shows that it gives the best compression ratio. 
The key point to be noted here is the difference between the 
applications of ours and the algorithm of Seong et al. [17]. 
Although both rely on bitmasks, yet, due to differences in the 
dictionary selection algorithm, our approach outperforms the 
conventional bitmask based approach [17] by 30 – 60%. It is also 
evident that our proposed algorithm significantly outperforms (up 
to 30%) the existing dictionary based compression algorithm [11]. 
This can be attributed to the introduction of bitmasks in our 
technique. Bitmasks allow bit changes (which was absent in the 
dictionary based compression) and thus matches a more number 
of words. Clearly, more number of words can be compared as 
compared to the dictionary based approach. 

 We would now like to compare the compression ratios 
obtained by Li et al. [11] with ours for all the 7 ATPG circuits 

that they have considered. Table 2 shows the exact comparison for 
64 and 128 bit words. 

 

Table 2. Comparison of compression ratio for different circuits 

 

64-bit word 128-bit word  

Circuit 
Dictionary 

Based 

Our 

Method 

Dictionary 

Based 

Our 

Method 

s5378 26.71 % 20.52 % 37.02 % 11.69 % 

s9234 32.54 % 24.68 % 29.28 % 13.22 % 

s13207 14.57 % 15.27 % 8.47 % 8.12 % 

s15850 24.12 % 21.44 % 18.02 % 11.35 % 

s35932 26.24 % 21.32 % 11.07 % 7.80 % 

s38417 57.27 % 37.09 % 63.25 % 28.50 % 

s38584 29.23 % 25.92 % 29.23 % 23.57 % 

 

The results show that in almost all cases, bitmask based 
compression gives a better compression ratio than dictionary 
based compression, the best known result in test data 
compression. 

 The previous experiments have demonstrated that our 
method outperforms the existing approaches for test data 
compression in the presence of don’t cares in test data. We have 
also  applied our algorithm in test data sequences which do not 
have don’t cares. These circuits are some of the MINTEST ATPG 
circuits. We have compared our results with those obtained when 
compressed using the ordinary bitmask based compression 
method [17].   

 

Table 3. Compression ratio for different circuits. 

 

Best Compression Ratio  

 

Circuit 

 

Number of 

Dictionary 

Entries 
Ordinary 

bitmask 

based 

method 

Proposed 

Algorithm 

c1355 16 65.73% 55.89% 

c499 16 40.85% 38.32% 

c6288 16 66.36% 60.63% 

 

Table 3 presents the results of test data compression (without 
don’t cares). Our algorithm provides much better compression 
ratio than the bitmask based compression [17]. This shows the 



efficacy of our algorithm as compared to that proposed by [17], 
even when dealing with data having only binary values.  

6. CONCLUSION 

Test data compression is a very critical problem. Different 
researchers have proposed different compression algorithms over 
the years to compress test data. In this paper, we proposed a 
compression algorithm which utilizes the bitmask based 
compression technique to compress test data. The contribution of 
the paper is two-fold. It describes a suitable bitmask selection 
technique for test data, and proposes a dictionary selection 
algorithm which is appropriate for test data compression. This 
algorithm ensures that no additional decompression penalty is 
introduced. We applied this algorithm on test data containing 
don’t cares, as well as those not containing them. In both cases, 
our technique achieved significant improvements compared to 
existing approaches – up to 30% better than the best known 
compression algorithms used in this domain, giving a best known 
compression of 92.2%. Matching sequences of upto 99% have 
been achieved using our algorithm. In the future, we plan to study 
the impact of bitmask-based compression on overall cost, power 
and performance.   
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