
Test Generation using SATbased Bounded Model
Checking for Validation of Pipelined Processors

HeonMo Koo, Prabhat Mishra
Department of Computer and Information Science and Engineering

University of Florida, Gainesville, FL 32611, USA

hkoo@cise.ufl.edu, prabhat@cise.ufl.edu

ABSTRACT

Functional verification is one of the major bottlenecks in
microprocessor design. Simulation-based techniques are the
most widely used form of processor verification. Efficient
test generation is crucial for the simulation-based verifica-
tion. We present an efficient test generation methodology
using SAT-based bounded model checking (BMC). This pa-
per addresses two important challenges in test generation us-
ing SAT-based BMC: determination of bound for each prop-
erty, and application of design and property decompositions
to improve test generation time as well as memory require-
ment. Our experimental results using a MIPS processor
demonstrate the feasibility and usefulness of our approach.

Categories and Subject Descriptors: B.6.3 [Logic De-
sign]: Design Aids - verification

General Terms: Verification

Keywords: Test Generation, Functional Validation

1. INTRODUCTION
Functional verification is a major bottleneck in proces-

sor design due to the combined effects of increasing de-
sign complexity and decreasing time-to-market. Simulation-
based validation is the most widely used form of processor
verification using test programs that consist of instruction
sequences. There are three types of test generation tech-
niques: random, directed, and directed-random. The di-
rected tests can reduce overall validation effort since shorter
tests can obtain the same coverage goal compared to the
random tests. However, directed test generation is mostly
performed by human intervention. Hand-written tests entail
laborious and time consuming effort of verification engineers
who have deep knowledge of the design under verification.
Due to the manual development, it is infeasible to generate
all directed tests to achieve comprehensive coverage goal.
Automatic test generation is the alternative to address this
problem.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’06, April 30–May 1, 2006, Philadelphia, PA, USA.
Copyright 2006 ACM 1595933476/06/0004 ...$5.00.

Test generation using model checking is one of the most
promising approaches due to its capability of automatic test
generation. In this test generation scenario, processor model
is described in a temporal specification language and a de-
sired behavior is expressed in the form of temporal logic
property. A model checker exhaustively searches all reach-
able states of the model to check if the property holds (ver-
ification) or not (falsification), which is called unbounded
model checking (UMC). If the model checker finds any reach-
able state that does not satisfy the property, it produces a
counterexample. The counterexample contains a sequence of
instructions (test program) from an initial state to a state
where the negated version of the property fails. However,
this approach is unsuitable for large designs due to the state
explosion problem in UMC.

SAT-based bounded model checking (BMC) restricts search
space that is reachable from initial states within a fixed
number (k) of transitions, called bound. After unwinding
the model of design k times, the BMC problem is converted
into a propositional satisfiability (SAT) problem. SAT solver
is used to find a satisfiable assignment of variables that is
converted into a counterexample. If the bound is known in
advance, SAT-based BMC is typically more effective for fal-
sification than UMC because search for counterexample is
faster and SAT capacity reaches beyond BDD capacity [3].
However, finding bound is a challenging problem since the
depth of counterexamples is unknown in general.

Choosing an incorrect bound increases test generation time
and memory requirement. In the worst case, test gener-
ation may not be possible. For example, we can increase
the bound iteratively starting from a small bound until a
counterexample is found. This approach is advantageous
for shallow counterexamples, but disadvantageous for deep
counterexamples due to accumulation of iterative running
time. Alternatively, a large bound can be used such that all
counterexamples are found. This approach loses the ben-
efits of BMC due to search in a large number of irrelevant
states. Therefore, the performance of test generation closely
depends on the schemes of deciding the bound. We propose
a method for determining the bound for each property in-
stead of using a maximum bound for all properties.

Figure 1 shows our test generation methodology. Proces-
sor model is generated from the architecture specification.
We use pipeline interaction fault model to define functional
coverage [12]. Temporal logic properties are created from
pipeline interaction faults based on the specification. We
have developed a procedure for determining a bound for
each property. Processor model, negated property, and the

Processor Architecture
(Specification)

Processor

Model
Properties

SAT-based

BMC

Decide

bound

Negate

property

Test programs

Fault

Model

Decompose

(if necessary)

Decompose

(if necessary)

Figure 1: Test Program Generation Methodology

bound are applied to SAT-based BMC to generate a test
program. Based on the coverage criteria, more properties
can be added. We use design and property decompositions
to further improve the performance of test generation.

The rest of the paper is organized as follows. Section 2
presents related work addressing test generation approaches.
Section 3 describes a functional fault model for pipeline in-
teractions. Section 4 presents our test generation method-
ology followed by a case study in Section 5. Finally, Section
6 concludes the paper.

2. RELATED WORK
A variety of techniques for generating test programs have

been developed for architectural and micro-architectural val-
idation of pipelined processors. In [11], processor model is
described as a finite state machine (FSM) and reachable
states and state transitions are used to generate test pro-
grams based on FSM coverage. To handle the large size of
FSMs for modern processors, Shen and Abraham [15] have
proposed an RTL abstraction technique that creates an ab-
stract FSM model while preserving clock accurate behaviors.
Ur and Yadin [16] have also used abstraction of processor
model to generate test programs for micro architectural val-
idation of a superscalar PowerPC processor. Adir et al. [1]
have separated model of design from a test generation engine
to avoid state explosion in formal methods and to facilitate
test generation for modern processors.

Model checking [5] has been successfully used in soft-
ware and hardware verification as the test generation en-
gine [7, 12]. Model of design is applied to a model checker
along with negated temporal logic properties to exploit fal-
sification capability of model checking. However, traditional
model checking does not scale well due to the state explo-
sion problem. Biere et al. [4] introduced bounded model
checking (BMC) combined with satisfiability solving. The
recent developments in SAT-based BMC techniques have
been presented in [14]. BMC is an incomplete method that
cannot guarantee a true or false determination when a coun-
terexample does not exist within a given bound. However,
once the bound of a counterexample is known, large de-
signs can be falsified very fast since SAT solvers [8, 13] do

Fetch

Decode

PC

DIVFADD1IALU MUL1

FADD3

FADD2MUL2

FADD4MEM

WriteBack

Reg File

Instruction

Cache

MUL7

Data

Cache

Main

Memory

Fetch

Decode

PC

DIVFADD1IALU MUL1

FADD3

FADD2MUL2

FADD4MEM

WriteBack

Reg File

Instruction

Cache

MUL7

Data

Cache

Main

Memory

Figure 2: Graph Model of the MIPS processor

not require exponential space, and searching counterexam-
ple in an arbitrary order consumes much less memory than
breadth first search in model checking. The performance of
bounded and unbounded algorithms was analyzed on a set of
industrial benchmarks in [2]. The capacity increase of BMC
techniques has become attractive for industrial use. Intel
study [6] showed that BMC has better capacity and pro-
ductivity over unbounded model checking for real designs
taken from the Pentium-4 processor. Recently, Gurumurthy
et al. [9] have adopted BMC for mapping pre-computed
module-level test sequences to processor instructions using
structural fault model.

3. FUNCTIONAL FAULT MODEL
Today’s test generation techniques and verification meth-

ods are very efficient to find bugs in a single module. Hard-
to-find bugs arise often from the interactions among multiple
components of a complex design. We primarily focus on the
interactions among functional units in a pipelined proces-
sor. First, we briefly describe a graph-based modeling of
pipelined processors. Next, we define a pipeline interaction
fault model using the graph model.

The structure of a pipelined architecture is modeled as a
graph G = (V, E). V denotes two types of components in
the processor: units (e.g., Fetch, Decode, etc) and storages
(e.g., register file or memory). E consists of two types of
edges: pipeline edges and data transfer edges. A pipeline
edge transfers an instruction (operation) from a parent unit
to a child unit. A data-transfer edge transfers data between
units and storages. For illustration, we use a simplified ver-
sion of the MIPS processor [10] as shown in Figure 2. In the
figure, ovals denote units, rectangles are storages, bold edges
are pipeline edges, and dashed edges are data-transfer edges.
A path from a root node (Fetch) to a leaf node (WriteBack)
consisting of units and pipeline edges is called a pipeline
path. For example, {Fetch - Decode - IALU - MEM - Write-
Back} is a pipeline path. A path from a unit to main mem-
ory or register file consisting of storages and data transfer
edges is called a data-transfer path. For example, {MEM -
DataCache - MainMemory} is a data-transfer path.

Using the graph model shown in Figure 2, interactions can
be described as a combination of nodes and their activities.

We consider four functional activities in a node: operation
execution, stall, exception, and NOP (no-operation). A unit
in operation execution carries out its functional operations
such as fetching an instruction, decoding opcode/operand,
arithmetic/logic computation etc. Stall in a unit can be
caused by various reasons such as data hazard, structural
hazard, child node stall etc. Exception in a node is an ex-
ceptional state such as divide-by-zero or overflow. We con-
sider two types of faults: node fault, and interaction fault.
A node is faulty if it produces incorrect output during an
activity. An interaction is faulty if execution of multiple ac-
tivities of the interaction produces incorrect result. In the
presence of a fault, unexpected values are written to the
primary outputs such as memory or register file, or the test
program finishes at incorrect clock cycle during simulation.

4. TEST GENERATION
Algorithm 1 describes our test generation procedure. This

algorithm takes processor model M and interaction faults S

as inputs and generates test programs. For each fault Si, the
algorithm produces one test program. Fault Si is composed
of a set of node activities and their relations. The algorithm
iterates over all the interaction faults in the fault model.
Each fault Si is converted to a temporal logic property Pi.
Section 4.1 describes the procedure for creating and negating
the property. Next, bound ki for each property is decided as
discussed in Section 4.2. SAT-based BMC takes processor
model M , negated property Pi, and bound ki as inputs and
generates a counterexample (test program).

Algorithm 1: Test Generation

Inputs: i) Processor model M
ii) Set of faults S from interaction fault model

Outputs: Test programs to excite the pipeline interactions
Begin

TestPrograms = φ
for each fault Si in the set S

Pi = CreateProperty(Si)
Pi = Negate(Pi)
ki = DecideBound(Pi)
testi = DoSATbasedBMC(M , Pi, ki)
TestPrograms = TestPrograms ∪ testi

endfor
return TestPrograms

End

So far, we assumed that the whole design model is applied
to SAT-based BMC. This approach is effective when design
is of moderate size and the bound is shallow. However, for
the test generation scenarios consisting of large designs and
deep counterexamples, SAT-based BMC may not be able to
generate tests. In such cases, decompositions of property
as well as design will reduce the test generation complex-
ity. Section 4.3 describes test generation techniques using
decompositional bounded model checking. Finally, Section
4.4 presents a test generation example using Algorithm 1.

4.1 Property Generation
A node fault is converted into a property F(pi) where F

is a temporal operator (eventually) and pi is described as
(modulei.activity). F(pi) is true if pi becomes true at any
time step. The atomic proposition pi is a functional activity
at a node i such as operation execution, stall, exception or
NOP. The negation of the property F(pi), G(¬pi), is true if

pi is never true over all time steps. G is a temporal opera-
tor, always. For example, to exercise a node fault “Decode
in stall”, the fault is converted into F(Decode.Stall). Its
negation G(¬Decode.stall) means “Decode never in stall”.

A pipeline interaction fault is converted into a property
F(p1 ∧ p2 ∧ . . .∧ pn) that combines activities over n mod-
ules using logical AND operator. The property is true if (p1

∧ p2 ∧ . . .∧ pn) becomes true at any time step. The nega-
tion of the property, G(¬p1 ∨ ¬p2 ∨ . . .∨ ¬pn), becomes
true if any of p1, p2, . . . , or pn is not true over all time steps.
For example, to exercise an interaction fault “Decode in stall
and FADD1 in operation execution at the same time”, the
fault is converted into F(Decode.stall ∧ FADD1.exe). Its
negation G(¬Decode.stall ∨ ¬FADD1.exe) means “Decode
in stall and FADD1 in operation execution never occur at
the same time”.

4.2 Determination of Bound
The longest computation path in the pipeline corresponds

to the bound to generate tests for all interaction scenarios.
For example, in the graph model of the MIPS processor in
Figure 2, the maximum bound is determined by the length
of {FE→ DE→ IALU→ MEM→ Cache→ MM → Cache→
MEM→ WB} if cache miss takes more time than any other
pipeline paths. However, this bound is over-conservative
in most test scenarios because a lot of interactions do not
include this longest path. Therefore, using bound for each
interaction is more efficient for test generation.

Bound for each node fault is decided by the temporal dis-
tance between the root node (e.g., Fetch) and the node under
verification. For example, bound for the property “FADD1
in operation execution” will be 3 if there is only one pipeline
register between pipeline stages. Bound for each interaction
fault is determined by the longest temporal distance from
the root node to the nodes under consideration. For exam-
ple, bound for the property “IALU, FADD2, and FADD3
in operation execution at the same time” will be 5 because
FADD3 has the longest temporal distance from Fetch stage.

4.3 Design and Property Decompositions
Design and property decompositions can be used to fur-

ther improve test generation performance. We consider only
two partitioning techniques: vertical (path-level) partition-
ing and horizontal (stage-level) partitioning. These methods
are similar to the cone of influence used in model checking
tools. For example, in the graph model shown in Figure
2, the integer-ALU pipeline path PPIALU = {Fetch, De-
code, IALU, Mem, WriteBack} is treated as one path level
partition. Horizontal partitioning is determined by the dis-
tance from the root node (e.g., Fetch). For example, for
a given property “IALU, FADD2, and FADD3 in operation
execution at the same time”, we can use partitioned modules
{Fetch, Decode, IALU, FADD1, FADD2, FADD3} to gen-
erate a test program instead of using whole design because
the descendent nodes of IALU and FADD3 do not affect the
counterexample generation of the property.

4.4 Test Generation: An Example
Consider a test generation scenario for verifying the inter-

action “Decode in stall, and IALU, FADD3 in operation ex-
ecution at the same time”. Based on Algorithm 1, the prop-
erty F(Decode.stall ∧ IALU.exe ∧ FADD3.exe) is generated
from the interaction. Its negation will be G(¬Decode.stall

∨ ¬IALU.exe ∨ ¬FADD3.exe). According to the horizontal
and vertical partitioning, we can use a partial set of mod-
ules {Fetch, Decode, IALU, FADD1, FADD2, FADD3} to
generate a test program. Based on the procedure of decid-
ing bound for each property, bound will be 5. SAT-based
BMC accepts the decomposed processor model, the negated
property, and the bound. The generated test program is
shown in Table 1 where Decode unit is in stall due to the
read-after-write(RAW) hazard by FADD instruction.

Table 1: An Example of Test Program

Fetch Cycle Instructions
1 FADD R1 R2 R2
2 NOP
3 ADD R3 R2 R2
4 ADD R3 R1 R2
5 NOP

5. A CASE STUDY
We applied our methodology on a simplified MIPS archi-

tecture [12], as shown in Figure 2. For our experiments, we
used Cadence SMV [17] as a model checker and zChaff [13]
as a SAT solver. We used 16 16-bit registers in the imple-
mentation of the register file. All the experiments were run
on a 1 GHz Sun UltraSparc with 8G RAM.

Table 2 compares our test generation technique with UMC-
based test generation for different module interactions. The
first column specifies a set of properties based on the number
of interactions. For example, the third row presents average
test generation time (in seconds) for all properties consist-
ing of two (“2”) module interactions. The second column
presents the level of decomposition used during test genera-
tion. The entry whole implies that no decomposition is used.
The entry group implies that either horizontal or vertical or
both decompositions are used. The next three columns show
the performance of three test generation techniques: UMC,
BMC using maximum bound, and BMC using bound for
each property. The maximum bound 45 was used assum-
ing that the longest length is taken by memory operations
i.e., the sum of the IALU pipeline path length (5) and data-
transfer path length (40). In the table, X indicates that
a counterexample was not found due to “Out of Memory”
problem. As expected, Table 2 shows that the test genera-
tion time grows with the increase of the number of module
interactions. Bound for each property reduces the test gen-
eration time by 90% compared to using BMC with maximum
bound.

6. CONCLUSIONS
Functional verification is a major bottleneck in processor

design. Simulation using test programs is the most widely
used form of processor verification. Use of directed tests in
simulation can reduce overall validation effort since shorter
tests can obtain the same coverage goal compared to the ran-
dom tests. There is a need for automatic directed test gen-
eration techniques based on functional coverage goal. Test
generation using model checking is one of the most promis-
ing approaches. However, this approach is unsuitable for
large designs due to the state explosion problem.

This paper presented a directed test generation technique
for pipelined processors using SAT-based bounded model

Table 2: Comparison of Test Generation Techniques

based on the Number of Interactions

Interaction Decomposed UMC SAT-based BMC
Modules Design Max. k Each k

Whole X 5.63 0.48
1 Group X 3.87 0.22

Whole X 7.42 0.65
2 Group X 4.31 0.43

Whole X 7.74 0.70
3 Group X 5.72 0.52

Whole X 8.79 0.75
4 Group X 6.98 0.64

Whole X 9.29 0.89
5 Group X 8.31 0.62

Whole X 9.58 1.05
6 Group X 9.04 0.68

checking. We developed a procedure for determining bound
for each property. We also developed a method for de-
composing design and properties in the context of SAT-
based BMC. Our experimental results using MIPS processor
demonstrated that our technique reduces both test genera-
tion time and memory requirement. In this paper, we used
pipeline interaction fault model for test generation. Our fu-
ture work includes analysis of our fault model by comparing
it to existing coverage metrics such as code coverage and
toggle coverage.

7. REFERENCES

[1] A. Adir et al. Genesys-pro: Innovations in test program
generation for functional processor verification. IEEE Design
& Test, 2004.

[2] N. Amla et al. An analysis of SAT-based model checking
techniques in an industrial environment. CHARME, 2005.

[3] A. Biere et al. Bounded model checking. Advances in
Computers, 2003.

[4] A. Biere et al. Symbolic model checking without BDDs.
TACAS, 1999.

[5] E. M. Clarke et al. Model Checking. MIT Press, 1999.

[6] F. Copty et al. Benefits of bounded model checking at an
industrial setting. CAV, 2001.

[7] A. Gargantini and C. Heitmeyer. Using model checking to
generate tests from requirements specifications. ACM
SIGSOFT Software Engineering Notes, 1999.

[8] E. Goldberg and Y. Novikov. BerkMin: a fast and robust
SAT-solver. PDATE, 2002.

[9] S. Gurumurthy et al. Automated mapping of pre-computed
module-level test sequences to processor instructions. ITC,
2005.

[10] J. Hennessy and D. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 2002.

[11] K. Kohno and N. Matsumoto. A new verification methodology
for complex pipeline behavior. DAC, 2001.

[12] H. Koo and P. Mishra. Functional Test Generation using
Property Decompositions for Validation of Pipelined
Processors. DATE, 2006.

[13] M. H. Moskewicz et al. Chaff: Engineering an efficient SAT
solver. DAC, 2001.

[14] M. R. Prasad et al. A survey of recent advances in SAT-based
formal verification. Intl. Journal on Software Tools for
Technology Transfer (STTT), 2005.

[15] J. Shen et al. An RTL abstraction technique for processor
microarchitecture validation and test generation. Journal of
Electronic Testing: Theory and Applications, 2000.

[16] S. Ur and Y. Yadin. Micro architecture coverage directed
generation of test programs. DAC, 1999.

[17] www-cad.eecs.berkeley.edu/ kenmcmil/smv. Cadence SMV.

