
Functional Verification and Testbench Generation

122 0740-7475/04/$20.00 © 2004 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

THE COMBINATION of shrinking time to market and

short product lifetimes makes it critical to drastically reduce

microprocessor design cycle time. Because verification and

design analysis are major components of this cycle time,

any effort that improves verification effectiveness and

design quality is crucial for meeting customer deadlines and

requirements. Design validation techniques fall into two

broad categories: simulation-based approaches and formal

techniques. Because of the complexity of modern designs,

validation using only traditional scalar simulation cannot

be exhaustive. Formal techniques exhaustively analyze

parts of the design but, because of state space explosion,

are not suitable for the complete design. Equivalence

checking is a formal technique that is popular in industry

today. Typically, this technique involves comparing the

implementation to a set of Boolean equations or compar-

ing an optimized circuit to the original circuit. Symbolic sim-

ulation is an efficient technique that bridges the gap

between traditional simulation and full-fledged formal ver-

ification. This article presents a top-down methodology for

validation of microprocessors using a combination of sym-

bolic simulation and equivalence checking.

Figure 1 shows a traditional architecture validation

flow. In current validation methodology, the architect

prepares an informal specification of the microproces-

sor in the form of an English document. Logic design-

ers implement the modules at the RTL. The verification

team validates the design implementa-

tion using a combination of simulation

techniques and formal methods.

Simulation, the most popular form of

microprocessor validation, involves run-

ning millions of cycles using random or

pseudorandom tests. The validation team

applies model checking to a high-level

description of the design abstracted from

the RTL implementation. Formal verifi-

cation uses a formal language to describe

the system. The specification for the formal verification

comes from the architecture description; the imple-

mentation can come from either the architecture speci-

fication or the abstracted design. The validated RTL

design serves as a golden reference model for future

design modifications. After applying design transforma-

tions, including synthesis, to the RTL design, the valida-

tion team uses equivalence checking to validate the

modified design against the RTL design.

Existing processor validation techniques fall into two

categories, depending on the models used for specifi-

cation and implementation. Those in the first category

don’t verify the actual RTL design implemented by the

logic designers. Instead, they verify an implementation

that’s described in a formal language either written

manually or generated using design abstraction tech-

niques. Hence, this verification doesn’t uncover the

bugs in the actual design. Traditional formal verification

techniques fall into this category. Techniques in the sec-

ond category focus on the actual hardware description

language (HDL) implementation. However, because

they lack a golden reference model, these techniques

use reverse engineering to derive the specification

model from the actual implementation. Simulation-

based techniques fall into this category. Existing vali-

dation techniques use reverse engineering to derive a

processor’s functionality from its RTL implementation.

A Top-Down Methodology for
Microprocessor Validation

Editor’s note:
A major challenge in today’s functional verification is the lack of a formal
specification with which to compare the RTL model. The authors propose a
novel top-down verification approach that allows specification of a design
above the RTL. From this specification, it is possible to automatically generate
assertion models and RTL reference models. The authors also demonstrate
that symbolic simulation and equivalence checking can be applied to verify
an RTL design against its specification.

—Li-C. Wang, University of California, Santa Barbara

Prabhat Mishra and Nikil Dutt
University of California, Irvine

Narayanan Krishnamurthy and Magdy S. Abadir
Motorola

Our validation technique complements these bottom-

up approaches. We leverage the system architect’s knowl-

edge of the processor’s behavior through architecture

description language (ADL) constructs, thus providing a

powerful top-down approach to microprocessor valida-

tion. Our framework generates behaviors of the intended

properties to enable model checking, and generates a

complete description of the processor to enable equiva-

lence checking. We’ve applied our methodology in two

validation scenarios: property checking of a memory man-

agement unit for a microprocessor compliant with the

PowerPC instruction set, and verification of the DLX

processor.

Top-down validation methodology
Figure 2 shows our validation methodology.

Validation engineers specify the processor’s structure

and behavior using an ADL. Validating the ADL descrip-

tion ensures that it specifies a well-formed architecture.1

Our framework uses the Expression ADL,2 and auto-

matically generates the reference model (HDL descrip-

tion) from the ADL specification. To verify that the RTL

design implementation satisfies certain properties, our

framework generates behaviors for those intended prop-

erties. We use the Versys2 symbolic simulator to per-

123March–April 2004

Abstraction

Model checking

Equivalence checking

Abstracted design

Modified design
(RTL, gate level)

Transform

Simulation

Implementation

Formal
verification

RTL design
(implementation)

Design transformations
Manual derivation
Validation techniques Specification

Architecture specification
(English document)

Figure 1. Traditional bottom-up validation flow.

RTL design
(implementation)

Architecture description
language specification

Validation

HDL
generator

Generic hardware
description language

(HDL) models

Reference model
(properties)

Automatic
Manual
Feedback

Successful

Symbolic
simulator

Equivalence
checker

Equivalent

DifferentFailure

Architecture specification
(English document)

Reference model
(complete description)

Figure 2. Top-down validation flow.

form property checking.3 Our framework also generates

the processor’s complete description to enable equiva-

lence checking using Synopsys’ Formality (http://www.

synopsys.com). When a failure occurs, validation engi-

neers use the feedback (the error generated by

Formality) to modify the RTL design. If an ambiguity in

the original description led to the mismatch, the archi-

tecture specification must be updated.

Our methodology involves three important steps:

� capturing the architecture using an ADL specification;

� generating the reference model from the architec-

ture specification; and

� performing design validation using symbolic sim-

ulation and/or equiv-

alence checking,

depending on the gen-

erated reference model.

ADL specification
ADL-driven frame-

works typically enable

rapid design space explo-

ration of programmable

embedded systems. The

framework captures the

processor and memory

architecture and, from the

ADL specification, gener-

ates a software toolkit,

including a compiler and

a simulator. After compi-

lation and simulation of

the application programs,

the feedback (information

about performance and

code size) is helpful for

modifying the architec-

ture’s ADL specification.

The goal is to find the best

possible architecture for

the given set of applica-

tion programs under area,

power, and performance

constraints. ADLs tradi-

tionally fall into two cate-

gories, depending on

whether they primarily

capture the processor’s

behavior (instruction set)

or its structure. Several recently proposed ADLs—

including Expression, the ADL our framework uses—

capture both the structure and the behavior.

Expression captures all the architectural compo-

nents and their connectivity as a netlist. It considers two

types of components: units (for example, ALUs) and

storage locations (for example, register files). It also cap-

tures two types of connections in the netlist: pipeline

and data transfer edges. Pipeline edges specify instruc-

tion transfer between units through pipeline latches;

data transfer edges specify data transfer between com-

ponents, typically between units and storage locations

or between two storage locations. For example, in

Figure 3a, the oval (unit) and rectangular (storage)

Functional Verification and Testbench Generation

124 IEEE Design & Test of Computers

Register file

Fetch

FADD2

FADD3

FADD4

Write back

MEM

MUL2

MUL1 FADD1

PC Memory

Decode

IALU

MUL7

DIV

Data-transfer edge
Pipeline edge
Functional unit
Storage

(a)

(b)

(OPCODE

 (OPERANDS (SRC1 reg) (SRC2 reg/imm16)(DEST reg))

 (BEHAVIOR DEST = SRC1 + SRC2)

 (FORMAT cond(31–30) 0101 dest(25–21) src1(20–16) src2(15–0))

)

add

Figure 3. Specification of DLX architecture using the Expression architecture

description language (ADL): DLX architecture structure (a), and an ADD operation (b).

boxes represent components, and the solid (pipeline)

and dotted (data transfer) lines represent edges. The

behavior is organized into operation groups, with each

group containing a set of operations having some com-

mon characteristics. Each operation is then described

in terms of its opcode, operands, behavior, and instruc-

tion format. Each operand is classified either as source

or as destination. Furthermore, each operand is associ-

ated with a type that describes the type and size of the

data it contains. The instruction format describes the

operation’s fields in binary and assembly codes. For

example, Figure 3b shows the description of an ADD

operation.

Reference model generation
Our framework uses functional abstraction to gen-

erate the reference model (VHDL description) from the

ADL specification. Mishra, Dutt, and Nicolau first intro-

duced their functional-abstraction technique to gener-

ate simulation models for a wide variety of

architectures.4

Functional abstraction. The notion of functional

abstraction comes from a simple observation: Different

architectures can use the same functional unit (such as

a fetch unit) with different parameters; use the same

functionality (for example, operand read) in different

functional units; or have new architectural features. We

can eliminate the first difference by defining generic

functions with appropriate parameters. We can elimi-

nate the second one by defining generic subfunctions,

which different architectures can use at different times.

The last difference is difficult to eliminate, because it’s

new, unless we can create this new functionality using

existing subfunctions—for example, by combining MUL

and ADD operations to create a multiply-accumulate

(MAC) operation.

Functional abstraction captures each functional

unit’s structure using parameterized functions. For

instance, the fetch unit’s functionality contains several

parameters, such as number of operations read per

cycle, number of operations written per cycle, reserva-

tion station size, and branch prediction scheme. Figure

4a shows a specific example of a fetch unit described

using subfunctions. We define each subfunction using

appropriate parameters. For example, ReadInst-

Memory reads n operations from the instruction cache

using the current PC address (returned by ReadPC)

and writes them to the reservation station. Having gener-

ic subfunctions provides the flexibility to specify the sys-

tem in finer detail and allows for component reuse.

We capture a generic processor’s behavior through

the definition of operations and define each operation

as a function with a generic set of parameters that per-

forms an intended functionality. The parameter list

includes source and destination operands, necessary

control, and data type information. Some common sub-

functions are ADD, SUB, MUL, and SHIFT. Opcode func-

tions can use one or more subfunctions. For example,

the MAC function uses two subfunctions (ADD and

MUL), as Figure 4b shows. Mishra, Dutt, and Nicolau

provide a detailed description of generic abstractions

for all microarchitectural components.4

We implemented all the generic functions and sub-

functions using VHDL. Our framework generates a VHDL

description from the processor’s ADL specification by

composing functional-abstraction primitives. Here, we

describe how to generate three major processor com-

ponents—the instruction decoder, the data path, and

the controller—using the generic VHDL models.5

In decoding a given instruction, a generic instruction

125March–April 2004

FetchUnit (# of read/cycle, res-station size,)
{

address = ReadPC();
instructions = ReadInstMemory(address, n);
WriteToReservationStation(instructions, n);
outInst = ReadFromReservationStation(m);
WriteLatch(decode_latch, outInst);

pred = QueryPredictor(address);
if pred {

nextPC = QueryBTB(address);
SetPC(nextPC);

} else
IncrementPC(x);

}
(a)

ADD (src1, src2) {
return (src1 + src2);

}

MUL (src1, src2) {
return (src1 ∗ src2);

}

MAC (src1, src2, src3) {
return (ADD(MUL(src1, src2), src3));

}
(b)

Figure 4. Modeling architectural components

using functional abstraction: subfunctions

describing a fetch unit (a); modeling of multiply-

accumulate (MAC) function using two inde-

pendent existing operations, ADD and MUL (b).

decoder uses information regarding an individual

instruction’s format and opcode mapping to each func-

tional unit. The instruction format information is avail-

able in Expression’s operations section. The decoder

uses the instruction format to extract information

regarding opcode, operands, and so on from the input

instruction. Expression’s mapping section captures the

information regarding the mapping of opcodes to the

functional units. The decoder uses this information to

perform necessary tasks (such as operand read) and to

decide where to send instructions.

The data path implementation has two parts: First,

the HDL generator in our framework composes each

component in the structure. Second, the HDL genera-

tor instantiates components (for example, fetch,

decode, ALU, load/store, write back, caches, register

files, and memories) and establishes connectivity using

the appropriate number of latches, ports, and connec-

tions from the structural information available in the

ADL. To compose components, the generator uses the

information available in the ADL regarding the compo-

nents’ functionality and parameters. For example, to

compose an execution unit, it instantiates all opcode

functionalities (ADD, SUB, and so on, for an ALU) sup-

ported by that unit. If the execution unit requires a read

connection, the generator must instantiate the appro-

priate number of operand read functionalities unless

several units can share the same read functionality

using multiplexers. Similarly, if this execution unit has

to write the data back to the register file, its instantiation

must include the functionality for writing the result. The

actual implementation of an execution unit could con-

tain many more functionalities—for example, read

latch and write latch.

The controller implementation has two parts. First,

using the generic controller function with the appro-

priate parameters, the HDL generator produces a cen-

tralized controller that maintains the information (busy,

stalled, and so on) for each functional unit. This cen-

tralized controller computes hazard information based

on the list of instructions currently in the pipeline. On

the basis of these bits and the information available in

the ADL, this controller stalls and flushes the necessary

pipeline units. Second, each functional unit in the

pipeline has a local controller, which generates certain

control signals and sets necessary bits on the basis of

the input instruction. For example, the local controller

in an execution unit activates the ADD operation if the

opcode is add, or marks the unit as busy if it is executing

a multicycle operation.

Our framework generates a complete description of

the architecture as well as specific properties. We can

use the complete description to check for equivalence

with the given implementation. However, having the

specific properties would enable property checking. For

example, for an n-input adder, our framework generates

the following property:

output = Σn

i =1 inputi

The design should satisfy this property regardless of the

adder implementation—whether it is ripple-carry or

carry look-ahead, for example.

The major advantage of property checking is that it

reduces verification complexity. However, this raises an

important question: How do we choose the set of prop-

erties? There are two ways. One way is for designers to

decide which properties are important to verify based on

their design knowledge and experience. They can then

choose the properties to uncover otherwise difficult-to-

find bugs. Alternatively, designers can choose a set of

behaviors and evaluate their effectiveness. For example,

verifying a memory controller in a microprocessor

requires generating properties to validate each of the con-

troller’s outputs. To measure these properties’ effective-

ness, designers can use certain coverage measures during

property checking.6

Design validation
Here we describe the two validation techniques

used in our framework: property checking using sym-

bolic simulation and equivalence checking.

Property checking. In our methodology, property

checking uses symbolic simulation, which combines

traditional simulation with formal symbolic manipula-

tion.7 Each symbolic value represents a signal value for

different operating conditions, parameterized in terms

of a set of symbolic Boolean variables. By this encod-

ing, a single symbolic-simulation run can cover many

conditions that would require multiple runs on a tradi-

tional simulator. Figure 5a shows a simple n-input AND

gate. Exhaustive simulation of the AND gate requires 2n

binary test vectors. However, the ternary simulation,

which uses 0, 1, and X (where X is don’t care), requires

n + 1 test vectors for the AND gate. Figure 5b shows the

vectors: n vectors with one input set to 1 and the remain-

ing set to X, and one vector with all inputs set to 1.

Finally, symbolic simulation requires only one vector

using n symbols (S1, S2, …, Sn), as Figure 5c shows.

Functional Verification and Testbench Generation

126 IEEE Design & Test of Computers

Researchers at IBM first

introduced symbolic sim-

ulation to reason about

properties of circuits de-

scribed at the RTL. With

the advent of binary deci-

sion diagrams, the tech-

nique became far more

practical. Providing a

canonical representation

for Boolean functions,

BDDs enable the imple-

mentation of an efficient

event-driven logic simula-

tor operating over a sym-

bolic domain. By encoding a model’s finite domain

with Boolean encoding, it’s possible to symbolically

simulate the model using BDDs. Seger and Bryant’s

work on symbolic trajectory evaluation (STE) helped to

renew further interest in symbolic execution.8

STE is a modified form of symbolic simulation that

operates over the quaternary logic domain (0, 1, X, and

T), where T can be viewed either as a state vector in

which each node is simultaneously at 0 and 1 or as an

unconstrained state.8 A circuit state is the set of all node

values at a particular time instant. The value domain is

partially ordered and forms a complete lattice, X � 0,

which means X has less information than 0, or X is weak-

er than 0. The information content of 0 and 1 are not

comparable. If r � q and r � t, where q, r, and t are

states, r effectively represents both q and t. Any prop-

erty that holds for state r will also hold for all states

above it in the lattice—for example, q and t.

STE differs from symbolic simulation in that it pro-

vides a mathematically rigorous method for establish-

ing that properties (assertions) of the form antecedent

A ⇒ consequent C hold for a given simulation model

of a circuit. For the test vector shown in Figure 5c, the

antecedent is (I1 is s1, I2 is s2, …, In is sn) from time 0 to 1,

and the consequent is (out is s1 AND s2 AND … sn) from

time 1 to 2. Symbolic values specified by the antecedent

are used to initialize the circuit’s state holders. A sym-

bolic simulator then simulates the model, typically for

one or two clock cycles, while driving the inputs with

symbolic values. The simulator compares the resulting

values, which appear on selected internal nodes and

primary outputs, with the expected values expressed in

the consequent. In general, the values could be func-

tions over a finite set of variables. A trajectory is a

sequence of states such that each state has at least as

much information as the next-state function applied to

the previous one. Intuitively, a trajectory is a state

sequence constrained by the system’s next-state func-

tion. A successful simulation of assertion A ⇒ C estab-

lishes that any sequence of value assignments to circuit

nodes that is both consistent with the circuit behavior

and consistent with antecedent A is also consistent with

consequent C.

STE can verify that an implementation satisfies its

specification (reference model). The assertion genera-

tor extracts necessary assertions from the reference

model.9 If the implementation is correct, these asser-

tions should hold during symbolic simulation of the RTL

design. Assertion A ⇒C holds if the weakest antecedent

trajectory that the implementation goes through during

simulation (using A) is at least as strong as the weakest

sequence satisfying consequent C. Informally, the out-

puts produced during simulation (using A) should be

at least as strong as the expected outputs (given in C).

To verify that the RTL design implementation satis-

fies certain properties, our framework generates behav-

iors for the intended properties instead of generating

the complete reference design. We use the Versys2 sym-

bolic simulator, which uses STE to perform property

checking.3 This simulator requires manual specification

of the state mappings between the reference model and

the implementation. This involves mapping both latch-

es and bit cells by specifying their names. The assertion

generator in Versys2 automatically generates the asser-

tions from the reference model.9 Versys2 symbolically

simulates the RTL design implementation by using the

generated assertions to ensure that the design satisfies

the reference model. Versys2 generates a counterex-

ample if an assertion fails in the RTL design. We then

use this counterexample to modify the RTL design.

127March–April 2004

X

X

X

1

1

Inputs

(a)

(b)

(c)

I1

X

X

1

X

1

I1

X

1

X

X

1

I2

X

X

1

X

1

I3 In

I2
I3

In

AND Out

Vector n + 1

Vector n

Vector 3

Vector 2

Vector 1

I1 I2 I3 In

S1 S2 S3 Sn

Figure 5. Test vectors for validating an AND gate: n-input AND gate (a), and test

vectors for ternary (b) and symbolic (c) simulations.

Equivalence checking. This branch of static verifica-

tion uses formal techniques to prove whether two versions

of a design are functionally equivalent. The equivalence-

checking flow has four stages: reading, matching, verifi-

cation, and debugging. Matching and verification are the

stages that design transformations affect most. During the

reading stage, the equivalence-checking tool reads both

design versions, and segments them into manageable sec-

tions called logic cones. Logic cones are groups of logic

bordered by registers, ports, or black boxes. Figure 6a

shows the cones for a typical design block. A logic cone’s

output border is the compare point. For example, in Figure

6a, OUT1 is the compare point of Cone1.

In the matching phase, the tool tries to match, or

map, compare points from the reference (golden)

design to their corresponding compare points within

the implementation design.10 Two types of matching

techniques are name based (nonfunction) and func-

tion (signature analysis) based. Figure 6b shows com-

pare-point matching for a typical reference design and

implementation. For better performance, name-based

methods, which are more efficient, should complete

most of the matching. Design transformations can result

in the matching of fewer cones by the name-based tech-

niques, slowing the matching performance. Creating

compare rules can assist name-based techniques, but

determining and creating the rules can be time-con-

suming. If the implementation differs drastically from

the reference design, it isn’t possible to write the design

rules, and it’s necessary to either manually match com-

pare points for better performance or use costly func-

tion-based techniques. Either way, this approach is

impractical for designs with many unmatched points.

The verification stage proves whether each matched

compare point is either functionally equivalent or func-

tionally nonequivalent.11 Design transformations can

affect a logic cone’s structure in the implementation

design. When logic cones are very dissimilar, perfor-

mance suffers. In some cases, such as during retiming,

logic cones can change so significantly that additional

setup is necessary to successfully verify the designs. The

debugging phase begins when the tool has returned a

nonequivalent result. Unaccounted design transforma-

tions can cause a false-negative result, leading to a loss

of valuable time spent debugging designs that are actu-

ally equivalent. The solution is to perform additional

setup to guide the tool for the given designs.

Our framework generates the complete description

of the processor to enable equivalence checking using

Synopsys’ Formality. The tool reads both the reference

design and the implementation, and tries to match the

compare points between them. We must map the

unmatched compare points manually. The tool tries to

establish equivalence for each matched compare point.

When a failure occurs, the validation team needs to ana-

lyze the failing compare points to verify whether they

are actual failures. The team can use the feedback to

perform additional setup (in case of a false negative) or

to modify the RTL design implementation.

Experiments
An important aspect of our methodology is that it

Functional Verification and Testbench Generation

128 IEEE Design & Test of Computers

Implementation designReference design

(a) (b)

IN1

IN2

IN3

IN4

IN5

INm

Conen

Cone2

Cone1

OUTn

OUT2

OUT1

Automatically matched cones User-specified matched cones Unmatched cones

Figure 6. Matching of compare points between a reference design and an implementation design: logic cones in a

design block (a), and compare-point matching (b).

can perform both proper-

ty and equivalence check-

ing. To verify that the RTL

design implementation

satisfies certain properties,

our framework generates

behaviors for the intended

properties rather than

generating the complete

reference design. On the

other hand, if the gen-

erated reference model

contains a complete de-

scription of the design,

our framework performs

equivalence checking be-

tween the implementa-

tion and the generated

reference model.

Property checking of an MMU
The memory management unit supports demand-

paged virtual memory. The MMU consists of blocks such

as segment registers, translation look-aside buffers (TLBs),

and block address translation (BAT) arrays. Each mem-

ory block contains subblocks. For example, the TLB has

three subblocks—entry (data information), valid (infor-

mation regarding data validity), and least-recently-used

information, as Figure 7 shows. The TLB implements each

subblock as SRAM. The typical operations in SRAM are

read and write. The generated reference model to verify

each SRAM cell’s write and read properties contains the

Verilog code segment shown in Figure 8a and 8b.

We modified the Versys2 configuration file to give

the node mapping between the reference model and

the implementation. For example, we mapped the ref-

erence model’s wrClk to the implementation’s

sramWrClk. An interesting feature of this validation

approach is that the same properties, without any mod-

ification, apply to all MMU memory blocks. However,

in each case, the node mapping must be modified.

To verify whether the RTL design correctly imple-

mented the TLB miss detection, our framework gener-

ated the Verilog code shown in Figure 8c. The

information needed to build this property is directly

available from the MMU specification. This property ver-

ifies miss detection for a two-way, set-associative TLB.

Generating this property for an n-way, set-associative

TLB would require only a simple extension. In Figure

8c, the TLB block’s inputs are vsid (virtual segment

ID) and ea (effective address), and the output is the

physical address. The e and vld variables are the out-

puts from the entry and valid blocks shown in Figure 7.

Similarly, we generated and validated the property

for the BAT array’s miss detection. We found several

mismatches during property checking. In most cases,

the architecture specification document doesn’t pro-

vide the else condition’s value (for example, a signal’s

default value). As a result, the property description

doesn’t have the default value of a signal, whereas the

signal’s implementation always has a definite value. In

such cases, symbolic simulation produces mismatches.

Consider an SRAM cell’s read implementation, shown

129March–April 2004

Entry 0
e0

Entry 1
e1

Valid 0
vld0

Valid 1
vld1

Least-recently-
used information

Virtual
segment ID

Effective
address

Physical
address

Translation look-aside buffer

Figure 7. Translation look-aside buffer (TLB) block diagram.

always @ (wrClk or wrEn or dIn or wrAddr)
begin

if (wrClk & wrEn) ram[wrAddr] <= dIn;
end
(a)

assign out = (rdClk & rdEn) ? ram[rdAddr] : 32’b0;
(b)

assign inp = ({1’b1, vsid[0:23], ea[4:9], ea[10:13]});
assign out0 = ({vld0, e0[0:23], e0[24:29], e0[54:57]});
assign out1 = ({vld1, e1[0:23], e1[24:29], e1[54:57]});
assign hit0 = (inp = = out0);
assign hit1 = (inp = = out1);
assign miss = ∼(hit0 | hit1);
(c)

Figure 8. Verilog code for verifying an SRAM

cell’s write property (a), an SRAM cell’s read

property (b), and miss detection for a two-way,

set-associative TLB (c).

in Figure 8b. This implementation assigns 32’b0 to the

output signal when the (rdClk & rdEn) condition is

false. However, the architecture document doesn’t

specify the value in the default case (condition false).

Therefore, the generated property doesn’t have the

value that caused the mismatch.

To avoid the detection of false negatives, we can

update the architecture document to add the values in

all cases or impose certain constraints in the Versys2

configuration file. Thus, for the example in Figure 8b,

we could set condition (rdClk & rdEn) as true in the

Versys2 configuration file to avoid the detection of the

mismatch just described.

Equivalence checking of the DLX architecture
We successfully applied the proposed methodology

in a case study to validate the DLX processor,12 using the

Formality equivalence checker. We chose the DLX

processor because it’s been well studied in academia

and its HDL implementations are available. We

obtained a VHDL description of the synthesizable

32-bit RISC DLX from http://www.eda.org/rassp/vhdl/

models/processor.html and used it as the implementa-

tion. We captured the DLX architecture’s structure and

behavior using the Expression ADL. Our framework gen-

erated the VHDL description from the ADL specification

using the method described earlier. The generated

VHDL description served as the reference model (spec-

ification) for the validation.

Regardless of the implementation style, the equiv-

alence checker can verify the design based on the

correct behavior in the reference model. For exam-

ple, our HDL generation framework generates a 32-bit

adder module that uses a carry-look-ahead principle.

The equivalence checker verifies that this design is

equivalent to the 32-bit adder implementation, which

uses a ripple-carry adder principle. Equivalence

checking took 4 seconds for this adder example on a

300-MHz Sun Ultra-250 with 1,024 Mbytes of RAM.

Similarly, we generated a structural model of a 32 ×
32 register file and used it as a reference model to ver-

ify the RISC DLX’s behavioral register file implemen-

tation. In this case, equivalence checking took 432

seconds. The majority of this time (347 seconds) was

for the behavioral implementation’s elaboration (link-

ing) phase.

Our framework also generated synthesizable RTL for

a 32-bit RISC DLX that supports signed operations. To

avoid memory explosion, we guided the RTL genera-

tion process to have a structure similar to the DLX imple-

mentation. Equivalence checking took 397 seconds on

the same Sun Ultra-250. The verification process uncov-

ered many mismatches. For example, there was a mis-

match in the output data bus at clock cycle 2,500. The

analysis revealed that the problem was in the adder’s

overflow bit. The DLX’s ripple-carry adder implementa-

tion had incorrectly computed the overflow bit.

Design analysis in our framework is very fast once

we discover which module has caused the problem. For

example, once we know that the adder is causing the

problem, we can verify the adder implementation of the

DLX by generating an adder specification (HDL descrip-

tion) from our framework and applying equivalence

checking.

SPECIFICATION-DRIVEN HARDWARE generation and

validation of design implementation using equivalence

checking has one limitation: The structure of the gen-

erated hardware (reference) model needs to be similar

to that of the implementation. This requirement is pri-

marily due to the capability of the equivalence check-

ers available today. Equivalence checking is not

possible using these tools if the reference and imple-

mentation designs are large and drastically different. In

reality, the implementation goes through several

changes due to various requirements, such as area, cost,

power, and performance. As a result, the final imple-

mentation’s structure might not be similar to that intend-

ed in the original specification. An improved

methodology is needed that would enable reference

model generation and design validation without any

knowledge of the implementation details. �

References
1. P. Mishra et al., “Automatic Modeling and Validation of

Pipeline Specifications Driven by an Architecture

Description Language,” Proc. 7th Asia South Pacific

Design Automation Conf. / 15th Int’l Conf. VLSI Design

(ASPDAC/VLSI 02), ACM Press, 2002, pp. 458-463.

2. A. Halambi et al., “EXPRESSION: A Language for Archi-

tecture Exploration through Compiler/Simulator

Retargetability,” Proc. Design Automation and Test in

Europe (DATE 99), IEEE CS Press, 1999, pp. 485-490.

3. N. Krishnamurthy et al., “Design and Development Para-

digm for Industrial Formal Verification Tools,” IEEE

Design & Test, vol. 18, no. 4, July-Aug. 2001, pp. 26-35.

4. P. Mishra, N. Dutt, and A. Nicolau, “Functional Abstrac-

tion Driven Design Space Exploration of Heterogeneous

Programmable Architectures,” Proc. Int’l Symp. System

Functional Verification and Testbench Generation

130 IEEE Design & Test of Computers

Synthesis (ISSS 01), ACM Press, 2001, pp. 256-261.

5. P. Mishra, A. Kejariwal, and N. Dutt, “Rapid Exploration

of Pipelined Processors through Automatic Generation

of Synthesizable RTL Models,” Proc. 14th Int’l Workshop

Rapid System Prototyping (RSP 03), IEEE CS Press,

2003, pp. 226-232.

6. H. Chockler et al., “A Practical Approach to Coverage in

Model Checking,” Proc. 13th Conf. Computer Aided Veri-

fication (CAV 01), Lecture Notes in Computer Science

2102, Springer-Verlag, 2001, pp. 66-78.

7. R.E. Bryant, “Symbolic Simulation—Techniques and

Applications,” Proc. 27th ACM/IEEE Design Automation

Conf. (DAC 90), IEEE Press, 1990, pp. 517-521.

8. C. Seger and R. Bryant, “Formal Verification by Symbolic

Evaluation of Partially-Ordered Trajectories,” Formal

Methods in System Design, vol. 6, no. 2, Mar. 1995, pp.

147-189.

9. L. Wang, M. Abadir, and N. Krishnamurthy, “Automatic

Generation of Assertions for Formal Verification of Pow-

erPC Microprocessor Arrays Using Symbolic Trajectory

Evaluation,” Proc. 35th Design Automation Conf. (DAC

98), ACM Press, 1998, pp. 534-537.

10. D. Anastasakis et al., “A Practical and Efficient Method

for Compare-Point Matching,” Proc. 39th Design Automa-

tion Conf. (DAC 02), ACM Press, 2002, pp. 305-310.

11. J. Marques-Silva and T. Glass, “Combinational Equiva-

lence Checking Using Satisfiability and Recursive Learn-

ing,” Proc. Design Automation and Test in Europe

(DATE 99), IEEE CS Press, 1999, pp. 145-149.

12. J. Hennessy and D. Patterson, Computer Architecture: A

Quantitative Approach, Morgan Kaufmann, 1990.

Prabhat Mishra is a PhD candidate
at the University of California, Irvine.
His research interests include system-
level modeling, architecture synthesis,
design space exploration, and valida-

tion of embedded systems. Mishra has a BE in com-
puter science from Jadavpur University, India, and an
MTech in computer science from the Indian Institute
of Technology, Kharagpur. He is a student member of
the IEEE and ACM SIGDA.

Nikil Dutt is a professor in the
School of Information and Computer
Science at the University of California,
Irvine. His research interests include
embedded-systems design automa-

tion, computer architecture, optimizing compilers, sys-
tem specification techniques, and distributed

embedded systems. Dutt has a BE in mechanical
engineering from the Birla Institute of Technology and
Science, India; an MS in computer science from Penn
State University; and a PhD in computer science from
the University of Illinois at Urbana-Champaign. He is
a senior member of the IEEE, serves on the advisory
boards of ACM SIGBED and ACM SIGDA, and is vice
chair of International Federation for Information Pro-
cessing (IFIP) Working Group 10.5.

Narayanan Krishnamurthy is a
principal software staff engineer and
CAD tools/methodology developer in
the High Performance Tools and
Methodology Group at Motorola’s Pow-

erPC Design Center in Austin, Texas. His research inter-
ests include CAD for VLSI and digital systems, formal
methods and verification, hardware-software design
methodologies for microprocessors and SoCs, and soft-
ware implementation techniques for application in dig-
ital and analog design automation. Krishnamurthy has
a BTech in instrumentation engineering from the Indian
Institute of Technology, Kharagpur, and an MS and PhD
in electrical and computer engineering from the Uni-
versity of Texas at Austin. He is a member of the IEEE.

The biography of Magdy S. Abadir appears on
p. 81 of this issue.

Direct questions and comments about this article
to Prabhat Mishra, Center for Embedded Computer
Systems, 444 Computer Science Bldg., University of
California, Irvine, CA 92697; pmishra@cecs.uci.edu.

131March–April 2004

Members
save 25%

on all conferences sponsored by
the IEEE Computer Society.

Not a member?

Join online today!

Members
save 25%

on all conferences sponsored by
the IEEE Computer Society.

Not a member?

Join online today!

computer.org/join/

	footer1:

