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Abstract

Validation of programmable architectures, consisting
of processor cores, coprocessors, and memory subsys-
tems, is one of the major bottlenecks in current System-
on-Chip design methodology. A critical challenge in val-
idation of such systems is the lack of a golden refer-
ence model. Traditional validation techniques employ
different reference models depending on the abstraction
level and verification task (e.g., functional simulation
or property checking), resulting in potential inconsis-
tencies between multiple reference models. This paper
presents a validation methodology that uses an Architec-
ture Description Language (ADL) based specification as
a golden reference model for validation of programmable
architectures, and generation of executable models such
as simulators and hardware prototypes. We present a
validation framework that uses the generated hardware
as a reference model to verify the hand-written imple-
mentation using a combination of symbolic simulation
and equivalence checking. We also present functional
coverage based test generation techniques for validation
of pipelined processor architectures. Finally, the gener-
ated simulator and hardware models are also used for
early exploration of programmable architectures.

1 Introduction

Computing is an integral part of daily life. We en-
counter two types of computing devices everyday: desk-
top based computing devices and embedded computer
systems. Desktop based computing systems encompass
traditional “computers”, including personal computers
(PC), notebook computers, workstations, and servers.
Embedded computer systems are ubiquitous - they run
the computing devices hidden inside a vast array of ev-
eryday products and appliances such as cell phones,
toys, handheld PDAs, cameras, and microwave ovens.
Both types of computing devices use programmable
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components such as processors, coprocessors and mem-
ories to execute the application programs. In this pa-
per, we refer these programmable components as pro-
grammable architectures.

The complexity of the programmable architectures is
increasing at an exponential rate. There are two factors
that contribute to this complexity growth: technology
and demand. First, there is an exponential growth in the
number of transistors per integrated circuit, as charac-
terized by Moore’s Law [6]. This trend has enabled an
exponential increase in computational capacity, which
fuels the second trend: the realization of ever more com-
plex applications (e.g., in communication, multimedia,
networking, and entertainment).

Figure 1. North America Re-spin Statistics

However, the complexity of designing and verifying
such systems is also increasing at an exponential rate.
Figure 1 shows a recent study on the number of first sil-
icon re-spins of system-on-chip (SOC) designs in North
America [31]. Almost half of the designs fail the very
first time. This failure has tremendous impact on cost
for two reasons. First, the delay in getting the working
silicon drastically reduces the market share. Second, the
fabrication cost is extremely high. The same study also
concluded that 71% of SOC re-spins are due to logic
bugs.

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04) 
0-7695-2203-3/04 $ 20.00 IEEE 



Another study highlights the challenges for functional
verification: Figure 2 shows the statistics of the SOC de-
signs in terms of design complexity (logic gates), design
time (engineer years), and verification complexity (sim-
ulation vectors) [31]. The study highlights the tremen-
dous complexity faced by simulation-based validation of
complex SOCs: it estimates that by 2007, a complex
SOC will need 2000 engineer years to write 25 million
lines of RTL code and one trillion simulation vectors for
functional verification. A similar trend can be observed
in the high-performance microprocessor space. Figure 3
summarizes a study of the pre-silicon bugs found in
the Intel IA32 family of microarchitectures. This trend
again shows an exponential increase in the number of
logic bugs: a growth rate of 300-400% from one gener-
ation to the next. The bug rate is linearly proportional
to the number of lines of structural RTL code in each
design, indicating a roughly constant density.

Source: Synopsys
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Figure 2. Complexity of SOC Verification

Simple extrapolation indicates that unless a radically
new approach is employed, we can expect to see 20-
30K bugs designed into the next generation and 100K
in the subsequent generation. Clearly – in the face of
shrinking time-to-markets – the amount of validation
effort rapidly becomes intractable, and will significantly
impact product schedules, with the additional risk of
shipping products with undetected bugs.

The next obvious question is - where do all these bugs
come from? An Intel report summarized the results of a
statistical study of the 7855 bugs found in the Pentium
4 processor design prior to initial tapeout [2]. Figure 4
shows a breakdown of the results of the study.

Although “complexity” is ranked eighth on the list
of bug causes, it is clear that it contributes to many of
the categories listed above. More complex microarchi-
tectures need more extensive documentation to describe
them; they require larger design teams to implement
them, increasing the likelihood of miscommunication be-

Figure 3. Pre-silicon Logic Bugs per Generation

tween team members; and they introduce more corner
cases, resulting in undiscovered bugs. Hence, microar-
chitectural complexity is the major contributor of the
logic bugs.

Figure 4. Pentium 4 Bug Breakdown

There are two fundamental reasons for so many logic
bugs: lack of a golden reference model and lack of a com-
prehensive functional coverage metric. First, there are
multiple specification models above the RTL level (func-
tional model, timing model, verification model, and so
on). The consistency of these models is a major concern
due to lack of a golden reference model. Second, the
design verification problem is further aggravated due to
lack of a functional coverage metric that can be used
to determine the coverage of the microarchitectural fea-
tures, as well as the quality of functional validation.
Several coverage measures are commonly used during
design validation, such as code coverage, FSM coverage,
and so on. Unfortunately, these measures do not have
any direct relationship to the functionality of the design.
For example, in the case of a pipelined processor, none
of these measures determine if all possible interactions
of hazards, stalls and exceptions are tested.
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This paper presents a validation methodology that
addresses the two fundamental challenges mentioned
above. Section 2 outlines traditional techniques used
for validation of programmable architectures. A brief
overview of our validation methodology is presented in
Section 3 followed by a case study in Section 4. Finally,
Section 5 concludes the paper.

2 Traditional Validation Flow

Figure 5 shows a traditional architecture validation
flow. In the current validation methodology, the ar-
chitect prepares an informal specification of the pro-
grammable architectures in the form of an English docu-
ment. The logic designer implements the modules at the
register-transfer level (RTL). The validation effort tries
to uncover two types of faults: architectural flaws and
implementation bugs. Validation is performed at dif-
ferent levels of abstraction to capture these faults. For
example, architecture-level modeling (HLM in Figure 5)
and instruction-set simulation is used to estimate per-
formance as well as verify the functional behavior of the
architecture. A combination of simulation techniques
and formal methods are used to uncover implementa-
tion bugs in the RTL design.
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Figure 5. Traditional validation flow

Simulation using random (or directed-random) test-
cases [1, 4, 13, 29, 33] is the most widely used form
of microprocessor validation. It is not possible to ap-
ply formal techniques directly on million-gate designs.
For example, model checking is typically applied on the
high-level description of the design (ABST in Figure 5)
abstracted from the RTL implementation [9, 14]. Tradi-
tional formal verification is performed by describing the

system using a formal language [3, 5, 10, 28, 30, 32, 34].
The specification (SPEC in Figure 5) for the formal
verification is derived from the architecture description.
The implementation (IMPL in Figure 5) for the formal
verification can be derived either from the architecture
specification or from the abstracted design. In current
practice, the validated RTL design is used as a golden
reference model for future design modifications. For ex-
ample, when design transformations (including synthe-
sis) are applied on the RTL design, the modified design
(RTL/Gate) is validated against the golden RTL design
using equivalence checking.

A significant bottleneck in these validation techniques
is the lack of a golden reference model above RTL level.
A typical design validation methodology contains multi-
ple reference models depending on the abstraction level
and verification activity such as functional models, tim-
ing models, formal models, models abstracted from RTL
implementation, and so on. The presence of multiple ref-
erence models raises an important question - how do we
maintain consistency between so many reference mod-
els?

3 ADL-driven Validation Methodology

We propose the use of a single specification to au-
tomatically generate necessary reference models. Cur-
rently the design methodology for programmable archi-
tectures typically starts with an English specification.
However, it is not possible to perform any automated
analysis or model synthesis on a design specified using
a natural language. We propose the use of an Architec-
ture Description Language (ADL) to capture the design
specification. Figure 6 shows our ADL-driven valida-
tion methodology. The methodology has four important
steps: architecture specification, validation of specifica-
tion, executable (reference) model generation, and im-
plementation (RTL design) validation.

3.1 Architecture Specification

The first step is to capture the programmable archi-
tecture using a specification language. The language
should be powerful enough to specify the wide spectrum
of contemporary processor, coprocessor, and memory
features. On the other hand, the language should be
simple enough to allow correlation of the information
between the specification and the architecture manual.

Many formal and semi-formal specification languages
for describing software and hardware designs have been
proposed over the years. The languages range in ex-
pressiveness, and their different levels of granularity de-
termine their appropriateness for different applications.
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Figure 6. Proposed validation methodology

We use the EXPRESSION ADL [7] to specify pro-
grammable architectures. It is important to note that
the validation techniques presented in this paper can use
any existing ADL that captures both structure (com-
ponents and connectivity) and behavior (instruction-set
description) of the programmable architectures. The
language independence allows our validation methodol-
ogy to be applicable using a wide variety of specification
languages.

3.2 Validation of Specification

The next step is to verify the specification to ensure
the correctness of the architecture specified. One of the
major challenges in validating the ADL specification of
programmable architectures is to verify the pipeline be-
havior in the presence of hazards and multiple excep-
tions. There are many important properties that need
to be verified to validate the pipeline behavior. For ex-
ample, it is necessary to verify that each operation in
the instruction set can execute correctly in the processor
pipeline. It is also necessary to ensure that execution of
each operation is completed in a finite amount of time.
Similarly, it is important to verify the execution style
(e.g., in-order execution) of the architecture.

We have developed validation techniques to ensure
that the architectural specification is well formed by an-
alyzing both static and dynamic behaviors of the spec-
ified architecture. Figure 7 shows the flow for verify-
ing the ADL specification. The graph model as well as
the FSM model of the architecture are generated from
the specification. We have developed algorithms to ver-
ify several architectural properties, such as connected-
ness, false pipeline and data-transfer paths, complete-
ness, and finiteness [17, 21, 27]. The dynamic behavior is

Verify Verify

Properties
(Dynamic)

Properties
(Static)Model

Graph
Model
FSM

FailedSuccessFailed Success

Validation of Dynamic Behavior Validation of Static Behavior

ADL Specification

Figure 7. Validation of Specification

verified by analyzing the instruction flow in the pipeline
using a finite-state machine (FSM) based model to val-
idate several important architectural properties such as
determinism and in-order execution in the presence of
hazards and multiple exceptions [16, 23, 26]. The prop-
erty checking framework determines if all the necessary
properties are satisfied. In case of a failure, it generates
traces so that a designer can modify the specification of
the architecture.
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Figure 8. Simulator and Hardware Generation

While these properties are by no means complete to
prove the correctness of the specification, we believe
these are necessary for establishing the correctness of the
specification. Additional properties can easily be added
and integrated into our validation framework. The val-
idated ADL specification is used as a golden reference
model for generating various executable models such as
simulators and hardware implementations.

3.3 Executable Model Generation

A major challenge in a top-down validation method-
ology is the ability to generate executable models from
a single specification for a wide variety of programmable
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architectures including RISC (Reduced Instruction Set
Computing), DSP (Digital Signal Processing), VLIW
(Very Long Instruction Word), and superscalar archi-
tectures. We have developed a functional abstraction
approach by studying the similarities and differences
of each architectural feature in various architecture do-
mains. Based on our observations we have defined the
necessary generic functions, sub-functions, and compu-
tational environment needed to capture a wide variety
of programmable architectures [22].

The functional abstraction technique enables genera-
tion of models for simulation [22] and hardware gener-
ation [24] as shown in Figure 8. The generated models
can be used for both functional validation and design
space exploration. The goal of the exploration is to find
the best possible architecture for a given set of applica-
tion programs under various design constraints such as
area, power, and performance [24, 25].

3.4 RTL Design Validation

We have explored two validation scenarios using the
generated models: design validation using equivalence
checking and test generation for functional validation.
The generated hardware is used as a reference model
for verifying the hand-written implementation (RTL De-
sign) using a combination of symbolic simulation and
equivalence checking [20]. Figure 9 shows the validation
flow. To verify that the implementation satisfies certain
properties, our framework generates the intended prop-
erties and uses a symbolic simulator to perform prop-
erty checking. Our framework generates synthesizable
RTL description of the architecture to enable equiva-
lence checking with the hand-written implementation.

The specification is also used to generate functional
test programs based on the functional coverage of
pipelined architectures [15, 19]. Figure 10 shows our
graph based functional test program generation method-
ology. The properties are generated based on the func-
tional coverage metric. The properties are applied at
the module level using the SMV model checker [11].
The counter examples are analyzed to generate test pro-
grams. We apply these test programs to the simulator
of the processor to ensure that the coverage criteria is
met. If necessary, additional properties can be added
manually. This technique reduces the time and space
required for generating test programs by applying prop-
erties at the module level and composing the responses
in sequence by traversing the pipeline graph [19].

The generated test programs are used during simu-
lation of the implementation and complement the tests
generated by the existing techniques such as a random
test pattern generator. The generated simulator is used
to compute the expected outputs for the test programs.
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Equivalence

Generic
HDL Models

(Complete Description)
Reference ModelReference Model

(Properties)

Automatic
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DifferentFailure

Figure 9. Implementation validation

Our experimental results demonstrate that the number
of test programs generated by our approach to obtain a
functional coverage is an order of magnitude less than
those generated by random or constrained-random test
generation techniques [18].

4 A Case Study

In a case study we successfully applied the proposed
methodology to the DLX [8] processor. We have cho-
sen the DLX processor for two reasons. First, the DLX
processor has been well studied in academia and there
are RTL implementations available that can be used for
validation. Second, the DLX processor contains many
interesting features such as fragmented pipelines and
multicycle units that are representative of many com-
mercial pipelined processor architectures (e.g., TI C6x,
PowerPC and MIPS R10K).

4.1 The Architecture

Figure 11 shows the simplified version of the VLIW
DLX architecture. It has five pipeline stages: fetch,
decode, execute, memory (MEM), and writeback. The
execute stage has four parallel execution paths: inte-
ger ALU, 7 stage multiplier (MUL1 - MUL7), four stage
floating-point adder (FADD1 - FADD4), and multi-cycle
divider (DIV). The oval boxes represent units and rect-
angular boxes represent storages. The solid lines rep-
resent instruction-transfer paths and dotted lines repre-
sent data-transfer paths.
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4.2 Specification using EXPRESSION ADL

We used the EXPRESSION ADL [7] to capture the
structure (components and their connectivity) and be-
havior (instruction-set) of the DLX processor shown in
Figure 11. Figure 12(a) shows a fragment of the EX-
PRESSION ADL description for the five-stage pipeline
{fetch, decode, execute, memory, writeback}. The ex-
ecute stage is further described as four parallel execu-
tion paths and each execution path is described using
pipeline stages. The specification also includes the de-
scription of each component and data-transfer paths.

The ADL captures the behavior of the architecture as
the description of the instruction set. The behavior is
organized into operation groups, with each group con-
taining a set of operations having some common char-
acteristics. For example, the aluOps in Figure 12(b)
includes all the operations supported by the IALU unit.
Each instruction is then described in terms of its op-
code, operands, behavior, and instruction format. Each
operand is classified either as source or as destination.
Furthermore, each operand is associated with a type
that describes the type and size of the data it contains.
The instruction format describes the fields of the in-
struction in both binary and assembly. Figure 12(b)
shows the description of the add and store operations.
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FADD2

FADD3

FADD4

WriteBack

MEM

MUL2

MUL1 FADD1

PC Memory

Decode

IALU
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Figure 11. VLIW DLX architecture

4.3 Validation of Specification

The EXPRESSION ADL specification is validated for
correct pipeline behavior as described in Section 3.2.
The specification validation time for verifying static
properties (such as connectedness, completeness, and
false pipeline and data-transfer paths) is less than a sec-
ond on a 333 MHz Sun Ultra-II with 128M RAM. This
includes the time to generate the graph model from the
ADL specification and to apply all the properties on
the graph model. The validation time for verifying the
dynamic properties (such as determinism and in-order
execution) is in the order of seconds.

4.4 Implementation Validation

We validated the DLX processor using equivalence
checking (Section 3.4). We obtained a VHDL descrip-
tion of the synthesizable 32-bit RISC DLX from eda.org
[12] and used it as the implementation. Our framework
generated the synthesizable RTL description from the
ADL specification of the DLX architecture. The gen-
erated VHDL is used as the reference model (specifica-
tion) for the validation. To avoid memory explosion, we
guided the RTL generation process such that the gen-
erated model has a structure similar to the implemen-
tation [12]. The equivalence checking process took 397
seconds on a 300 MHz Sun Ultra-250 with 1024M RAM.
We also identified a bug in the computation of overflow
in the implementation [12].

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04) 
0-7695-2203-3/04 $ 20.00 IEEE 



# Components specification
( FetchUnit Fetch

(capacity 2) (timing (all 1))
(opcodes all) (latches . . . ) . . .

)
( ExecUnit IALU

(capacity 1) (timing (add 1) (sub 1) . . . )
(opcodes (add sub . . . )) (latches . . . ) . . .

)
. . . . . .
# Pipeline and data-transfer paths
(pipeline Fetch Decode Execute MEM WriteBack)
(Execute (parallel IALU MUL FADD DIV))
(MUL (pipeline MUL1 MUL2 MUL3 . . .MUL7))
(FADD (pipeline FADD1 FADD2 FADD3 FADD4))
. . . . . .
(dtpaths (WB Registers) (Registers Decode) . . . )

(a) Structure

# Behavior: description of instruction set
( opgroup aluOps (add, sub, . . . ) )
( opgroup memOps (load, store, . . . ) )
. . . . . .
( opcode add

(operands (s1 reg) (s2 reg/imm16) (dst reg))
(behavior dst = s1 + s2)
(format 000101 dst(25-21) s1(21-16) s2(15-0))

)
( opcode store

(operands (s1 reg) (s2 imm16) (s3 reg))
(behavior M[s1 + s2] = s3)
(format 001101 s3(25-21) s1(21-16) s2(15-0))

)

(b) Behavior

Figure 12. EXPRESSION Specification of
VLIW DLX

4.5 Functional Test Generation

We applied our model checking based test generation
technique on the DLX processor. Our framework re-
quired less than a second to generate a test program
using a 333 MHz Sun UltraSPARC-II with 128M RAM
and uses few thousand BDD nodes. However, if con-
ventional techniques are used (negation of the property
applied on the processor model using model checker such
as SMV [11]), the test generation requires an order of
magnitude increase in both time and BDD nodes as com-
pared to our approach.

5 Conclusions

Functional validation is one of the most important
problems in today’s SOC design methodology. A sig-
nificant bottleneck in the validation of programmable
architectures is the lack of a golden reference model.
Existing validation techniques employ multiple reference
models and consistency of such models remains an open
problem.

This paper presented an ADL-driven validation
methodology for programmable architectures that uses
an ADL to specify architectures. The ADL specification
is used as a golden reference model and necessary exe-
cutable models are generated from the specification. We
have addressed three major challenges in a specification-
driven validation approach: validation of specification,
executable model generation, and implementation vali-
dation. This paper explored two implementation valida-
tion scenarios using the generated simulation and hard-
ware models. First, the generated hardware is used as
a reference model for verifying the hand-written RTL
implementation using a combination of symbolic simu-
lation and equivalence checking. Second, we developed
specification-driven test generation techniques based on
the functional coverage of the pipelined architectures.

There are many challenges remaining to make this ap-
proach viable in practice. We developed a set of prop-
erties for verifying the specification. This set is by no
means complete. It is important to develop a complete-
ness criteria (to establish both necessary and sufficient
conditions) for specification validation. Moreover, we
considered only uni-processor based architectures. Fu-
ture research needs to extend current methodology for
validation of multi-processor based systems. Finally,
the hardware generation and equivalence checking flow
assumes that the reference and implementation models
have similar structure due to the limitation of the ex-
isting equivalence checkers. There is a need for a new
validation technique that would enable reference model
generation and design validation without any knowledge
of the implementation details.
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