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Abstract— Vehicular communication has emerged as a
powerful tool for providing a safe and comfortable driving
experience for users. Long Term Evolution (LTE) supports
and enhances the quality of vehicular communication due to its
properties such as, high data rate, spatial reuse, and low delay.
However, high mobility of vehicles introduces a wide variety of
security threats, including Denial-of-Service (DoS) attacks. In
this paper, we propose an effective solution for real-time detec-
tion and localization of DoS attacks in an LTE-based vehicular
network with mobile network components (e.g., vehicles, femto
access points, etc.). We consider malicious data transmission by
vehicles in two ways – using real identification (unintentional)
and using fake identification. Our attack detection technique is
based on data packet counter and average packet delivery ratio
which helps to efficiently detect attack faster than traditional
approaches. We use triangulation method for localizing the
attacker, and analyze average packet delay incurred by vehicles
by modelling the system as an M/M/m queue. Simulation
results demonstrate that our proposed technique significantly
outperforms state-of-the-art techniques.

Index Terms—LTE-based vehicular network, denial-of-
service, real-time detection, real-time localization

I. INTRODUCTION

Vehicular communication has been widely investigated
by researchers for providing users a smart, safe, and com-
fortable driving experience. To this direction, Long-Term
Evolution (LTE) has recently emerged as a technology
which can support vehicular applications due to its attractive
features such as, high capacity, lower delay, and spatial reuse
[1], [2]. However, features such as high mobility of vehicles
and constantly changing network topology pose various
Quality of Service (QoS) and security-related challenges [3].

LTE over the years has evolved to become a highly-
complex heterogeneous system in order to support large
traffic demands of users. Entities such as, Macro Base Sta-
tions (MBSs) and Femtocells/Femto Access Points (FAPs)
are used to provide the increasing coverage and capacity
demands [3]. FAPs are low-cost, low-power cellular base
stations usually deployed in homes/offices to provide im-
proved coverage to nearby users. Recently, mobile FAPs
have gained momentum for providing better capacity and
coverage in highly mobile scenarios [2], [4]. FAPs being
low-power base stations are vulnerable to a wide variety
of attacks including Denial of Service (DoS) attacks [5].
Additionally, mobility of FAPs further adds challenges in
the detection and localization of attacks. In this work, we
have considered an LTE-based Vehicular network (LTE-
Vnet) scenario with mobile FAPs. Given the high mobility
of vehicles as well as FAPs, detection and localization of
attacks becomes highly challenging.

Threat Model: Our threat model is based on attack in the
data plane of the network via malicious vehicles. It assumes
that malicious vehicles (attackers) can be used to launch DoS
attacks. We assume that malicious vehicles will transmit
packets in the uplink channel to their associated FAPs,
with a higher transmission rate than legitimate vehicles’
transmission rate.

LTE uses Resource Blocks (RBs) for data transmission.
RB is a resource unit, defined in time and frequency domain.
RBs are allocated by a FAP to its associated vehicles which
want to transmit data. The amount of RBs available for com-
munication is fixed [6]. Therefore, a malicious vehicle by
transmitting data at higher rates leads to higher contention
for the fixed amount of available RBs. This leads to high
average packet delay, low network throughput, and large
packet drops. Such DoS attacks can be carried out in two
possible ways:

1) Case I: high amount of fake data transmission (unin-
tentionally) by attacker using its own Vehicle Id [7].

2) Case II: high amount of fake data transmission by
attacker using fake Vehicle Id [5].

Some works in the literature study DoS attacks in LTE-Vnet
scenarios and provide possible solutions to detect the attacks
[6], [8], [9]. However, these works have used a less hetero-
geneous scenario (two layer architecture) with only MBSs.
In this work, we have considered a scenario with MBSs as
well as mobile FAPs in a vehicular network environment.
We study the effect of DoS attack by malicious vehicles in
such a scenario and propose efficient attack detection and
localization techniques for the same. We intend to detect
attacks at the FAPs and then localize the attackers using
only the information available at the FAPs. This helps to not
only make our method suitable for real-time attack detection
but also helps to have a less costly approach in terms of
computation. Extensive experimental results demonstrate the
effectiveness of our proposed framework.

Contributions: The major contributions of this work are:

• We propose a real-time DoS attack detection technique
in LTE-Vnet with mobile FAPs based on Packet Deliv-
ery Ratio (PDR) and Data Packet Counter (DPC).

• We propose an efficient localization technique based on
triangulation method.

• We perform extensive performance analysis of average
packet delay in the given scenario by modeling the
system using M/M/m queuing model. Simulation
results demonstrate the effectiveness of the proposed
framework.



II. RELATED WORK

Automated vehicles and electric vehicles have gained am-
ple interest of researchers in recent years [10]–[12]. LTE in
recent years has emerged as a technology which can support
a large number of vehicular applications. Its properties such
as low delay, high data rate, and spatial reuse help to support
such communications [1], [2]. However, features such as,
high mobility of vehicles and constantly changing network
topology make it vulnerable to several security attacks,
including DoS attacks [3], [5]. DoS attacks in LTE can take
place in many ways such as, attack in network components
and in data and control channels [3], [5], [13]. Several works
in the literature propose solutions for overcoming security
challenges in LTE [8], [9], [13], [14]. In [5], the authors
have developed a theoretical framework to explore the attack
space in LTE. They have shown that the attack space can
be in three dimensions– communication security services,
planes of attack, and network components under attack. In
[14], the authors have proposed a lightweight traffic based
attack detection scheme in Voice-over-LTE network. They
have used Bayesian game to model their system but their
work deals with static entities and the detection of attack
is done at the MBS. Ambrosin et al. [9] propose a novel
method to implement a distributed DoS attack on a target
mobile operator’s control network. They have exploited the
lack of coordination between local and remote components
of the LTE network during the roaming authentication
process to realize a pulse DoS using temporal lensing.
However, they have not proposed any attack detection or
localization technique for their scenario. Authors in [13] talk
about user-targeted DoS attack in LTE network. Their attack
model is based on deploying a rogue base station which
targets users to perform DoS attack. However they have not
addressed mobility and have not proposed any detection and
localization technique. Zhu et al. [8] study security flaws in
platoon of vehicles in LTE-V2X networks but they have not
proposed any attack detection or localization technique.

A vast majority of the existing security research efforts in
LTE networks have one of the fundamental limitations: (i)
they do not deal with highly mobile scenarios like vehicles,
(ii) they cannot deal with heterogeneous network entities
like FAPs, or (ii) they do not propose any attack detection
or localization technique for their threat models. Li et al. [6]
have addressed DoS attack in cellular-V2X network where
attacker maliciously reserves communication resources such
that legitimate vehicles get little or no resources. They have
proposed an attack detection technique which is carried out
at the Mobile Edge Computing (MEC) server based on the
information received from the MBS. They did not consider
heterogeneity in the network. Also, performing detection at
MEC server and MBS may lead to high delay which makes
it unsuitable for real-time attack detection. The authors have
not addressed the issue of localization of attacker. While
there are promising approaches for DoS attack detection and
localization in network-on-chip architectures [15], [16], they
are not suitable for vehicular networks.

In our work, we have considered a heterogeneous LTE-
Vnet scenario with mobile FAPs and vehicles, where DoS
attack is performed by certain malicious vehicles by reserv-
ing resources and thus, forcing legitimate vehicles to use

Fig. 1: System model on an LTE-based vehicular network.

little or no resources. The presence of mobile FAPs helps
in spatial reuse [2] but introduces challenges in detecting
the attack as well as in localizing the attacker(s). To the
best of our knowledge, detection and localization of DoS
attacks in such a scenario has not been handled so far in the
literature, and our work is the first attempt for a solution to
the aforementioned challenges.

III. SYSTEM MODEL

Our system model consists of a city scenario with multiple
roads and intersections. The LTE architecture considered
is given in Figure 1. Vehicles are equipped with devices
which help them to communicate via cellular network. FAPs
are placed on larger vehicles, such as, buses and trucks.
A vehicle associates/joins with a FAP if it receives strong
signal strength from the FAP. In the absence of a FAP in
the neighborhood, a vehicle associates with MBS. Vehicles
generate fixed size packets and the inter-arrival duration
of packet generation follows an exponential distribution.
Packets generated by vehicles remain in their buffer until
they get a chance to transmit to a FAP or MBS. Vehicles can
be either active or inactive. Active vehicles, when associated
with FAPs, send packets periodically, while inactive vehicles
do not send packets even after associating with a FAP.

IV. PROPOSED METHODOLOGY

In this section, we propose our attack detection and
localization techniques based on the threat model outlined in
Section I. We perform the DoS attack detection using DPC
counter and average PDR value. DPC is a counter which is
initialized to the maximum number of packets that can be
transmitted by a vehicle. PDR is defined as the ratio between
the number of packets received to the number of generated
packets.

A. Real-Time Detection of DoS Attacks

We first consider the scenario given in Case I mentioned
in the threat model (Section I), where the real identification
of the attacker vehicle is available. The need here is to detect
the attack. Our proposed approach for this is given below.

1) Attack Detection for Case I: In this case, we consider
detecting the attack at the FAPs by using DPC counters. This
is because all uplink packets from vehicles are transmitted
via their associated FAPs. DPC counters for each vehicle,
associated to a FAP, are initialized to the maximum number
of packets that can be delivered by the corresponding
vehicles in a given time interval. Finding the initial value of
DPC counter is crucial. We show its calculation below.

Let us assume that there are m RBs and x vehicles are
associated to a FAP. These x vehicles include both legitimate



and malicious vehicles. Total time is T which is divided
into time slots of duration τ . Let α be the packet generation
rate. The probability of accessing any one of the m RBs by
a vehicle is given by

δ = e−α([ x−1
m +1])τ (1)

Now, let us assume that j out of x vehicles generate packets
in a given time interval. These j vehicles can be selected in
the following way: (

x

j

)
=
x(x− 1)

j
(2)

Let gt be the probability of generating packets by a vehicle
in a given time slot, t. The probability of generating packets
by j vehicles is

Γj = gjt (1− gt)x−j (3)
The probability that exactly j of x vehicles transmit packets
in a given time slot is given by

βj = j × Γj = j × gjt (1− gt)x−j (4)
By using Equation 1 and 4, we can calculate the average

number of packets transmitted per vehicle:
E [X] = δ × βj (5)

The maximum number of packets that can arrive at a FAP
from a vehicle depends on the distance between the FAP
and the vehicle, the Signal-to-Interference-plus-Noise Ratio
(SINR) value and Reference Signal Received Power (RSRP)
value. SINR is calculated as:

SINR =
S

N + I
(6)

where S denotes the signal strength, N denotes the noise and
I denotes the interference in the channel. Based on SINR,
the maximum channel capacity can be calculated by using
Shannon’s Channel Capacity theorem [2]:

W = B × log2 (1 + SINR) (7)

where B denotes the bandwidth of the channel. Now, by
using Equation 5 and 7, the average number of packets
received by a FAP, per vehicle, is calculated as:

E [r] =
W

E [X]× x
(8)

Therefore, with packet size l, the DPC value can be calcu-
lated as:

DPC = max

(
W

l
,E [r]

)
(9)

Algorithm 1 outlines the sequence of steps to detect and
localize the attacker(s). In this algorithm, at each time step
(10 ms), FAPs find their associated vehicles (line 7). At
every d ms, FAP checks for association with new vehicles.
If present, it calculates its DPC value and initializes its
packet counter PCount, among other values (lines 9-16).
Otherwise, the uplink buffer is checked and PCount is
updated (lines 17-19). Based on the condition in line 20, the
attack is detected and as vehicle ID is known in this case,
attack is localized by flagging the corresponding vehicle
(lines 20-22).

2) Attack Detection for Case II: In this case, we have
used PDR to detect the attack. We assume that the attacker
uses the ID of inactive vehicles, associated to a FAP, to
launch attack and hide its own identification [5].

• Each vehicle (both legitimate and attacker) periodically
calculates its own PDR with the help of acknowledg-
ments received in each time slot.

• Vehicles then send their PDR values to FAP through
control plane (the attack is happening over data plane).

Algorithm 1: Detect & Localize the Attacker(s)
Input: fap: set of FAPs
Output: attackerList: List of attackers

1 n: total number of vehicle;
2 Ubuf : Temporary uplink buffer with packet

transmitted by each vehicle at FAP;
3 PCount:Packet count;
4 temp = 0;
5 for ((i = 1; i <= T ; i+ +) do
6 for (f = 1; f <= fap; f + +) do
7 V̄ = vehicles associated to fap(f);
8 for (k = 1; k <= n; k + +) do
9 if (i%d == 0) then

10 for (v = 1; v <= V̄ ; v + +) do
11 if (k.V Id == v.V Id) then
12 if (v.fi−1 6= v.fi) then
13 v.PCount = 0;;
14 v.Attacker=False;
15 v.Ubuf= null ;
16 v.DPC =

Calculate DPC(v);

17 temp = v.Ubuf.size()/l;
18 for

(j = 1; j <= temp; j + +)
do

19 v.PCount+ +;

20 if (v.PCount > v.DPC)
then

21 v.Attacker = True;
22 attackerList← v.V Id;

• FAP keeps track of PDR values of each vehicle as-
sociated to it and uses these values to calculate the
Average PDR (APDR) of each vehicle. The objective
behind calculating APDR is to avoid flagging legitimate
vehicles as potential attackers.

• If APDR< ϑ, a threshold [17], the vehicle is considered
to be a legitimate vehicle, otherwise it is flagged as a
possible attacker. The APDR value of inactive vehicles
will be zero as they do not send packets. Thus, the
FAP will now have two different APDR values for the
same vehicle ID – one belonging to the legitimate but
inactive vehicle and the other belonging to the attacker.

• If FAP gets two APDR values for the same vehicle ID,
it compares both the values with the threshold and starts
localizing the vehicle with the higher APDR using the
method given in Section IV-B.

The attack detection is described in Algorithms 2 and 3.
Algorithm 2 outlines the sequence of steps to calculate the
PDR of each vehicle. Here, each vehicle associated to a FAP
f , checks its downlink buffer (Dbuf ) for acknowledgments
received and adds the contents in a temporary list RList
(lines 4− 8). PDR is calculated using the method given in
line 9 and the corresponding value is added in the vehicle’s
uplink buffer Ubuf (line 10).



Algorithm 2: PDR Calculation
Input: Dbuf: Downlink Buffer of each vehicle with

acknowledgment packets
Output: Ubuf: Uplink buffer of each vehicle with

PDR
1 G : Number of packets generated by each vehicle v;
2 RList : Temporary List;
3 for (i = 1; i <= T ; i+ +) do
4 for (f = 1; f <= fap; f + +) do
5 V̄ = vehicles associated to fap(f);
6 for (v = 1; v <= V̄ ; v + +) do
7 if (v.Dbuf 6= null) then
8 v.RList← v.Dbuf ;

9 v.pdr ← v.RList.size()/v.G;
10 v.Ubuf ← v.pdr;

Algorithm 3: Detection of DoS Attacks
Input: Ubuf: uplink buffer of each vehicle with PDR
Output: AList: List of Attackers

1 temp=0;
2 for (i = 1; i <= T ; i+ +) do
3 for (f = 1; f <= fap; f + +) do
4 V̄ = vehicles associated to fap(f);
5 for (v = 1; v <= V̄ ; v + +) do
6 for (s = 1; s <= q; s+ +) do
7 PList← v.Ubuf.get(pdr);

8 v.AvgPdr←PList/q
9 if (v.AvgPdr > ϑ) then

10 AttackerTable.put(V Id, v.AvgPdr);

11 EntryTable.put(V Id, temp+ +);

12 if (EntryTable.getvalue() > 1) then
13 if (AttackerTable.getvalue() > 0)

then
14 AList.add(EntryTable.getkey())

Algorithm 3 outlines the sequence of steps for detecting
the attack and get a list of possible attackers. The PDR
values are added to a temporary list (Plist) and average
PDR is calculated (lines 6-8). If the average PDR is greater
than a threshold value ϑ then the vehicle ID is added to
a possible attackers list AttackerTable (line 10) and IDs
of all associated vehicles (active and inactive) is added in
another list, EntryTable (line 11). If there is any vehicle
which appears more than once in the EntryTable, this means
that it may have taken ID of an inactive vehicle. Then, its
presence in the AttackerTable is checked. Thus, if a vehicle
has taken inactive vehicle’s ID and has transmitted packets
more than the threshold ϑ, then it is flagged as an attacker
(lines 12-14).

B. Real-Time Localization of Attackers
In this section, we propose our technique for localization

of attackers detected in Case II. It should be noted that

Fig. 2: Triangulation method for localization

localization in LTE-Vnet framework faces the following
major challenges:

• There is no direct communication between vehicles.
• Single-hop communication takes place between vehi-

cles and base station (FAP or MBS).
• High mobility of vehicles.

The following information is available about each vehicle:
their SINR, Received Signal Strength (RSS), PDR, and
number of transmitted packets. Considering the challenges
and the information available about each vehicle, we pro-
pose using triangulation method for localizing the attackers.
Triangulation method uses the distance of a known vehicle
(legitimate vehicle) from FAP, an unknown vehicle (attacker
vehicle), and the measured angle between the vehicles [18]
to calculate the location of the attacker, as shown in Figure 2.
As mentioned in Section III, we have considered a city
scenario. Therefore, it is safe to assume that the number
of vehicles is high, resulting in same relative speed between
them. Although we have considered the city scenario but
our work is also applicable in highway scenarios because
even with high speed of vehicles, the relative speed be-
tween vehicles will remain the same. Due to low relative
speed between associated vehicles and FAPs, we can use
triangulation method for localization.

Let us assume that A is a possible attacker obtained from
Algorithm 3 at a FAP F , as shown in Figure 2. F calculates
the distance between itself to A and legitimate vehicle V
using RSS. This distance can be calculated as [19]. Let γ
be the reference distance between transmitter A and receiver
F . The received signal power ψ can be calculated as:

ψ (in dBm) = u−R(γ) (10)

where, R(γ) denotes reference power for γ and u as
transmit power of A. Now, using Equation (10) the RSS
value is calculated as:

RSS(in dBm) = ψ − 10h log a (11)

where, h represents path loss exponent and depends on
specific propagation environment. It measures the rate at
which the RSS decreases with distance. a is the distance
from A to F . Maximum RSS value RSSmax can be
obtained by computing the maximum of RSS values. Using
RSSmax value, distance a is calculated as:

a(in meters) = 10(ψ−RSSmax
10 )×h (12)

The distance between V and F denoted as b is also
calculated in a similar way. After calculation of distance,
the angle θ between a and b is calculated by FAP using
following formula:

θ = tan−1

(
± ∆1 −∆2

1 + ∆1∆2

)
(13)



where ∆1 and ∆2 are the slope of lines F -A and F -V . To
localize the attacker, FAP needs to find the distance between
A and V . As the value of a, b and θ are known, the distance
between A and V , which is denoted as c, can be calculated
as follows:

c =
2
√
a2 + b2 − 2abCosθ (14)

After calculating the distance, FAP calculates the common
meet point using the distance c and a. Then, it calculates the
coordinates for common point and based on the coordinates
it localizes the attacker.

C. Performance Analysis
In this section, we analyze the average delay of a packet

being transmitted from a vehicle to its associated base station
(FAP or MBS). As mentioned in Section I, at a given time,
a fixed number of RBs are available for communication
and FAPs are responsible for allocating them to vehicles.
Now, if we consider our attack scenarios (both Case I and
Case II), we can conclude that given a fixed amount of
available resources, when number of data packets increase,
contention for availing the limited amount of resources will
also increase, leading to high delay.

For our analysis, we trace each packet from its generation
until its delivery to the associated FAP. As mentioned earlier,
in the uplink, vehicles generate packets which are stored
in their buffers until RB is allocated for transmission. The
maximum number of vehicles that a FAP can serve is equal
to the number of available RBs. On assignment of a RB, a
vehicle can transfer its packets to the associated FAP. Let
us assume that there are x vehicles associated to a FAP. x
includes both legitimate and malicious vehicles. Also, there
are only m RBs available such that m < G.x, i.e., number of
available RBs is less than the number of packets generated
by the associated vehicles. Hence, for transmission from
vehicles to FAP, vehicles have to contend for RBs. Let
E[Wv] be the expected waiting time incurred by packets
generated at vehicles to reach FAPs. The buffers in vehicles
associated to a FAP can now be modeled as an M/M/m
queue where m RBs act as servers. Let the packet arrival
rate be λ and the service time be exponentially distributed
with mean 1/µ. Thus, the expected waiting time for packets
in vehicles is given by,

E[Wv] = E[P ]/λ (15)

where, E[P ] is the expected number of packets in the queue
including the ones in service. E[P ] is given by,

E[P ] =
ρη

1− ρ
(16)

Here, ρ is the server utilization factor and η is defined as
the probability of queuing i.e, the probability that there are
m or more packets waiting in the queue to be served. The
server utilization factor for M/M/m queue is given by

ρ =
λ

mµ
(17)

η is given by
η =

(mρ)m

m!(1− ρ)
J (18)

J represents the probability that all servers are idle and there
are no packets in the system to serve.

J =

[
1 +

(mρ)m

m!(1− ρ)
+

m−1∑
i=1

(mρ)i

i!

]−1

(19)

V. EXPERIMENTS

A. Experimental Setup

The simulation scenario consists of a city scenario with
road of length 10 km with multiple lanes and intersections.
The traffic is bidirectional. We are comparing our approach
with [6], where the authors have considered only MBS
and detection takes place at MEC server. To simulate our
scenario, We have used a discrete event simulator based on
Java. We have used Simulation of Urban MObility (SUMO)
to generate the vehicular movements. The simulation results
have been averaged over 90-100 runs. Parameters considered
for simulation is given in Table I.

Parameter Value
Number of Vehicles 300
Number of FAPs 50
Packet Size 160 bytes
Packet generation rate
(legitimate vehicle) 1 Packet/5ms

Packet generation rate
(attacker) 1 Packet/1ms

MBS Transmission Range 10 km
FAP Transmission Range 50 m
MBS Transmission Power 43 dBm
FAP Transmission Power 23 dBm
Vehicle Speed 30-80 Km/hr

Path Loss Coefficient FAP:3.5
MBS:2.5

TABLE I: Parameters used in simulation [2], [5]

B. Simulation Results

Figure 3 depicts the comparison of our approach with the
existing approach with respect to detection and localization
time and percentage. In the existing approach, the attack
detection is done at MBS and localization of attacker is
done at MEC server [6]. This takes more time and makes
detection more complex. Figure 3a represents the attack
detection time for Case I, Case II and existing approach. As
expected, with the increase in number of attackers, the attack
detection time decreases. We can see that the detection time
taken in Case I is much less than that of Case II and existing
approach. This is because, in Case I the detection is done at
FAPs by calculating DPC values, whereas, in Case II, PDR
calculated at each vehicle is transmitted to FAP which uses
it for detection of attack. In the existing approach, authors
have used MBS to perform detection. As the MBS is far
from the vehicles and traffic load at MBS is higher than
FAP, it takes more time to detect than Case I and Case II.

Figure 3b represents the time for localizing the attacker.
It can be seen that Case I takes less time for localizing
than both Case II and existing approach. This is because,
in Case I, FAP localizes the attacker using its vehicle
Id, whereas, in Case II, FAP uses triangulation method
to localize the attacker, and in the existing approach neu-
ral network based method is used for localization. Figure
3c represents the variation in the percentage of attackers
detected and localized with the number of attackers. As
the vehicle Id is known in Case I, the attacker is easily
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Fig. 3: Comparison of proposed technique with existing approach
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Fig. 4: Impact of DoS attacks with multiple attackers

detected and localized. Hence, it performs better than Case
II and existing approach. Figure 4a represents the variation
in average delay with increase in number of vehicles in
the scenario. Vehicles include both legitimate and malicious
vehicles. As expected, with increase in number of vehicles,
the average delay increases. This is because, more number
of vehicles will contend for the fixed amount of available
resources. With the inclusion of malicious vehicles, more
packets will be generated, which will eat up more resources
resulting in higher contention, leading to higher delay. As we
can see, higher delay can be observed when the number of
malicious vehicles is more. Similarly, in Figure 4b, it can
be observed that when the number of attackers increases,
the average PDR percentage decreases. This is because,
with more attackers, contention for available RBs increases,
leading to lower PDR.

VI. CONCLUSION

In this paper, we have developed an efficient framework
for real-time detection and localization of Denial-of-Service
(DoS) attacks in LTE-based vehicular networks. We have
explored DoS attack detection using average packet delivery

ratio as well as data packet counter values. We have utilized
triangulation method to localize the attacker which uses
fake vehicle identification to perform the attack. We have
also performed detailed analysis of average packet delay
using M/M/m queuing model. Our experimental results
demonstrate that our approach can significantly outperform
state-of-the-art methods. In future work, we plan to explore
various mitigation techniques.
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