
Efficient Decision Ordering Techniques for SAT-based Test Generation∗

Mingsong Chen Xiaoke Qin Prabhat Mishra

mchen@cise.ufl.edu xqin@cise.ufl.edu prabhat@cise.ufl.edu

Department of Computer and Information Science and Engineering

University of Florida, Gainesville, FL 32611, USA.

Abstract

Model checking techniques are promising for automated

generation of directed tests. However, due to the prohibitively

large time and resource requirements, conventional model

checking techniques do not scale well when checking complex

designs. In SAT-based BMC, many variable ordering heuris-

tics have been investigated to improve counterexample (test)

generation involving only one property. This paper presents ef-

ficient decision ordering techniques that can improve the over-

all test generation time of a cluster of similar properties. Our

method exploits the assignments of previously generated tests

and incorporates it in the decision ordering heuristic for cur-

rent test generation. Our experimental results using both soft-

ware and hardware benchmarks demonstrate that our approach

can drastically reduce the overall test generation time.

1 Introduction

Due to the increasing complexity and decreasing time-to-

market requirement, functional validation of System-on-Chip

(SOC) designs is becoming a major bottleneck. Conventional

simulation based validation methods mainly adopt two kinds

of tests: constrained-random and directed tests. Compared to

constrained-random testing, directed testing uses fewer tests to

achieve required functional coverage. Thus the overall valida-

tion effort can be reduced. However, most directed test gener-

ation methods need the expert knowledge of design under val-

idation. The inevitable human intervention makes directed test

generation laborious, time consuming and error-prone. So it is

necessary to develop efficient techniques to automate the pro-

cess of directed test generation.

Model checking is recognized as one of the most promising

methods for automated directed test generation. In SOC func-

tional validation, the design is transformed to a formal specifi-

cation, and the negation of the coverage requirements are de-

rived as safety properties in the form of temporal logic. During

verification, the model checker exhaustively enumerates all the

possible states. If one state contradicts the specified property,

the model checker will report a counterexample. Such a coun-

terexample is a sequence of variable assignments which can be

refined to a test. Validation of SOC design using these tests can

∗This work was partially supported by NSF CAREER award 0746261.

guarantee coverage requirement. To relieve the state space ex-

plosion problem when checking complex designs, Boolean Sat-

isfiability (SAT) based Bounded Model Checking (BMC) [1] is

proposed. By unrolling the design and the property k times,

BMC converts the k step state search problem into a SAT prob-

lem. If the property fails within k steps, a SAT solver will report

a satisfiable assignment (counterexample).

Decision ordering plays an important role during the search

because different ordering implies different search path which

strongly affects the search time. Most existing decision order-

ing methods focus on exploiting the useful information of gen-

eral SAT problem with only one SAT instance. Generally for

test generation, a design may have various properties and BMC

will check each of them individually. Based on the same de-

sign, similar properties describe correlated functional scenar-

ios. Therefore the respective counterexample are expected to

have a significant overlap. This paper exploits the decision or-

dering information in the context of test generation involving

one design and multiple properties. The contribution of this

paper is the development of an algorithm to drastically reduce

the overall directed test generation time by using our proposed

heuristics on decision ordering. We integrated our method into

the SAT solver zChaff [2]. Experimental studies show that our

method can drastically reduce the overall test generation time.

The rest of the paper is organized as follows. Section 2

presents related work on SAT-based BMC techniques and deci-

sion ordering heuristics. Section 3 describes SAT-based BMC.

Section 4 proposes our test generation methodology using effi-

cient decision ordering techniques. Section 5 presents the ex-

perimental results. Finally, Section 6 concludes the paper.

2 Related Work

Model checking [3] techniques have been widely accepted

as a promising method for automatic test generation. Due to

the scalability issues of conventional Binary Decision Diagram

(BDD) based methods, SAT based BMC is proposed as a com-

plementary solution for large designs. Many studies in both

software and hardware domain [4] show that BMC has better

capacity and productivity over unbounded model checking for

real designs. Currently, various techniques based on conflict

clause forwarding and variable ordering [5] are proposed to fur-

ther improve the efficiency of BMC based test generation.

Due to the incremental nature of BMC, SAT techniques [6, 7]

try to exploit the commonality between SAT instances and

reuse previously learned conflict clauses to prune current search

tree. Strichman [7] found that when solving the SAT instance

series of a property, some conflict clauses can be replicated and

forwarded because of the symmetry of the transition part of the

property. In [8], Mishra and Chen observed that during directed

test generation using SAT-based BMC, similar properties can

be clustered and solved together. For each cluster, they reused

the learned knowledge of base property to solve other proper-

ties. Our method in this paper uses variable ordering instead of

conflict clauses as learning knowledge to reduce the overall test

generation time. The comparison between our method and [8]

is shown in Section 5.

Different variable ordering will lead to different search trees,

therefore branching heuristics can improve the SAT searching

performance significantly [9]. As a popular SAT solver, zChaff

uses the Variable State Independent Decaying Sum (VSIDS)

heuristic [5]. This heuristic contains two parts: i) the static part

collects the statistics of the Conjunctive Normal Form (CNF)

literals prior to SAT solving and sets the initial decision order-

ing, and ii) during the SAT solving, the dynamic part periodi-

cally updates the priority based on conflict clauses. Although

the above general-purpose heuristics are promising for proposi-

tional formulas, they neglect some unique information of BMC.

In [10], Strichman exploited the characteristics of the BMC for-

mulas for a variety of optimizations including decision order-

ing. When the bound is unknown, SAT-based BMC needs to

increase the unrolling depth one-by-one until finding a coun-

terexample. Wang et al. [11] analyzed the correlation among

different SAT instances of a property. They used the unsatis-

fiable core of previously checked SAT instances to guide the

variable ordering for the current SAT instance.

To the best of our knowledge, all the existing approaches ex-

ploit variable ordering to improve the SAT solving time involv-

ing only one property (one SAT instance or several correlated

SAT instances with different bounds). Our approach is the first

attempt to use decision ordering to reduce the test generation

time for a cluster of similar properties.

3 Background

SAT-based BMC is very promising to locate the errors and

report the counterexample for a faulty property when bound is

known a priori. Given a model M, a safety property p, and a

bound k, BMC will unroll the model k times and transform the

problem into a Boolean formula as follows:

BMC(M, p,k) = I(s0)∧
k−1̂

i=0

T (si,si+1)∧
k

_

i=0

¬p(si)

It consists of three parts: i) I(s0) presents the system initial

state, ii) T (si,si+1) describes the state transition from state si

to state si+1, and iii) p(si) tests whether property p is true on

state si. Then this formula will be transformed to CNF and

solved by SAT solvers. Semantically, if there is a satisfiable

assignment for this property, then the property is false, written

M |=/k p. Otherwise, it means that the property holds for the

design within bound k, written M |=k p.

while (1){
run periodic functions();

if (decide next branch()) {
while (deduce() == CONFLICT) {

blevel = analyze conflicts();

if(blevel < 0)

return UNSAT;

}
}
else return SAT;

}

Figure 1. DLL search procedure of zChaff

Davis-Putnam-Logemann-Loveland (DPLL) algorithm [12]

is widely used for SAT search. Figure 1 shows its implementa-

tion in zChaff. It contains three parts:

• Periodic function updates the SAT configuration triggered

by some specified events, such as updating the scores of

literals after a certain number of backtracks.

• Boolean Constraint Propagation (BCP) is implemented in

deduce. It figures out all possible implications by previous

decision assignment.

• Conflict analysis does a proper backtrack when encounter-

ing a conflict. It analyzes the reason for the conflict and

make it as a conflict clause to avoid the same conflict in

future processing.

Decision ordering plays an important role during the SAT

search. In zChaff, each literal l is associated with a

zchaff score(l) which is used for decision ordering at de-

cide next branch(). Initially the score is equal to the literal

count in corresponding CNF file. During the SAT solving, the

score will be updated in periodic function after a certain num-

bers of backtracks. The calculation of the new literal score is

as follows:

cha f f score(l) = cha f f score(l)/2+ lits in new con f s(l)

where lits in new confs(l) is the number of newly added con-

flict clauses which contain literal l since last update.

Studies show that modern SAT solvers spend approximately

80% of time to carry out BCP. In addition, during the conflict

analysis, long distance backtracks will increase the burden of

SAT solvers. Our method tries to optimize both parts by using

the learning from decision ordering. The learning can guide the

SAT search so that it can drastically reduce the search time.

4 Test Generation using Decision Ordering

For model checking based directed test generation, each

property is a negation of a desired system behavior. Thus it

is assumed that each property can produce a counterexample

(test). The properties which are used to detect the similar func-

tional errors have a large overlap and can be clustered. This

section presents our decision ordering heuristic to reduce the

overall test generation time for a cluster of similar properties.

The remainder of this section is organized as follows. In Sec-

tion 4.1, we present an overview of our approach using an il-

lustrative example. Section 4.2 presents our decision ordering

heuristic. Finally, Section 4.3 proposes an algorithm which in-

corporates our heuristic.

4.1 Overview

As discussed in Section 3, the most time consuming parts

are BCP and long distance backtracking. They are indicated

by implication number and conflict clause number which rep-

resent the successful decision ratio and backtrack number re-

spectively. Ideally, a search method can get a satisfiable assign-

ment by making the assignment for each variable only once.

However, generally it is impossible to achieve such scenario.

For a cluster of similar properties and pre-determined bounds,

the objective of our method is to reduce the number of implica-

tions and conflict clauses of unchecked properties by incorpo-

rating the learned decision ordering knowledge from previously

checked properties.

d d

b b b

1 0 01

1 0 1 0

1 001

C

1 0 1 0 1 0 1 0

C C C C C C C C C C C C

1 0 1 0 1 0 1 0

S SC

aa

bbbb

a a

b

a) Partial view of the first example b) Partial view of the second example

Search Path Variable: a, b, c, d

Ordering: d, d’, a, a’, b, b’, c, c’ Ordering: d, d’, a, a’, b, b’, c, c’

S: SuccessC: Conflict

Figure 2. Two examples of SAT search

If we have two similar properties, both properties will have

a large overlap on CNF clauses and counterexample assign-

ments. Figure 2 shows the partial views of search trees and

search paths of the two properties. The search paths are formed

according to the decision ordering (shown on top of the search

trees). For each variable v in the ordering, there are two literals

(v means v = 1 and v′ means v = 0). As shown in the Fig-

ure 2a, there are 3 conflicts encountered. The search stops after

finding a satisfiable assignment a = 0, b = 0, c = 1, d = 1 in

this scenario. In Figure 2b, the search will be successful only

when a = 0, b = 0, c = 1, d = 0 after encountering 7 conflicts.

Therefore the search of the second example will be more time-

consuming because of more backtracks.

Because of the large overlap in the assignment of counterex-

amples, the result of previously checked properties can be used

as a learning for unchecked properties. For example, in Fig-

ure 2, the result of first example strongly indicates the assign-

ment of the second example because of the satisfiable assign-

ment intersection a = 0, b = 0, c = 1. If the second example

use the decision ordering based on the variable assignment in

the intersection first, the searching time of the second example

can be drastically reduced as shown in Figure 5.

4.2 Decision Ordering Heuristic

In this section we present our heuristic as well as its im-

plementation to improve the overall test generation time. Our

heuristic consists of both ordering of values as well as variables.

4.2.1 Bit Value Ordering

Similar properties generally have a large intersection on both

corresponding CNF clauses and counterexample assignments.

This indicates that the satisfiable assignment of checked

SAT instances contain rich decision ordering knowledge for

unchecked satisfiable SAT instance. In SAT search, incorrect

value selection for each variable will cause conflicts which will

result in backtracks to remove the reason of the conflicts. A

good decision ordering can mostly avoid such faulty assign-

ments. Unlike pruning the search tree using conflict clause for-

warding [8], bit value ordering changes the search path. By

setting the bit priority (choose 0 or 1 first) for each variable us-

ing the knowledge of previous property checking, the length of

the search path can be reduced.

bb

1

1

C C C

1 1 0 1

bb

a a

d
0

0

1 0

SC

0

C C C

1

1

C C C

1 1 0 1

bb

a a

d
0

0

1 0

SC

0

C C C

a) Without bit value ordering

Ordering: d, d’, a, a’, b, b’, c, c’

a=0, b=0, c=1, d=1

01

0 0

01

bb

Learned assignment:

Ordering: d, d’, a’, a, b’, b, c, c’

b) With bit value ordering

Figure 3. A scenario where bit value ordering works

Figure 3 shows an example where bit value ordering works.

As shown in Figure 2a, we can get a satisfiable assignment

a = 0, b = 0, c = 1 and d = 1. This assignment can be used

to change the decision ordering of the second example. That

means, when node a is encountered, the search chooses a = 0

first in its search path. The same rule also applies on other

nodes. Applying such heuristic in Figure 3b, there are only 4

conflicts encountered compared to 7 conflicts in Figure 3a. In

addition the search path is also shortened. Therefore the search-

ing time is reduced.

It is important to note that the bit value ordering itself is not

always helpful for the SAT searching. For example in Figure 4,

a = 1, b = 0, c = 1, d = 1 is the only satisfiable assignment in

the given scenario. The searching in Figure 4a without bit value

ordering is faster than the searching in Figure 4b because of less

conflicts. As another example, if the learning assignment in

Figure 4 is a=0, b=0, c=1 and d=0, the searching performance

1

1

C C C

1 1

d
0

0

bb

a

b

01

a) Without bit value ordering b) With bit value ordering

Learned assignment: a=0, b=0, c=1, d=1

Ordering: d, d’, a, a’, b, b’, c, c’ Ordering: d, d’, a’, a, b’, b, c, c’

0

0

b

a

1

1

C C C

1

d
0

00

SS

Figure 4. A scenario where bit value ordering fails

will be worse than the search in Figure 4b. Clearly, in the search

tree, the high level variables (e.g. node d) strongly affect the

performance of the searching if they are not consistent with

learned bit value ordering.

4.2.2 Variable Ordering

Although bit value ordering is promising in general, there are

still a lot of conflicts encountered during the search. According

to the example shown in Figure 4, if high level nodes (e.g. node

d) make the wrong decision, the search path will be lengthened

due to the long distance backtrack. To reduce the searching

time, it is necessary to restrict the conflict detection and rea-

soning in a small area.

1

01

C C C

1 0 1 0

C

bb

a a

d

1

b

1

0

0

0

S

1 0

0

S

1 0
a

b

d

1

a) With bit value ordering b) With bit value and variable ordering

Ordering: d, d’, a’, a, b’, b, c, c’ Ordering: a’, a, b’, b, d, d’, c, c’

Learned assignment: a=0, b=0, c=1, d=1

C C

Figure 5. An example of bit value and variable ordering

Efficient combination of variable ordering and bit value or-

dering is very promising. As shown in Figure 5b, the search

time is better than that in Figure 5a due to a shorter search path

and less conflicts. The reason of this improvement is that we

enhance the priority of literal a′ and b′. Since d is the vari-

able with different value between the two satisfiable assign-

ments shown in Figure 2, lowering down the priority of such

variables with the potential different value between two CNFs

can efficiently avoid the long distance backtrack. Generally, be-

fore SAT solving, it is hard to figure out the difference between

two satisfiable CNF variable assignments. However, based on

the value assignment statistics of the checked properties, the

variable ordering can be constructed. For a variable with the

lower assignment value variation which indicates high chance

of same value, we will enhance its priority by increasing the

score of its two literals.

4.2.3 Heuristic Implementation

In our heuristic implementation, we predict the decision order-

ing based on the statistics collected from the checked proper-

ties. Let varStat[sz][2] (sz is the largest variable number for

CNFs) be a 2-dimensional array to keep the count of vari-

able assignments. Initially, varStat[i][0] = varStat[i][1] = 0

(0 < i ≤ sz). varStat will be updated after checking each prop-

erty. Assuming we are now checking property p j, if the value

of variable vi in the assignment of the p j is 0, then varStat[i][0]
will be increased by one; otherwise, varStat[i][1] will be in-

creased by one. This updated information of varStat will be

utilized when checking property p j+1.

d

b d

0 1

varStat

[1] v’

[0] v

a

varStat

[0] v

[1] v’

......

......

......1100

1 0 0

cb

......

......1200

2

a c

0

varStat

[0] v

[1] v’

a

0

b c d

0 0

00 0 0

p1: a=0, b=0, c=1, d=1

......

......

1

2

......

predict ordering for p3

p2: a=0, b=0, c=1, d=0

score(a’)

score(c)

score(b) score(b’)

score(c’)

score(a)

a = 0, b = 0, c = 1, d = ?

Learning from p1 + p2

Learning from p1Initial values

Figure 6. Statistics for two properties

For example, if we have three properties p1, p2 and p3, the

statistics after checking p1 and p2 are shown in Figure 6. When

checking p3, we can predict its decision ordering based on the

collected information saved in varStat. The content of varStat

indicates that variables a and b are more likely to be 0, c is more

likely to be 1 and d can be assigned any value. Furthermore,

varStat implies the assignments for variable a, b and c are more

consistent than the assignment for variable d. Thus the score of

variable a, b and c will be increased. In other words, they will

be searched first as described in Section 4.2.2.

Assuming li is a literal of vi, we use the following equation

to predict the bit value assignment of vi when checking p j+1.

potential(li) =

1 (varStat[i][1] > varStat[i][0]&li = vi)

or(varStat[i][1] < varStat[i][0]&li = v′i)

0 otherwise

For example, potential(li) = 0 means that value of li is more

likely to be 0 in the satisfiable assignment of p j+1. For exam-

ple, in Figure 6, potential(a) = 0 which means that a is more

likely to be assigned with 0. Let

ratio(i) =
max(varStat[i][0],varStat[i][1])+1

min(varStat[i][0],varStat[i][1])+1

indicates the assignment variance of variable vi. The larger

ratioi means the value assignments for variable vi are more con-

sistent. So it can be used for variable ordering.

Our decision heuristic is based on VSIDS. The only differ-

ence is that our method incorporates the statistics of previously

checked properties. For each literal li, we use score(li) to de-

scribe its priority. Initially, score(li) is equal to the literal count

of li. At the beginning of search as well as periodically decay-

ing time, the literal score will be recalculated using the follow-

ing equation where max(vi) = MAX(score(vi),score(v′i))+1.

score(li) =

{

max(vi)∗ ratio(i) pontential(li) = 1

score(li)∗ ratio(i) otherwise

4.3 Test Generation using Our Heuristics

In this paper, we assume that the bound is pre-determined

and given as an input to our method. Determination of bound

is hard in general. However, for directed test generation, the

bound can be estimated by exploiting the structure of the de-

sign. Algorithm 1 describes our test generation methodology.

The inputs of the algorithm are a formal model of the design

and a cluster of similar properties. The first step initializes

varStat which is used to keep statistics of the variable assign-

ments. After generating a CNF for the base property p1 in step

2, step 3 solves the CNF using cha f f score presented in Sec-

tion 3 without any learning techniques. In step 4, varStat is

updated after the satisfiable assignments of pi−1 are achieved.

Step 5 generates CNFs for unchecked properties, and step 6

checks such properties using our decision ordering learning

techniques. Finally, the algorithm reports all the generated

counterexamples (tests).

Algorithm 1: Test Generation using Decision Ordering

Inputs: i) Formal model of the design, D

ii) A cluster of similar properties, P, with satisfiable bounds

Outputs: Test-suite

Begin

1. Initialize varStat;

2. Select the base property p1 and generate CNF, CNF1

3. (assignment1, test1) = SAT(CNF1, cha f f score(CNF1))

Test-suite = {test1}
for i is from 2 to the size of cluster P

4. Update varStat using assignmenti−1

5. Generate CNF, CNFi = BMC(D, pi, boundi)
6. (assignmenti, testi) = SAT(CNFi, score(CNFi))

Test-suite = Test-suite ∪ testi
endfor

return Test-suite

End

5 Experiments

This section presents two case studies: a VLIW implemen-

tation of the MIPS architecture [13] and a stock exchange sys-

tem. We used NuSMV [14] to generate the CNF clauses (in DI-

MACS format) and modified the zChaff [2] as our SAT solver.

We implemented our decision ordering heuristic on top of VS-

DIS. The experimental results are obtained on a Linux PC using

2.0GHz Core 2 Duo CPU with 1 GB RAM.

5.1 A VLIW MIPS Processor

The MIPS processor consists of five pipeline stages: fetch,

decode, execute, memory and writeback. We applied our

methodology to generate the required directed tests for four

pipeline paths in the execute stage (ALU, FADD, MUL, DIV).

Due to the similarity, we cluster the properties of each path to-

gether to share the learning. There are 16 properties divided

into 4 clusters. Each cluster has a base property. Table 1 shows

the results. The first column indicates the properties used for

test generation. The second column represents the test genera-

tion time using zChaff. The third column shows the result by

forwarding conflict clauses among properties [8]. The fourth

column indicates the improvement of the method in the third

column over zChaff. Following the results of our method in the

fifth column, the sixth column shows our improvement over the

method proposed in [8]. As expected, there is no improvement

for base properties since they are solved first without any learn-

ing opportunity. Compared to [8] which uses conflict clause

forwarding, our method can get an average of 15.87X improve-

ment using decision ordering.

Table 1. Test Generation Result for MIPS Processor

Prop. zChaff [2] Inc. [8] Improv. Ours Improv.

(Tests) (sec) (sec) [2] vs [8] (sec) [8] vs ours

ALU 1 23.20 23.20 1 23.20 1

p1 20.73 2.74 7.57 0.18 15.22

p2 21.33 3.01 7.09 0.15 20.07

p3 18.03 2.70 6.68 0.29 9.31

DIV 1 18.78 18.78 1 18.78 1

p4 23.55 2.72 8.66 0.13 20.92

p5 18.31 3.60 5.09 0.14 25.71

p6 18.11 3.72 4.87 0.18 20.67

FADD 1 22.90 22.90 1 22.90 1

p7 16.95 4.46 3.80 0.23 19.39

p8 18.89 2.71 6.97 0.16 16.94

p9 19.80 4.70 4.21 0.39 12.05

MUL 1 64.21 64.21 1 64.21 1

p10 59.15 3.36 17.60 0.24 14.00

p11 59.65 3.85 15.49 0.45 8.56

p12 73.98 6.28 11.78 0.18 34.89

1 Base property

During the SAT searching, conflict clause number and impli-

cation number strongly indicate the searching time. Figure 7 il-

lustrates the conflict clause generation for each property during

the search using different methods. Figure 8 shows the corre-

sponding implication numbers. It can be seen that, by using our

method, the number of conflict clauses and implications can be

reduced drastically by several order-of-magnitude, which re-

sults in significant improvement in test generation time.

5.2 A Stock Exchange System

The formal NuSMV description of the on-line stock ex-

change system (OSES) is derived from its UML activity dia-

1 2 3 4 5 6 7 8 9 10 11 12

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6
zChaff Incremental [8] Our Approach

Properties

C
o

n
fl
ic

t
C

la
u

s
e

 N
u

m
b

e
r

Figure 7. Conflict Statistics for MIPS Processor

1 2 3 4 5 6 7 8 9 10 11 12

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9
zChaff Incremental [8] Our Approach

Properties

Im
p

li
c
a

ti
o

n
 N

u
m

b
e

r

Figure 8. Implication Statistics for MIPS Processor

gram specification, which contains 27 activities, 29 transitions.

It mainly deals with three scenarios: accept, check and execute

the customers’ orders (market orders and limit orders). A path

in the UML activity diagram indicates a stock transaction flow.

There are a total of 51 properties generated based on path cov-

erage criteria. According to their similarity, we group them into

nine clusters.

Table 2. Test Generation Result for Stock Exchange System

Cluster Size zChaff Inc. [8] Improv. Ours Improv.

[2] (sec) (sec) [2] vs [8] (sec) [8] vs ours

C1 3 1.18 2.18 0.54 0.70 3.11

C2 4 14.53 9.53 1.52 0.78 12.22

C3 8 375.91 170.06 2.21 36.19 4.70

C4 4 12.98 8.33 1.56 1.24 6.72

C5 4 7.13 16.88 0.42 1.02 16.55

C6 8 720.13 474.68 1.52 28.60 16.60

C7 4 10.80 24.55 0.44 1.95 12.59

C8 8 656.95 321.14 2.05 77.65 4.14

C9 8 248.17 82.42 3.01 37.93 2.17

Avg. - 227.53 123.31 1.85 20.67 5.97

Table 2 shows the test generation results involving all the 9

clusters. The first column indicates the clusters. The second

column indicates the size for each cluster. The third column

presents the test generation time (including base property) us-

ing zChaff. The fourth and fifth columns indicate the time re-

quired to generate the counterexample (test) by using method

proposed in [8] and corresponding improvement factor, respec-

tively. The last two columns indicate the test generation time

(including base property) and its improvement factor using our

heuristic. The last row indicates the average value for each col-

umn. In this case study, our approach can produce an average of

5.97X improvement compared to the method proposed in [8].

6 Conclusions

Directed test based simulation is promising for function val-

idation, since running time can be reduced with fewer tests

while the coverage requirement can still be achieved. Most au-

tomatic directed test generation methods, especially for model

checking based techniques, are impeded by the capacity restric-

tion of corresponding tools. To address the complexity of test

generation using SAT-based BMC, this paper presented a novel

decision ordering heuristic. To the best of our knowledge, our

work is the first attempt to share the learning across the decision

ordering of multiple properties. By exploiting the commonal-

ities during the search of satisfiable assignments, the test gen-

eration time of a set of similar properties can be reduced. The

experimental results using both hardware and software designs

demonstrated the effectiveness of our method.

References

[1] A. Biere, A. Cimatti, and E. M. Clarke. Bounded model check-

ing. Advances in Computers, 58, 2003.

[2] http://www.princeton.edu/ chaff/zchaff.html. zChaff.

[3] E. Clarke, O. Grumberg and D. Peled. Model Checking. MIT

Press, Cambridge, MA, 1999.

[4] N. Amla et al. An analysis of SAT-based model checking tech-

niques in an industrial environment. CHARME, 254–268, 2005.

[5] M. Moskewicz et al. Chaff: Engineering an efficient SAT solver.

DAC, pages 530–535, 2001.

[6] H. Jin and F. Somenzi. An incremental algorithm to check satis-

fiability for bounded model checking. BMC, 51–65, 2004.

[7] O. Strichman. Pruning techniques for the sat-based bounded

model checking problem. CHARME, 58–70, 2001.

[8] P. Mishra and M. Chen. Efficient techniques for directed test

generation using incremental satisfiability. In Proceedings of In-

ternational Conference of VLSI Design, 65–70, 2009.

[9] J. P. Marques-Silva and K. A. Sakallah. The impact of branching

heuristics in propositional satisfiability. In Proceedings of the 9th

Portuguese Conference on Artificial Intelligence, 62–74, 1999.

[10] O. Shtrichman. Tuning SAT checkers for bounded model check-

ing. CAV, 480–494, 2000.

[11] C. Wang et al. Refining the SAT decision ordering for bounded

model checking. DAC, 535–538, 2004.

[12] M. Davis et al. A machine program for theorem proving. Com-

munication of the ACM, 5:394–397, 1962.

[13] J. Hennessy and D. Patterson. Computer Architecture: A Quan-

titative Approach. Morgan Kaufmann Publishers, 2003.

[14] http://nusmv.irst.itc.it/. NuSMV.

