Functional Test Generation using Property Decompositions for
Validation of Pipelined Processors

Heon-Mo Koo
hkoo@cise.ufl.edu

Prabhat Mishra
prabhat@cise.ufl.edu

Department of Computer and Information Science and Engineering
University of Florida, Gainesville, FL 32611, USA.

Abstract

Functional validation is a major bottleneck in pipelined pro-
cessor design. Simulation using functional test vectors is the
most widely used form of processor validation. While exist-
ing model checking based approaches have proposed several
promising ideas for efficient test generation, many challenges
remain in applying them to realistic pipelined processors. The
time and resources required for test generation using existing
model checking based techniques can be extremely large. This
paper presents an efficient test generation technique using de-
compositional model checking. The contribution of the paper
is the development of both property and design decomposition
procedures for efficient test generation of pipelined processors.
Our experimental results using a multi-issue MIPS processor
demonstrate several orders-of-magnitude reduction in memory
requirement and test generation time.

1 Introduction

The complexity of pipelined processors is increasing at an
exponential rate due to the combined effect of technological
advances and availability of increasingly complex applications.
To accommodate such faster computation requirements, today’s
processors employ many sophisticated micro-architectures in-
cluding deeply pipelined superscalar architectures. Functional
validation of such processors is widely acknowledged as a ma-
jor bottleneck in microprocessor design methodology. Existing
processor validation techniques employ a combination of simu-
lation based techniques and formal methods. Simulation is the
most widely used form of processor validation. Two types of
test programs are used during simulation: random and directed.
The directed test vectors are generated based on certain cover-
age metric such as pipeline coverage, functional coverage, and
so on. Directed tests are very promising in reducing the val-
idation time and effort since several orders of magnitude less
number of directed tests are required compared to random tests
to obtain the same coverage goal. Various techniques have been
developed in the past to generate directed test programs. Certain
heuristics and design abstractions are used to generate directed
testcases. However, due to the bottom-up nature and localized
view of these heuristics the generated testcases may not yield a
good coverage.

Specification driven test generation has been introduced as a
promising top-down validation technique for pipelined proces-

3-9810801-0-6/DATE06 © 2006 EDAA

sors [16, 17]. A language based specification is used to cap-
ture the processor architecture. Various properties are gener-
ated from the specification based on pipeline coverage. These
properties are used to generate the counterexamples using model
checking. The generated counterexample is converted to a test
program that consists of instruction sequences. This approach
is not suitable for today’s pipelined processors since the time
and memory requirements can be prohibitively large in many
test generation scenarios. We present an efficient test generation
technique that uses design level as well as property level decom-
positions. This paper makes three important contributions: 1) it
develops a procedure for decomposing a temporal logic property
into multiple smaller properties, ii) it presents an algorithm for
merging the counterexamples generated by decomposed proper-
ties, and iii) it develops an integrated framework to support both
design and property decompositions for efficient test generation
of pipelined processors.

The rest of the paper is organized as follows. Section 2
presents related work addressing test generation in the con-
text of functional validation of pipelined processors. Section 3
describes our test generation methodology followed by a case
study in Section 4. Finally, Section 5 concludes the paper.

2 Related Work

Traditionally, validation of a microprocessor has been per-
formed by applying a combination of random and directed test
programs using simulation techniques. There are many success-
ful test generation frameworks in industry today. For example,
Genesys-Pro [1], used for functional verification of IBM proces-
sors, combines architecture and testing knowledge for efficient
test generation. Many techniques have been proposed for gener-
ation of directed test programs [2, 20].

Ur and Yadin [21] have presented a method for generation
of assembler test programs that systematically probe the micro-
architecture of a PowerPC processor. Iwashita et al. [9] use an
FSM based processor modeling to automatically generate test
programs. Campenhout et al. [5] have proposed a test gener-
ation algorithm that integrates high-level treatment of the dat-
apath with low-level treatment of the controller. Ho et al. [18]
have presented a technique for generating test vectors for verify-
ing the corner cases of the design. Recently, Wagner et al. [11]
have presented a Markov model driven random test generator
with activity monitors that provides assistance in locating hard-
to-find corner-case design bugs and performance problems.



Model checking based techniques have been successfully
used in processor verification. Ho et al. [15] extract con-
trolled token nets from a logic design to perform efficient model
checking. Jacobi [4] used a methodology to verify out-of-order
pipelines by combining model checking for the verification of
the pipeline control, and theorem proving for the verification
of the pipeline functionality. Compositional model checking is
used to verify a processor microarchitecture containing most of
the features of a modern microprocessor [19]. Parthasarathy et
al. [8] have presented a safety property verification framework
using sequential SAT and bounded model checking. Model
checking based techniques are also used in the context of prov-
ing properties or test generation by generating counterexamples.
Clarke et al. [7] have presented an efficient algorithm for gen-
eration of counterexamples and witnesses in symbolic model
checking. Bjesse et al. [14] have used counterexample guided
abstraction refinement to find complex bugs.

The work by Mishra et al. [16] on graph-based functional test
program generation using model checking is closest to our ap-
proach. They proposed a module level decomposition technique
to reduce the test generation time. The basic idea of their algo-
rithm is to decompose one processor level property into multiple
module level properties and apply them to respective modules.
This assumes that the original property contains variables for
only one module. In other words, their technique does not han-
dle properties that have variables from different modules. Such
properties are common in test generation. For example, a prop-
erty to generate a test program to stall multiple units will con-
tain variables from multiple modules. Our framework allows
such input properties. We present a method to perform decom-
position of temporal properties. Moreover, we integrate both
module level and property level decompositions to further re-
duce memory requirement and test generation time. The biggest
challenge in performing test generation in the presence of prop-
erty decomposition is how to merge the counterexamples to ob-
tain the final test program. We present an algorithm for merging
the test programs. The contribution of this paper is an efficient
test generation technique that allows both design and property
decompositions for validation of pipelined processors.

3 Test Generation using Design and Property
Decompositions

Figure 1 shows our functional test program generation
methodology. In this methodology, the designer uses an Ar-
chitecture Description Language (ADL) to specify the proces-
sor architecture. We specify the processor architecture using
EXPRESSION ADL [3]. Our methodology is independent of
the ADL. We can use any ADL that captures both the structure
and the behavior of the processor. The graph based model of
the pipelined processor is generated from the ADL specifica-
tion as described in Section 3.1. The properties are generated
from the ADL specification based on the graph coverage. The
property generation and decomposition technique is described
in Section 3.2. Finally, Section 3.3 presents our test generation
technique using design and property decompositions.

It is important to note that the property and design decompo-
sitions are not independent. Table 1 shows four possible scenar-

ADL Specification

(Processor Architecture)

Processor Model Properties

5 i

i i

i i

! i

! i

! i

! ;:

i !

H 1

i i

! [

! HE
b i
ol s
D*l )
€i i
ol Module-level Property : a
%i Decomposition Decomposition/ ;3
5 i
o! i
>l P E
Q; '3
O [

! i

; i

i Test i

; Generation i

H 1

i i

i i

! \ i

; i

L Simulator ) - - —-—-mmmd

Testcases

Figure 1. Test Program Generation Methodology

ios of design and property decompositions. The first scenario
indicates the traditional model checking where original prop-
erty is applied to whole design. The second case implies that
the decomposed properties are applied to the whole design. In
certain applications this may improve overall model checking
efficiency. However, in general this procedure is not applica-
ble since merging of counterexamples may not generate the ex-
pected result. For example, two sub-properties may generate
counterexamples to stall the respective units in a pipelined pro-
cessor but the combined test program may not simultaneously
stall both the units. The third scenario is similar to the first sce-
nario since design decomposition is not useful if the original
property is not applicable to the partitioned design components.
The last scenario depicts our approach where both design and
properties are partitioned.

Table 1. Design and property decomposition scenarios

D P | Comments

0 O | Traditional model checking

0 1 | Merging of counterexamples is not always possible
1

1

D:

0 | Similar to traditional model checking
1 | Our approach, both property and design decompositions
Design, P: Property, 0: Original, 1: Decomposed/partitioned.

3.1 Modeling of a Pipelined Processor

Decomposition of a design plays a central role in the gener-
ation of efficient test programs. Ideally, the design should be
decomposed into components such that there is very little inter-
action among the partitioned components. For a pipelined pro-
cessor the natural partition is along the pipeline boundaries. In
other words, the partitioned pipelined processor can be viewed
as a graph where nodes consist of units (e.g., fetch, decode etc.)
or storages (e.g., memory or register file) and edges consist of
connectivity among them. Typically, instruction is transfered
between units, and data is transfered between units and storages.
This graph model is similar to the pipeline level block diagram
available in a typical architecture manual. The ADL specifica-
tion captures the block diagram view (structure) of the pipelined



processor. The graph model of the pipelined processor is gener-
ated from the ADL specification.

\Instruction
Memory
Ll

1

1

1

1

:

v 1

11 15 :
FADD1

DIV !

1

:

Y

' --® Data Transfer
» Instruction Flow

[ onit 213

Storage

Figure 2. Graph Model of the MIPS Processor

For illustration, we use a simplified version of the multi-issue
MIPS processor [12]. Figure 2 shows the graph model of the
processor that can issue up to four operations (an integer ALU
operation, a floating-point addition operation, a multiply opera-
tion, and a divide operation). In the figure, rectangular boxes
denote units, dashed rectangles are storages, bold edges are
instruction-transfer (pipeline) edges, and dashed edges are data-
transfer edges. A path from a root node (e.g., Fetch) to a leaf
node (e.g, WriteBack) consisting of units and pipeline edges is
called a pipeline path. For example, one of the pipeline path
is {Fetch, Decode, IALU, MEM, WriteBack}. A path from a
unit to main memory or register file consisting of storages and
data-transfer edges is called a data-transfer path. For example,
{MEM, DataMemory, MainMemory} is a data-transfer path.

3.2 Generation and Decomposition of Properties

We first explain how to generate properties from the ADL
specification. Next, we describe how to decompose such prop-
erties for efficient test generation. Today’s test generation tech-
niques as well as formal methods are very efficient in mod-
ule level validation. The harder problem is to verify the inter-
module interactions. In this paper, we primarily focus on such
hard-to-verify interactions among modules in a pipelined pro-
cessor. If we consider the graph model of the pipelined proces-
sor, the pipeline interactions imply the interactions between the
nodes in the graph model. We first define the possible pipeline
interactions based on the number of nodes in the graph model
and the average number of activities in a node. For example,
an IALU node can have three activities: executing an operation
(active), stalled, and in exception. In general, the number of ac-
tivities for a node will be different based on what activity we

would like to test. For example, executing an ADD or SUB op-
erations can be treated as separate activities. Furthermore, the
number of activities may be different for different nodes. Con-
sider a graph model with n nodes where each node can have
on average r activities. We require a total of r(1 —r")/(1 —r)
properties to verify all interactions. We omit the proof for the
interest of space. The basic idea of the proof is that if we con-
sider no interactions, there are n X r test programs necessary.
In the presence of one interaction we need r test programs for
each possible combination of two nodes. Once we combine all
possible interactions the equation will be:

Y ne, xr! (1)
i=1

Here, nc, represents the ways of choosing i nodes from a set
of n nodes. Although the total number of interactions can be ex-
tremely large, in reality the number of simultaneous interactions
can be small and many other realistic assumptions can reduce
the number of properties to a manageable one. For each such
interaction we generate a property from the ADL specification.

The generated properties are expressed in propositional tem-
poral logic. Since we are interested in counterexample genera-
tion, we need to generate the negation of the property first. The
negation of the properties can be expressed as [6]:

-AX(p) = EX(—p) —~EX(p) =AX(-p)
—AG(p) =EF(—p) —EG(p) = AF(—p)
—AF(p) = EG(—p) —EF(p) = AG(—p)
—A(pRq) = E(—~pU—q) —E(pRq) = A(~pU—q)
—A(pUq) = E(~qU—-p A\ —=q)VEG(~q)

In the remainder of this section, we describe how to de-
compose these properties (already negated) for efficient model
checking. Each property consists of temporal operators (G, F,
X, U) and Boolean connectives (A, V, -, and —). There are
various combinations of temporal operators and Boolean con-
nectives where decompositions are not possible e.g., F(p A q) #
F(p)AF(q) and G(pV q) # G(p) V G(g). In certain situations,
such as pUgq, F(p — F(q), or F(p — G(q), decompositions are
not beneficial compared to traditional model checking. The fol-
lowing combinations allow simple property decompositions.

G(png) =G(p)NG(q) F(pvq)=F(p)VF(q)
X(pvq)=X(p)VX(q) X(pNg)=X(p) X (q)

If we introduce the notion of clock (time step) in the prop-
erty then more decompositions are allowed as shown below!.
Note that the left and right hand side of the decomposition are
not logically equivalent but they produce functionally equivalent
counterexamples.

G((clk # 1)V (pV q)) ~ G((clk # 1)V p) V G((clk # 1) V )

Although we only use a few decomposition scenarios, it is im-
portant to note that these scenarios are sufficient for generating
the properties where node interactions are considered. More-
over, the property decomposition is dependent on the design de-
composition. For example, consider a design which has two

IThe clk variable is used to count time steps, and f, is a specific time step.



partitions: d; and d;. We cannot decompose a property into
two sub-properties p; and py, if it is not possible to apply p;
and p, to the partitions d; and d>. In other words, if p; con-
tains variables from both partitions, it is not possible to apply it
to one partition of the design. As discussed in Section 3.1, the
pipelined processor is partitioned into modules. However, we
can change the partition based on the properties. For example, a
property may not be decomposable based on a module level par-
titioning but it may be decomposable based on a pipeline path
level partitioning as described in Section 4.3.

Algorithm 1: Test Generation
Inputs: i) Processor model M as a composition of modules
i) Set of global properties P where each property is
decomposed into multiple module level properties
Outputs: Test programs to verify the pipeline interactions.
Begin
TaskList = ¢; FutureList = ¢; TestPrograms = ¢
for each property P; in set P
for each sub property Pi]
TaskList[j] = P/ /* P/ is applicable to M */
endfor
PrimaryInputs = ¢
while TaskList is not empty
items = RemoveEntry(TaskList)
Pi]‘ = ComposeRequirements(items);
Apply Pl.k on module M} using model checker
inpy = input requirements for M from counterexample
if inpy are not primary_inputs
for each applicable parent node M, of M,
out, = Extract output requirements for M,
FutureList[r] = FutureList[r] U out,
endfor
else PrimaryInputs = PrimaryInputs U inpy,
endif
if TaskList is empty
TaskList = FutureList; FutureList = ¢
endif
endwhile
test; = GenerateTest(PrimaryInputs).
TestPrograms = TestPrograms U test;
endfor
return TestPrograms
End

3.3 Functional Test Generation

Algorithm 1 presents our test generation procedure using de-
sign and property decompositions. The basic idea of the al-
gorithm is to apply the components of the properties (sub-
properties) to appropriate modules and compose their responses
to construct the final test program. This algorithm accepts de-
sign M and properties P as inputs and produces the test pro-
grams. It uses two lists to maintain the current (TaskList) and
future (FutureList) tasks. Both lists have exactly the same struc-
ture. Each entry in the list contains a collection of sub-tasks
that is applicable to a particular module. Therefore, each list
can have up to n entries where n is the number of modules (or
partitions) in the design. The tasks in the TaskList need to be
performed in the current time step (clock cycle). The tasks in

the FutureList will be performed in the next clock cycle. Ini-
tially both lists are empty.

For each property P;, the algorithm generates one test pro-
gram. Each property consists of one or more sub-properties
based on their applicability to different modules or partitions
in the design as discussed in Section 3.2. The algorithm adds
the sub-properties to the TaskList based on the module to which
this property is applicable. The algorithm iterates over all the
tasks (sub-properties) in the TaskList. It removes an entry (say
k’th location) from the TaskList. In general, this entry can be a
list of sub-tasks (due to simultaneous output requirements from
multiple children nodes) that need to be applied to module M.
These subtasks are composed to create the intermediate prop-
erty PF. The property PX is applied to the module M using a
model checker. The model checker generates a counterexample.
The generated counterexample is analyzed to find the input re-
quirements inpy for the module My. If these are primary inputs
then they are stored in Primarylnputs list; otherwise for each
parent node M,, where inpy is applicable, extract the output re-
quirements for M,. This output requirement is added to the r’th
entry of the FutureList. Finally, if the tasks for the current times-
tamp is completed (TaskList empty), FutureList is copied to the
TaskList and this process continues until both the lists are empty.
This implies we have obtained the primary input assignments
for all the sub-properties. These assignments are converted into
a test program consisting of instruction sequences.

For illustration, consider a simple property Pj to verify a mul-
tiple stall scenario consisting of IALU (3rd module) and DIV
(15th module) nodes in Figure 2 at clock cycle 5. This property
can be decomposed into two sub-properties Pl3 (IALU not stalled
incycle 5) and Pl15 (DIV not stalled in cycle 5). This implies that
TaskList will have two entries before entering the while loop:
TaskList[3] = P} and TaskList[15] = P}>. At the first iteration
of the while loop Pl3 will be applied to M3 (IALU) using model
checker; generated counter example will be analyzed to find the
output requirement for the Decode unit (2nd module in Figure 2)
in clock cycle 4; the requirement will be added to FutureList[2].
During second iteration of the while loop Pl15 (TaskList[15]) will
be applied to M5 (DIV); generated counter example will be an-
alyzed to find the output requirement for the decode unit in clock
cycle 4; the requirement will be added to FutureList[2]. At this
point, the TaskList is empty and the FutureList has only one en-
try with two requirements which is copied to the TaskList. At
the third iteration of the while loop, these two requirements are
composed into an intermediate property and applied to M, (De-
code) that generates requirements for Fetch node. Finally, the
fourth iteration applies the corresponding property to the Fetch
unit that generates the primary input assignments. These as-
signments are converted to a test program. Section 4.2 shows a
test generation example for a multiple exception scenario using
module-level design decompositions. Section 4.3 shows another
test generation example using pipeline path level partitioning of
the design.

4 A Case Study

We performed various test generation experiments for vali-
dating the pipeline interactions by varying different design par-



titions and property decompositions. In this section we present
our experimental setup followed by two test generation scenar-
ios for different design partitions. Next, we compare our test
generation technique with two other approaches: i) naive ap-
proach where the original property is applied to the whole de-
sign, and ii) existing approach based on Mishra et al. [16].

4.1 Experimental Setup

We applied our methodology on a multi-issue MIPS architec-
ture [12]. Figure 2 shows a simplified version of the architec-
ture. We have chosen MIPS processor for two reasons. First, it
has been well studied in academia and there are HDL implemen-
tations available for the processor that can be used for validation
purposes. Second, it has many interesting features, such as frag-
mented pipelines and multi-cycle functional units that are rep-
resentative of many commercial pipelined processors including
TI C6x and PowerPC.

We used SMV [10] model checker to perform all the exper-
iments. We made few simplifications to the MIPS processor
for the naive approach to work. For example, if 32 32-bit reg-
isters are used in the register file, the naive approach does not
produce any counterexample even for a simple property with
no node interactions. We used 8 2-bit registers for the follow-
ing experiments to ensure that the naive approach can generate
counterexamples. All the experiments were run on a 1 GHz Sun
UltraSparc with 8G RAM.

4.2 Test Generation: An Example

Consider a multiple exception scenario at clock cycle 7 con-
sisting of an overflow exception in IALU, divide by zero excep-
tion in DIV unit and a memory exception in the MEM unit. The
original property (SMV description), P, is shown below:

P: F( (clk=7) & (MEM.exception = 1)
& (IALU.exception = 1)
)

)

& (DIV.exception = 1

The negated property, P’, is shown below:

P’: G( (clk™=7) | (MEM.exception "= 1)
| (IALU.exception "= 1)
| (DIV.exception "= 1))

P’ is decomposed into three sub-properties:

Pl: G((clk™=7) | (MEM.exception "= 1))
P2: G((clk™=7) | (IALU.exception "= 1))
P3: G((clk™=7) | (DIV.exception "= 1))

Based on Algorithm 1, the sub-properties P1, P2, and P3 will
be applied to MEM, TALU, and DIV modules using SMV model
checker. The model checker will come up with a counterexam-
ple in each case as input requirements for the respective module.
For example, the counterexamples for P1, P2, and P3 respec-
tively are: (Cp;) a load operation with memory address zero,
(Cp2) an add operation with value 2 for both source operands
(result 4 does not fit in a 2’bit register), and (Cp3) a divide op-
eration with second source operand value zero. These require-
ments are converted into properties and applied to the respective

parent modules. In this case, P1’ (from Cp;) is applied to IALU,
and P23’ (combine Cp; and Cp3)? is applied to Decode unit in
the next step. In each case, clock cycle value is reduced by one
as shown below:

Pl’: G((clk™=6) | (aluOp.opcode "= LD) |
(aluOp.srclval "= 0))

P23’: G((clk™=6) | (decOp[0] .opcode "= ADD) |
(decOp[0] .srclval "= 2) |
(decOp[0] .src2val "= 2) |
(decOp[3] .opcode "= DIV) |
(decOp[3].src2val "= 0))

The outcome of the property P1’ will be applied to Decode
unit (generates P17 say) whereas the outcome of the P23’ will be
applied to fetch unit (generate primary inputs PI;) in timestep 5.
In time step 4, P17 will be applied to Fetch unit that generates the
primary inputs PI;. The primary inputs P/; and PI; are combined
based on their time step (clock cycle) to generate the final test
program:

Fetch Instructions ([0] for ALU... [3] for DIV)
Cycle [0] [1] [2] [3] //RO is 0

1 ADDI R2 RO #2 NOP NOP NOP //R2 = 2

2 NOP NOP NOP NOP

3 NOP NOP NOP NOP

4 LD R1 0 (RO) NOP NOP NOP

5 ADD R3 R2 R2 NOP NOP DIV R3 RO RO

4.3 Test Generation using Path-level Partitioning

The example shown above assumes a module-level partition-
ing of the design. However, it may not always be possible to
decompose a property based on module level partitioning. For
example, if we are trying to determine whether two feedback
(data-forwarding) paths shown in Figure 2 are activated at the
same time, it is not possible to decompose this property (shown
below) based on module level decompositions.

/* Original Property */
P: F((clk=9) & (FADD4.feedOut -> X(FADDl.feedIn))
& (MUL7.feedOut -> X(MUL1.feedIn)))
/* Property after Negation*/
P’: G((clk™=9) | (FADD4.feedOut -> X( FADDl.feedIn))
| (MUL7.feedOut -> X("MULl.feedIn)))
/* Properties after Decomposition*/
Pl: G((clk™=9) | (FADD4.feedOut —-> X("FADDl.feedIn))
P2: G((clk™=9) | (MUL7.feedOut -> X("MULl.feedIn))

It is obvious that when a decomposed property contains vari-
ables from multiple modules, it is not possible to apply them
to individual modules. To enable property decomposition in the
above example, we need to partition the design differently. The
floating-point adder path (FADD1 to FADD4) should be treated
as a design partition F),,,. Similarly, the multiplier path (MULI1
to MUL7) should be treated as another partition M. The re-
maining design can be partitioned as modules for this example.

2Note that when multiple children create requirements for the parent (e.g,
P23”), conflicts can occur. In such cases, alternative assignments need to be
evaluated for the conflicting variable.



Algorithm 1 can be applied using this new partitioning for test
generation. First, P1 and P2 can be applied on Fy;, and M4
respectively that generates counterexamples C1 and C2. Next,
C1 and C2 are combined and applied to the Decode unit, and so
on. Finally, the primary input requirements can be converted to
generate the final test program.

4.4 Results

In this section we compare our approach with two other ap-
proaches: i) naive approach where the original property is ap-
plied to the whole design, and ii) the approach presented by
Mishra et al. [16] which is closest to our approach. We refer
the second approach as the existing approach.

Table 2. Comparison of Test Generation techniques

Module Naive Approach | Existing Approach | Our Approach
Interactions BDD Time BDD Time BDD | Time
None 6M 165 3K 0.06 3K 0.06
Two Modules 1M 215 NA NA 6K 0.12
Three Modules | 21M 240 NA NA 9K 0.19
Four Modules 27M 290 NA NA 11K 0.28

NA: Not Applicable.

Table 2 presents the results of the comparison of test genera-
tion techniques. The first column defines the type of properties
used for test generation. For example, “None” implies prop-
erties applicable to only one module; “Two Modules” implies
properties that include two module interactions and so on. Each
row presents the average values for the BDD nodes used as well
as test generation time (in seconds) for one property. For ex-
ample, the first row considers 85 (n=17, r=5, and i=1 in Equa-
tion (1)) single module properties, and different properties take
different amount of BDD nodes and test generation time. The
table shows the average value for both BDD nodes and test gen-
eration time. The existing approach is only applicable to the
first row since it cannot handle multiple simultaneous proper-
ties or property decompositions. As mentioned earlier, the naive
approach cannot finish in majority of the cases when more reg-
isters are used. As a result we used only 8 2-bit registers. In
spite of this simplification naive approach takes several orders
of magnitude more memory and test generation time.

5 Conclusions

Functional verification is widely acknowledged as a major
bottleneck in microprocessor design methodology. This paper
presented an efficient test generation technique based on decom-
position of both design and properties for functional validation
of pipelined processors. This paper made three important contri-
butions. First, it developed a procedure for decomposing propo-
sitional temporal logic properties based on various partitioning
of pipelined processors. Second, it presented an algorithm for
merging the counterexamples generated by decomposed proper-
ties. Finally, it presented an integrated framework for efficient
test generation that supports both design and property decom-
positions. Our experimental results using a multi-issue MIPS
processor demonstrate that our technique reduces the memory
requirement and improves the test generation time by several
orders of magnitude.

The increasing complexity of today’s pipelined processors
implies an increase in both number of pipeline components and
behaviors of each component (variables # and r in Equation (1)).
As a result, the number of test programs required to verify such
interactions are increasing at an exponential rate. It is neces-
sary to develop efficient tools, techniques and methodologies to
perform efficient test generation as well as reduce the number
of test programs. This paper presented an efficient test gener-
ation technique based on design and property decompositions.
Our future work includes development of test compaction tech-
niques to reduce the number of test programs for validation of
pipeline interactions.

References

[1] A. Adir et al. Genesys-pro: Innovations in test program generation
for functional processor verification. Design & Test, 2004.

[2] A. Aharon et al. Test program generation for functional verification
of PowerPC processors in IBM. DAC, 1995.

[3] A. Halambi et al. EXPRESSION: A language for architecture ex-
ploration through compiler/simulator retargetability. DATE, 1999.

[4] C. Jacobi. Formal verification of complex out-of-order pipelines
by combining model-checking and theorem-proving. CAV, 2002.

[5] D. Campenhout et al. High-level test generation for design verifi-
cation of pipelined microprocessors. DAC, 1999.

[6] E.Clarke, O. Grumberg and D. Peled. Model Checking. MIT Press,
Cambridge, MA, 1999.

[7]1 E. Clarke et al. Efficient generation of counterexamples and wit-
nesses in symbolic model checking. DAC, 1995.

[8] G. Parthasarathy et al. Safety property verification using sequential
SAT and bounded model checking. Design & Test, 2004.

[9] H. Iwashita et al. Automatic test pattern generation for pipelined
processors. ICCAD, 580-583, 1994.

[10] www-cad.eecs.berkeley.edu/kenmcmil/smv. Cadence SMV.
[11] I. Wagner, V. Bertacco and T. Austin. Stresstest: An automatic
approach to test generation via activity monitors. DAC, 2005.

[12] J. Hennessy and D. Patterson. Computer Architecture: A Quanti-
tative Approach. Morgan Kaufmann, 2003.

[13] M. Behm et al. Industrial experience with test generation lan-
guages for processor verification. DAC, 3640, 2004.

[14] P. Bjesse and J. Kukula. Using counter example guided abstrac-
tion refinement to find complex bugs. DATE, 2004.

[15] P. Ho and A. Isles and T. Kam. Formal verification of pipeline
control using controlled token nets and abstract interpretation. /C-
CAD, 529-536, 1998.

[16] P. Mishra and N. Dutt. Graph-based functional test program gen-
eration for pipelined processors. DATE, 182—187, 2004.

[17] P. Mishra and N. Dutt. Functional Verification of Programmable
Embedded Architectures — A Top-Down Approach. Springer, 2005.

[18] R. Ho et al. Architecture validation for processors. ISCA, 1995.

[19] R. Jhala and K. L. McMillan. Microarchitecture verification by
compositional model checking. CAV, 2001.

[20] S. Fine and A. Ziv. Coverage directed test generation for func-
tional verification using bayesian networks. DAC, 286291, 2003.

[21] S. Ur and Y. Yadin. Micro architecture coverage directed genera-
tion of test programs. DAC, 175-180, 1999.



	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



