
Graph-based Functional Test Program Generation for Pipelined Processors∗

Prabhat Mishra Nikil Dutt
pmishra@cecs.uci.edu dutt@cecs.uci.edu

Architectures and Compilers for Embedded Systems (ACES)
Center for Embedded Computer Systems, University of California, Irvine, CA 92697, USA

Abstract

Functional verification is widely acknowledged as a ma-
jor bottleneck in microprocessor design. While early work
on specification driven functional test program generation
has proposed several promising ideas, many challenges re-
main in applying them to realistic embedded processors. We
present a graph coverage based functional test program gen-
eration approach for pipelined processors. The proposed
methodology makes three important contributions. First, it
automatically generates the graph model of the pipelined
processor from the specification using functional abstraction.
Second, it generates functional test programs based on the
coverage of the pipeline behavior. Finally, the test genera-
tion time is drastically reduced due to the use of module level
property checking. We applied this methodology on the DLX
processor to demonstrate the usefulness of our approach.

1 Introduction

As embedded systems continue to face increasingly higher
performance requirements, deeply pipelined processor ar-
chitectures are being employed to meet desired system per-
formance. Validation of such programmable processors is
one of the most complex and expensive tasks in the cur-
rent Systems-on-Chip design methodology. Simulation is the
most widely used form of microprocessor verification: mil-
lions of cycles are spent during simulation using a combi-
nation of random and directed test cases in traditional de-
sign flow. Certain heuristics and design abstractions are used
to generate directed random testcases. However, due to the
bottom-up nature and localized view of these heuristics the
generated testcases may not yield a good coverage. The prob-
lem is further aggravated due to the lack of a comprehensive
functional coverage metric.

Specification driven test generation has been introduced
as a promising top-down validation technique for pipelined
processors [12]. The processor is specified using an Archi-
tecture Description Language (ADL). The SMV (Symbolic
Model Verifier) [8] description of the processor is gener-

∗This work was partially supported by NSF grants CCR-0203813 and
CCR-0205712.

ated from the ADL specification of the architecture. Specific
properties are applied to the processor model using SMV
model checker. For example, to generate a testcase to stall
the decode unit, the property states that the decode unit is
not stalled. The model checker produces a counter example
that stalls the decode unit. The generated counterexample
is converted into a test program consisting of processor in-
structions. Since, the complete processor is modeled using
SMV, this approach is limited by the capacity restrictions of
the tool. As a result, it is not possible to model detailed de-
scription of the processor and generate test programs. Fur-
thermore, the test generation time is long.

To make the ADL driven test generation applicable to re-
alistic embedded processors, each of the above steps must
be automated using efficient techniques. First, the proces-
sor model generation from the specification needs to be au-
tomated. Second, there is a need for a comprehensive func-
tional coverage metric that can be used to automatically gen-
erate test programs. Finally, an efficient test generation tech-
nique is needed that can model complex designs and can en-
able fast generation of functional test programs.

We propose a graph coverage based test generation tech-
nique for functional verification of pipelined processors. The
contribution of this paper is a methodology that solves the
three problems mentioned above. First, we present a tech-
nique for automatic generation of processor model from the
ADL specification using functional abstraction. Second, we
define functional coverage of the pipeline behavior in terms
of pipeline graph coverage. The pipeline graph is generated
from the ADL specification of the processor. Each node in
the graph corresponds to a functional unit (module) or stor-
age component in the processor. The behavior of each node
is described using SMV [8] language. An edge in the graph
represents instruction (or data) transfer between the nodes.
Finally, we present a test program generation algorithm that
traverses the pipeline graph to generate test programs based
on the coverage metric. The algorithm breaks one processor
level property into multiple module level properties and ap-
plies them. Since, the SMV is applied only at the module
level, this approach can handle larger designs. It also drasti-
cally reduces the test generation time.

The rest of the paper is organized as follows. Section 2

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

presents related work addressing verification of pipelined
processors. Section 3 describes our functional test program
generation methodology followed by a case study in Sec-
tion 4. Section 5 concludes the paper.

2 Related Work

Several approaches for formal or semi-formal verification
of pipelined processors have been developed in the past. The-
orem proving techniques, for example, have been success-
fully adapted to verify pipelined processors [14]. Burch and
Dill presented a technique for formally verifying pipelined
processor control circuitry [2]. The technique has been ex-
tended to handle more complex pipelined architectures by
several researchers [16]. Ho et al. [7] extract controlled token
nets from a logic design to perform efficient model checking.
Jhala et al. [10] used compositional model checking to verify
a modern microprocessor.

Traditionally, validation of a microprocessor has been per-
formed by applying a combination of random and directed
test programs using simulation techniques. Many techniques
have been proposed for generation of directed test programs.
Aharon et al. [1] have proposed a test program generation
methodology for functional verification of PowerPC proces-
sors in IBM. Shen et al. [15] have used the processor to
generate tests at run-time by self-modifying code, and per-
formed signature comparison with the one obtained from em-
ulation. These techniques does not consider pipeline behav-
ior for generating test programs.

Ur and Yadin [18] presented a method for generation of
assembler test programs that systematically probe the micro-
architecture of a PowerPC processor. Iwashita et al. [9] use
a FSM based processor modeling to automatically generate
test programs. Campenhout et al. [3] have proposed a test
generation algorithm that integrates high-level treatment of
the datapath with low-level treatment of the controller. These
techniques does not provide a comprehensive metric to mea-
sure the coverage of the pipeline interactions.

Many researchers have proposed techniques for generation
of functional test programs for manufacturing testing of mi-
croprocessors ([4], [11], [17]). These techniques use stuck-
at fault coverage to demonstrate the quality of the generated
tests. The applicability of these test programs are not shown
for functional validation of microprocessors.

3 Functional Test Program Generation

Figure 1 shows our graph based functional test program
generation methodology. In our specification-driven test pro-
gram generation scenario, the designer starts by specify-
ing the processor architecture in an Architecture Description
Language (ADL). We use EXPRESSION ADL [5] in our
framework. Our methodology is independent of the ADL.
As a result, we can use any ADL that captures both the struc-
ture and the behavior of the processor.

SMV Description
(Graph node N)

Property
(for node N)

N
 =

 P
a

re
n

t
of

 N

No

N
 =

 P
a

re
n

t
of

 N

Yes

No
Is Primary Input?

Automatic

(for node N)

Properties

ADL Specification

(SMV Description)

Generic
SMV Models

(SMV Description)
Graph Model

SMV
Model Checker

Simulator

Additional Properties

Extract i/p assignment

Manual

Testcases
Coverage Report

Architecture Specification
(English Document)

Counterexamples

(for parent of N)
Generate o/p requirement

Figure 1. Test Program Generation Methodology

The graph model of the processor is generated from the
ADL specification. The properties are generated based on
the graph coverage metric discussed in Section 3.4. The
properties are applied at the module level using SMV model
checker. The counter examples are analyzed to generate test
programs at the processor level. We apply these test pro-
grams to the simulator of the processor to ensure that the
coverage criteria is met. If necessary, additional properties
can be added manually.

Our technique drastically reduces the time and space re-
quired for generating the test programs by applying proper-
ties at the module level and composing the responses in se-
quence by traversing the pipeline graph.

Algorithm 1 presents our specification driven test gener-
ation procedure. A property prop is applied to a module
corresponding to node n in the graph model. The frame-
work actually generates the negation of the properties that
we want to verify. For example, to generate a testcase for as-
signing a value 5 to a register R7, the property states that ”R7
!= 5”. The SMV model checker produces a counterexample
for the property prop. The counter example is analyzed to
find the input requirements for the node n. If these inputs
are not primary inputs of the processor, the output require-
ments for the parent node of n is computed. The property
is modified based on the output requirements and applied to
the parent node. This iteration continues until primary input
assignments are obtained. These primary input assignments

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

are converted into test programs (instruction sequences) by
putting random values in the un-assigned inputs.

In the remainder of this section we describe each of the
steps in detail. First, we describe the EXPRESSION ADL
followed by a brief description of the functional abstraction
technique. Next, we present the graph model generation
technique using functional abstraction. Finally, we define the
graph coverage metric that is used for test generation.

Algorithm 1: Test Program Generation
Inputs: ADL specification of the pipelined processor
Outputs: Test programs to verify the pipeline behavior.
Begin

Generate graph model of the architecture.
Generate properties based on the graph coverage
for each property prop for graph node n

inputs = φ
while (inputs != primary inputs)

Apply prop on node n using SMV model checker
inputs = Find i/p requirements for n from counterexample
if inputs are not primary inputs

Extract output requirements for parent of node n
prop = modify prop with new output requirements
n = parent of node n

endif
endwhile
Convert primary input assignments to a test program
Generate the expected output using a simulator.

endfor
return the test programs

End

3.1 The ADL Specification

The EXPRESSION ADL [5] contains information regard-
ing the structure, behavior and mapping (between structure
and behavior) of the processor. The structure contains the
description of each component and the connectivity between
the components. There are four types of components: units
(e.g., ALUs), storages (e.g., register files), ports, and connec-
tions (e.g., buses). Each component has a list of attributes.
For example, a functional unit will have information regard-
ing latches, ports, connections, supported opcodes, execution
timing, and capacity. The connectivity is established using
pipeline and data-transfer paths. The behavior contains the
description of operations in terms of its opcode, operands,
behavior and instruction format. Finally, the mapping func-
tions map operations in the behavior to components in the
structure. For example, an operation add is mapped to ALU
unit in a typical processor.

3.2 The Functional Abstraction

The functional abstraction technique was first introduced
by Mishra et al. [13] for generating simulation models from
the ADL specification. The notion of functional abstraction
comes from a simple observation: different architectures may
use the same functional unit (e.g., fetch) with different pa-
rameters, the same functionality (e.g., operand read) may

be used in different functional unit, or may have new ar-
chitectural features. The first difference can be eliminated
by defining generic functions with appropriate parameters.
The second difference can be eliminated by defining generic
sub-functions, which can be used by different architectures
at different points. The last one is difficult to alleviate since
it is new, unless this new functionality can be composed of
existing sub-functions (e.g., multiply-accumulate operation
by combining multiply and add operations). They defined
the necessary generic functions, sub-functions and computa-
tional environment to capture a wide variety of processor and
memory features.

The structure of each functional unit is captured using pa-
rameterized functions. For example, a fetch unit function-
ality contains several parameters, such as number of opera-
tions read per cycle, reservation station size, branch predic-
tion scheme etc. Figure 2 shows a specific example of a fetch
unit described using sub-functions. Each sub-function is de-
fined using appropriate parameters. For example, ReadIn-
stMemory reads n operations from instruction cache using
current PC address (returned by ReadPC) and writes them to
the reservation station. The notion of generic sub-function
allows the flexibility of specifying the system in finer detail.
It also allows reuse of the components.

FetchUnit (# of read/cycle, res-station size,)
{
 address = ReadPC();
 instructions = ReadInstMemory(address, n);

}

 WriteToReservationStation(instructions, n);
outInst = ReadFromReservationStation(m);
WriteLatch(decode_latch, outInst);

pred = QueryPredictor(address);
if pred {
 nextPC = QueryBTB(address);
 SetPC(nextPC);
} else
 IncrementPC(x);

Figure 2. A Fetch Unit Example

The behavior of a generic processor is captured through
the definition of opcodes. Each opcode is defined as a func-
tion with a generic set of parameters, which performs the
intended functionality. Similarly, they defined generic func-
tions and sub-functions for memory modules, controller, in-
terrupts, exceptions, DMA, and co-processor. The detailed
description of generic abstractions for all of the microarchi-
tectural components can be found in [13].

3.3 Graph Model Generation

The structure of a processor pipeline is modeled as a graph
G = (V,E). V denotes two types of components in the pro-
cessor: functional units and storages. E consists of two types
of edges: pipeline edges and data-transfer edges. A pipeline
edge transfers an instruction from a parent unit to a child unit.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

A data-transfer edge is used to transfer data between compo-
nents. Figure 3 shows the graph model of the DLX proces-
sor. The oval (unit) and rectangular (storage) boxes represent
nodes. The solid (pipeline) and dotted (data-transfer) lines
represent edges.

Register File

Pipeline edge
Data-transfer edge

Functional unit
Storage

Fetch

FADD2

FADD3

FADD4

WriteBack

MEM

MUL2

MUL1 FADD1

PC Memory

Decode

IALU

MUL7

DIV

Figure 3. The Graph Model of the DLX Architecture

Each node of the graph contains information regarding in-
put/output edges, list of supported operations and their tim-
ing. Each node also contains the SMV description of its
behavior. We have implemented all the generic functions
and sub-functions described in Section 3.2 using SMV lan-
guage. Our framework generates SMV description of each
node (functional unit/storage) by composing functional ab-
straction primitives. For example, a simplified version of the
SMV description of the fetch unit (Fetch) is shown below:

module Fetch (PC, InstMemory, operation)
{

input PC : integer;
input InstMemory : memory;
output operation : opType;

init(operation.opcode) := NOP;
next(operation) := InstMemory[PC];

}

3.4 Coverage Directed Test Generation

Measuring progress is an important task that enables the
designer to decide when to end the verification effort. Several
coverage measures are commonly used, such as code cover-
age, toggle coverage and fault coverage. Unfortunately, these
measures do not have any direct relation to the functional-
ity of the device. For example, none of these determine if
all possible interactions of hazards, stalls and exceptions are
tested in a processor pipeline. We propose a coverage met-
ric based on functional coverage of the pipeline. We define
all possible interactions between opcodes (instructions) and
pipeline stages (paths) through graph coverage.

We define graph coverage as graph node coverage and
graph edge coverage. A node in the graph is called covered if
it has been in all of the four states: active, stalled, exception
and flushed. A node is active when it is executing an instruc-
tion. A node can be stalled due to structural or data hazards.
A node can be in exception state if it generates an exception
while executing an instruction. It is possible to have multiple
exception scenarios and stall conditions for a node. However,
our current node coverage requires only one scenario in each
case. A node is in flushed state if an instruction in the node
is flushed due to the occurrence of an exception in any of its
children nodes.

Similarly, an edge in the graph is called covered if it has
been in all of the three states: active, stalled and flushed. An
edge is active when it is used to transfer an operation in a
clock cycle. An edge is stalled if it does not transfer an op-
eration in a clock cycle from parent node to children node.
An edge is flushed if the parent node is flushed due to the ex-
ception in the children node. The edge coverage conditions
are redundant if a node has only one children. However, if a
node has multiple children (or parent), edge coverage condi-
tions are necessary.

Our test generation algorithm traverses the pipeline graph
and generates properties based on the graph coverage de-
scribed above. Consider the test generation for a feedback
path (edge) from MUL7 to IALU in Figure 3. To generate a
test for making the feedback path active, two properties are
generated: i) make the node MUL7 active in clock cycle t,
and ii) make the node IALU active in clock cycle (t+1). This
would lead to a test program that has a multiply operation
followed by six NOPs (no operation), and finally an add op-
eration.

4 A Case Study

In a case study we successfully applied the proposed
methodology to the DLX processor [6]. We have chosen
DLX processor since it has been well studied in academia
and contains many interesting features such as, fragmented
pipelines and multicycle units that are representative of many
commercial pipelined processor architectures such as TI
C6x, PowerPC and MIPS R10K. Figure 3 shows the graph
model of the DLX processor. The DLX architecture has five
pipeline stages: fetch (IF), decode (ID), execute, memory
(MEM), and writeback (WB). First, we present the test pro-
gram generation results for the DLX processor. Next, we de-
scribe a test generation scenario using an illustrative example
to demonstrate the efficiency of our technique.

4.1 Test Generation Results

This section describes the number of test cases generated
for the DLX processor using the functional coverage de-
scribed in Section 3.4. The DLX processor shown in Figure 3

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

has 20 nodes and 24 edges (except feedback paths). We have
described 91 instructions of the DLX processor [6].

Table 1. Number of Test Programs in Different Categories

Node Coverage Edge Coverage
Active Stalled Flushed Exception Active Stalled Flushed

91 20 20 20 24 24 24

Table 1 shows the number of test programs generated for
node and edge coverage of the DLX processor. Although,
20 testcases would suffice for the active node coverage, we
cover all the instructions. Also, there are many ways of mak-
ing a node stalled, flushed or in exception condition. We
chose one such scenario. If we consider all possible scenar-
ios, the number of test programs will increase. In this case,
our algorithm generated 223 test programs in 91 seconds on
a 333 MHz Sun UltraSPARC-II with 128M RAM.

Table 2. Reduced Number of Test Programs

Node Coverage Edge Coverage
Active Stalled Flushed Exception Active Stalled Flushed

4 14 2 20 4† 14† + 3 2†

As mentioned earlier, some of the test programs are re-
dundant. For example, since there are four pipeline paths,
we need only four test programs that exercises the four paths.
These four test programs will make all the nodes active. Sim-
ilarly, if we assume VLIW DLX, the decode node will be
stalled if any one of its four children is stalled. Furthermore,
if MEM node is stalled, all of its four parents will also be
stalled. This implies that we need only 14 testcases for node
stalling. Likewise, if the MEM node is in exception, the in-
structions in all the previous nodes will be flushed. Hence,
we need only 2 testcases for flushing. Finally, some of the
node coverage testcases also satisfies the edge coverage. We
need a total of 43 test programs in this case. Table 2 shows
the number of reduced test programs in different categories.

4.2 Test Program Generation: An Example

In this section we describe our test generation approach
using the following example. We use this example to com-
pare the performance of our test generation algorithm with
previously published results [12].

Example 1: Consider a fragment of the DLX pipeline con-
taining three internal registers of the division unit (DIV) as
shown in Figure 4. Our goal is to initialize two registers Ain

and Bin with values 2 and 3 respectively at clock cycle 9.

The two internal input registers for DIV unit are Ain and
Bin. The internal output register for DIV unit is Cout . The
input instruction is divInst and the output is result. In this
particular scenario, Ain and Bin receive data from the first and
second source operands of the input instruction (divInst) i.e.,

† Same testcases as in the node coverage.

Ain = divInst.src1 and Bin = divInst.src2; Cout returns the
result of the division i.e., Cout = Ain ÷Bin; finally the output
is fed from Cout i.e., result = Cout .

Fetch

MUL1 FADD1

PC

Decode

IALU
Ain Bin

Cout

DIV

operation

InstMemory

RegFile

result

divInst

Figure 4. A fragment of the DLX architecture

The following property generates the instruction sequence
to initialize Ain and Bin with values 2 and 3 respectively at
clock cycle 9. The property is written using SMV language
[8]. Informally speaking, it implies that if current clock cycle
is 8, in the next cycle DIV.Ain should not be 2 or DIV.Bin
should not be 3.

assert G((cycle = 8) -> X((DIV.Ain ˜= 2) |
(DIV.Bin ˜= 3)));

Mishra et al. [12] applied this property on the complete de-
scription of the DLX processor to generate the required test
program. They used a 359 MHz Sun UltraSPARC-II with
2048M RAM and the test generation time was 75.4 seconds.
We do not have access to such a machine. We applied this
property using a 333 MHz Sun UltraSPARC-II with 128M
RAM and it took 375.98 seconds to generate the test pro-
gram. One of the reason for this difference is the lower RAM
size of our machine. The number of allocated BDD nodes is
1928568.

We modify this global property to make it applicable at
module level (as shown below) and apply to the division unit
(DIV) using SMV.

assert G((cycle=8) -> X((Ain ˜= 2) | (Bin ˜= 3)));

The next step is to analyze the counterexample produced
by SMV to extract the input requirements for the division
unit. For example, in this case the input requirements are
simple: divInst.src1 = 2 and divInst.src2 = 3. These input
requirements are used to generate the expected output as-
signments for the decode unit (parent of the division unit).
Also, the cycle count requirement is modified for the decode
unit. The modified property (shown below) is applied to the
decode unit.

assert G((cycle = 7) -> X((divInst.src1 ˜= 2) |
(divInst.src2 ˜= 3)));

The counterexample is analyzed to extract the input re-
quirements for the decode unit. The decode has two inputs:
operation and RegFile. For example, in this case the input
requirements are: operation.opcode = DIV, operation.src1 =
1, operation.src2 = 2, RegFile[1] = 2, and RegFile[2]=3.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

This indicates that the operation should be a division opera-
tion with src1 as R1 and src2 as R2. It also implies that the
register file should have the values 2 and 3 at locations 1 and
2 respectively. There are two tasks to be done here. First, ini-
tialize a register file location with a specific value at a given
a clock cycle t. It is done using a move-immediate instruction
fetched at (t-5). In this case, the move-immediate operations
should be done at clock cycle 2 and 3 to make the data avail-
able at cycle 8. The second task is to convert the remaining
input requirements as the expected outputs for the fetch unit
(parent of the decode). The modified property (shown below)
is applied to the fetch unit (Fetch).

assert G((cycle=6) -> X((operation.opcode ˜= DIV) |
(operation.src1 ˜= 1) | (operation.src2 ˜= 2)));

The counterexample is analyzed to extract the input re-
quirements for the fetch unit. The fetch unit has two inputs:
PC and instruction memory. The expected value for PC is
5 and InstMemory[5] has instruction: DIV Rx R1 R2. These
are primary inputs for the processor. The final test program,
shown below, is constructed by putting random values in the
unspecified fields:

Fetch Cycle Opcode Dest Src1 Src2 Comments
----------- ------ ---- ---- ---- --------------
1 NOP R0 is always 0
2 ADDI R1, R0, #2 R1 = 2
3 ADDI R2, R0, #3 R2 = 3
4 NOP
5 NOP
6 NOP
7 DIV R3, R1, R2

The system took less than a second to come up with the
counterexample on a 333 MHz Sun UltraSPARC-II with
128M RAM. This time includes the time taken by SMV in
verifying three module level properties. It also includes the
time taken by our system in traversing the graph and generat-
ing the new properties with input/output computations using
counterexamples. The total number of BDD nodes allocated
is 5600.

As mentioned earlier, if the property is applied to the com-
plete description of the processor, SMV takes 375.98 seconds
and 1928568 BDD nodes to generate the counterexample.
Clearly, our technique reduced the test generation time and
the required BDD size by an order of magnitude.

5 Conclusions

Functional validation is widely acknowledged as a major
bottleneck in microprocessor design. Specification driven
validation is a promising approach. In this paper, we present
a graph coverage based functional test program generation
technique for pipelined processors. Our methodology ac-
cepts architecture description language (ADL) specification
of the processor as input. A graph model of the pipelined
processor is generated from the ADL specification. We have

defined the functional coverage of the pipeline behavior in
terms of the graph coverage. We have presented a test pro-
gram generation algorithm that traverses the pipeline graph
to generate test programs based on the coverage metric. The
algorithm breaks one processor level property into multiple
module level properties and applies them. Our technique re-
duced the test generation time and the required BDD size by
an order of magnitude.

Currently, we apply these tests on the cycle-accurate struc-
tural simulator of the architecture. Our future work includes
application of these test programs on the RTL description for
functional validation of pipelined processors.

References
[1] A. Aharon et al. Test Program Generation for Functional Ver-

ification of PowerPC Processors in IBM. DAC, 1995.

[2] J. Burch and D. Dill. Automatic verification of pipelined mi-
croprocessor control. CAV, 1994.

[3] D. Campenhout et al. High-Level Test Generation for Design
Verification of Pipelined Microprocessors. DAC, 1999.

[4] L. Chen et al. A Scalable Software-Based Self-Test Method-
ology for Programmable Processors. DAC, 2003.

[5] A. Halambi et al. EXPRESSION: A Language for Architec-
ture Exploration through Compiler/Simulator Retargetability.
DATE, 1999.

[6] J. Hennessy and D. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, 1990.

[7] P. Ho et al. Formal verification of pipeline control using con-
trolled token nets and abstract interpretation. ICCAD, 1998.

[8] www.cs.cmu.edu/˜modelcheck. Symbolic Model Verifier.

[9] H. Iwashita, S. Kowatari, T. Nakata, and F. Hirose. Automatic
test pattern generation for pipelined processors. ICCAD, 1994.

[10] R. Jhala and K. L. McMillan. Microarchitecture Verification
by Compositional Model Checking. CAV, 2001.

[11] W. Lai and K. Cheng. Instruction-Level DFT for Testing Pro-
cessor and IP Cores in System-on-a-Chip. DAC, 2001.

[12] P. Mishra and N. Dutt. Automatic Functional Test Program
Generation for Pipelined Processors using Model Checking.
HLDVT, 2002.

[13] P. Mishra et al. Functional Abstraction driven Design Space
Exploration of Heterogeneous Programmable Architectures.
ISSS, 2001.

[14] J. Sawada and J. W.A. Hunt. Trace Table based Approach for
Pipelined Microprocessor Verification. CAV, 1997.

[15] J. Shen et al. Functional Verification of the Equator MAP1000
Microprocessor. DAC, 1999.

[16] J. Skakkebaek et al. Formal Verification of Out-of-order Exe-
cution using Incremental Flushing. CAV, 1998.

[17] S. Thatte and J. Abraham. Test Generation for Microproces-
sors. IEEE Transactions on Computers, C-29(6), 1980.

[18] S. Ur and Y. Yadin. Micro architecture coverage directed gen-
eration of test programs. DAC, 1999.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

