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ABSTRACT
Multicore architectures, especially chip multi-processors, have been
widely acknowledged as a successful design paradigm. Existing
approaches primarily target application-driven partitioning of the
shared cache to alleviate inter-core cache interference so that both
performance and energy efficiency are improved. Dynamic cache
reconfiguration is a promising technique in reducing energy con-
sumption of the cache subsystem for uniprocessor systems. In this
paper, we present a novel energy optimization technique which em-
ploys both dynamic reconfiguration of private caches and partition-
ing of the shared cache for multicore systems with real-time tasks.
Our static profiling based algorithm is designed to judiciously find
beneficial cache configurations (of private caches) for each task as
well as partition factors (of the shared cache) for each core so that
the energy consumption is minimized while task deadline is satis-
fied. Experimental results using real benchmarks demonstrate that
our approach can achieve 29.29% energy saving on average com-
pared to systems employing only cache partitioning.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYS-
TEMS]: Real-time systems and embedded systems

General Terms
Algorithm, Design

Keywords
Multicore systems, real-time systems, energy optimization, cache,
dynamic reconfiguration

1. INTRODUCTION
Due to various limitations in device scaling faced by semicon-

ductor microelectronic design nowadays, computation using single-
core processors has hit the wall on its way of performance im-
provement. Chip multiprocessor (CMP) architectures, which inte-
grates multiple processing units on a single chip, have been widely
adopted by major vendors like Intel, AMD, IBM and ARM in both
general-purpose computers [1] as well as embedded systems [2]
[3]. Multicore processors are able to run multiple threads in parallel
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at lower power dissipation per unit of performance. Despite the ad-
vantages, energy conservation is still a primary concern in system
optimization. While being important for conventional computers,
energy efficiency is especially critical for embedded systems since
many of them are driven by batteries. Real-time systems which
runs applications with timing constraints require unique consid-
erations since deadlines have to be satisfied to avoid catastrophic
consequences and ensure correct system behavior. Due to the ever
growing demands for parallel computing, multicore processors are
commonly employed in real-time systems [4].

The ever increasing gap between processor and memory speed
leads to the prevalence of on-chip caches. Multi-level caches are
responsible for a significant part nowadays (over 50%) of the over-
all system energy consumption due to its large on-chip area and
high access frequency [5]. One of the most effective techniques
for cache energy optimization is dynamic cache reconfiguration
(DCR) [6]. By tuning the cache configuration at runtime, we can
satisfy memory access behavior of different applications so that
significant amount of energy savings can be achieved. DCR has
been well studied for uniprocessor in both general-purpose com-
puters [7] as well as real-time embedded systems [8] [9]. Typi-
cally, L2 cache acts as a shared resource in CMP. Recent research
has showed that shared on-chip cache may become a performance
bottleneck for CMP systems because of contentions among paral-
lel running tasks [10] [11]. To alleviate this problem, cache parti-
tioning (CP) techniques judiciously partition the shared cache and
maps a designated part of the cache to each core. CP is designed at
the aim of performance improvement [12], inter-task interference
elimination [10], thread-wise fairness optimization [13], off-chip
memory bandwidth minimization [14] and energy consumption re-
duction [15]. Meanwhile, CP is also beneficial for real-time sys-
tems to improve worst-case execution time (WCET) analysis, sys-
tem predictability and cache utilization [16] [15].

In this paper, we present a novel energy optimization technique
which efficiently integrates cache partitioning and dynamic recon-
figuration in real-time multicore systems. To the best of our knowl-
edge, this is the first work that employs DCR and CP simultane-
ously. Our contribution can be summarized as:

1. We find that DCR in L1 caches has great impact on decisions
of CP in shared L2 and vice versa. Moreover, both DCR and
CP play important roles in energy conservation.

2. Our approach can minimize the cache hierarchy energy con-
sumption while guarantee all timing constraints.

3. We propose efficient static profiling techniques and algorithms
to find beneficial L1 cache configurations for each task and
L2 partition factors for each core.

4. Our approach considers multiple tasks on each core thus is
more general than existing CP techniques which assume only
one application per core [11] [15] [14].

5. We study the effect of different deadline constraints.
The remaining part of the paper is organized as follows. Related

works are discussed in Section 2. Section 3 describes the archi-
tecture model and motivation of our work. Section 4 presents our



approach for CMPs in detail, followed by experimental results in
Section 5. Finally, Section 6 concludes the paper.

2. RELATED WORK
Several reconfigurable cache architectures are proposed in recent

years [5] [6]. DCR techniques for general-purpose systems based
on both dynamic and static analysis are presented in [7] and [17],
respectively. In real-time systems, the major challenge of employ-
ing DCR is to determine when and how to reconfigure the cache so
that energy consumption is minimized while no timing constraint
is violated. Wang et al. proposed profile-based scheduling-aware
DCR for soft real-time systems with single-level cache [8] as well
as multi-level cache hierarchy [9]. Recent research works have also
applied DCR in hard real-time systems in conjunction with proces-
sor voltage scaling [18]. However, none of them considers multi-
core platforms.

Cache partitioning techniques are widely studied for various de-
sign objectives for multicore processors. Majority of them focused
on reducing cache miss rate thus improving performance. Suh et
al. [19] utilized hardware counters to gather runtime information
which is used to partition the shared cache through the replacement
unit. Qureshi et al. [12] proposed a low-overhead CP technique
based on online monitoring and cache utilization of each applica-
tion. Kim et al. [13] focused on fair cache sharing using both
dynamic and static partitioning. Recently, CP is employed for low-
power system designs. Reddy et al. [10] [15] showed that, by
eliminating inter-task cache interferences, both dynamic and leak-
age energy can be saved. Cache bank structure aware CP in CMP
platforms is studied in [11]. Yu et al. [14] targeted at minimizing
off-chip bandwidth through off-line profiling. Nevertheless, exist-
ing CP techniques only focus on shared L2 cache and ignore the
impact as well as the optimization opportunities from reconfigur-
ing private L1 caches.

3. BACKGROUND AND MOTIVATION
In this section, we show important features of the underlying

architecture. Next, we describe the cache energy model. We also
present an illustrative example to motivate the need and usefulness
of our approach.

3.1 Architecture Model
Figure 1 illustrates a typical CMP platform with private L1 caches

(IL1 and DL1) in each core and a shared on-chip L2 cache. Here,
both instruction L1 and data L1 cache associated with each core
are highly reconfigurable in terms of effective capacity, line size
and associativity. The underlying reconfigurable cache architec-
ture we adopt is based on [6]. Specifically, gated-Vdd technique is
used to shut down the banks for cache size tuning. Associativity
can be changed by logically concatenating neighboring ways. Line
size is reconfigured by specifying the number of unit-length blocks
fetched in each cache access. This architecture requires very simple
hardware augmentation and minor overhead [6].
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Figure 1: Typical multicore architecture with shared L2 cache.

Unlike traditional LRU replacement policy which implicitly par-
titions each cache set on a demand basis, we use a way-based par-
titioning in the shared cache [20]. As shown in Figure 2, each L2
cache set (here with a 8-way associativity) is partitioned in the gran-
ularity of ways. Each core is assigned a group of ways and will
only access that portion in all cache sets. LRU replacement is en-
forced in each individual group which is achieved by maintaining
separate sets of “age bit”. It is also possible to divide the cache
by sets (set-based partitioning) in which each set retains full asso-
ciativity [14]. However, since real-time embedded systems usually
have small number of cores, way-based partitioning is beneficial
enough for exploiting energy efficiency. We refer the number of
ways assigned to each core as its partition factor. For example, the
L2 partition factor for Core 1 in Figure 2 is 3.

Core 1 Core 2 Core 3 Core 4 

8 ways in one cache set 

 

Figure 2: Way-based cache partitioning example (four cores
with a 8-way associative shared cache).

In this work, we use static cache partitioning. In other words,
L2 partition factors for each core are pre-determined during design
time and remain the same through out the system execution. Dy-
namic partitioning [12] requires online monitoring, runtime analy-
sis and sophisticated OS support thus is not feasible for embedded
systems. Furthermore, real-time systems normally have highly de-
terministic characteristics (e.g., task release time, deadline, input
set) which make off-line analysis most suitable [21]. By static pro-
filing, we can potentially search much larger design space and thus
achieve better optimization results.

3.2 Energy Model
Cache energy consumption is modeled as the sum of dynamic

and static energy: E = Edyn +Esta. Dynamic energy dissipation
Edyn comes from both cache accesses and cache misses:

Edyn = naccess ·Eaccess +nmisses ·Emiss (1)

where naccess and nmiss are number of cache accesses and misses,
respectively. Cache access energy Eaccess is known to be constant
for one specific configuration. Emiss is computed as:

Emiss = Ememside +Eblock_ f ill +EµP_stall (2)

where Ememside is the energy required for accessing lower levels of
the memory hierarchy, Eblock_ f ill is the energy for filling the cache
block by the fetched data, and EµP_stall is the energy consumed by
the stalled processor during cache miss. For multi-level cache sub-
system, as considered in this paper, overlapped energy consump-
tion has to be counted only once (e.g., Ememside of L1 cache is es-
sentially part of L2’s Edyn). Let Psta denote the static power con-
sumption of cache, Esta is simply computed as Esta =Psta ·t where t
is the total execution time. Values of Eaccess, Psta and Eblock_ f ill are
collected from CACTI [22], using 70nm technology, for all cache
configurations.

3.3 Motivation
Figure 3 shows the number of L2 cache misses and instruction

per cycle (IPC) for two benchmarks (qsort from MiBench [23] and
vpr from SPEC CPU2000 [24]) under different L2 cache partition



factors p (in a 8-way associative L2 cache) and randomly chosen
four L1 cache configurations1. Unallocated L2 cache ways remain
idle. We observe that changing L1 cache configuration will lead
to different number of L2 cache misses. It is expected because L1
cache configuration determines the number of L2 accesses. System
performance (i.e., IPC) is also largely affected by L1 configura-
tions. Notice that for larger partition factors (e.g., 7), the difference
in L2 misses is negligible but IPC shows great diversity. It is be-
cause not only L2 partitioning but also L1 configurations determine
the performance.

It is also interesting to see that vpr shows larger variances at the
same L2 partition factor than qsort. For example, the number of L2
cache misses becomes almost identical (although there are times of
differences in the numbers of L2 accesses) at p = 4 for qsort while
it starts to converge for vpr only after p = 6. The reason behind
this is that, for qsort, there are mostly compulsory misses for p > 4.
In other words, p = 4 is a sufficient L2 partition factor for qsort in
terms of performance. However, increasing p and reducing number
of accesses continue to bring benefit for vpr as shown in Figure 3(c)
due to the fact that vpr has more capacity and conflict misses.
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Figure 3: L1 DCR impact on L2 CP in performance.

Given the above observations, we see that L1 DCR has major
impact on L2 CP and there are interesting trade-offs that can be ex-
plored for optimizations. Therefore, both DCR and CP should be
exploited simultaneously for energy conservation in real-time mul-
ticore systems. Our experimental results in Section 5.2 confirms
our conjecture.

4. DYNAMIC CACHE RECONFIGURATION
AND PARTITIONING

In this section, we formulate our energy optimization problem
based on performing dynamic reconfiguration of private L1 caches
and static partitioning of shared L2 cache (DCR + CP). We present
our static profiling strategy. The actual dynamic programming based
algorithm which utilizes the static profiling information is then de-
scribed in detail.

4.1 Problem Formulation
The system we consider can be modeled as:

• A multicore processor with m cores P{p1, p2, ..., pm}.
1Here c18 and c9, for example, stands for the 18th and 9th configu-
ration for IL1 and DL1, respectively.

• Each core of the processor has highly-reconfigurable IL1 and
DL1 caches both of which supports h different configurations
C{c1,c2, ...,ch}.

• A α-way associative shared L2 cache with way-based parti-
tioning enabled.

• A set of n independent tasks T {τ1,τ2, ...,τn}with a common
deadline D2.

Suppose we are given:
• A task mapping M : T → P in which tasks are mapped to

each core. Let ρk denotes the number or tasks on core pk.
• A L1 cache configuration assignment R : CI ,CD→T in which

one IL1 and one DL1 configuration are assigned to each task.
• A L2 cache partitioning scheme P{ f1, f2, ..., fm} in which

core pi ∈ P is allocated fi ways.
• Task τk,i ∈ T (ith task on core pk) has execution time of

tk,i(M,R,P). Let EL1(M,R,P) and EL2(M,R,P) denote the
total energy consumption of all the L1 caches and the shared
L2 cache, respectively.

Our goal is to find M, R and P such that the overall energy con-
sumption E of the cache subsystem:

E = EL1(M,R,P)+EL2(M,R,P) (3)

is minimized subject to:

max(
ρk

∑
i=1

tk,i(M,R,P))6 D , ∀k ∈ [1,m] (4)

m

∑
i=1

fi = α ; fi > 1 , ∀i ∈ [1,m] (5)

Equation (4) guarantees that all the tasks in T are finished by the
deadline D. Equation (5) ensures that the L2 partitioning P is valid.

4.2 Static Profiling
In this paper, we assume that the task mapping M is given. A rea-

sonable (as well as beneficial) task mapping would be a bin packing
of the tasks using their base case execution time to all the m cores
so that the total execution time in each core is similar. Here the base
case execution time refers to the time one task takes in the system
where L1 cache reconfiguration is not applied (using the base con-
figuration) and L2 cache is evenly partitioned. Theoretically, we
can simply profile the entire task set T under all possible combina-
tions of R and P. Unfortunately, this exhaustive exploration is not
feasible due to its excessive simulation time requirement. As an
example, in this work, the reconfigurable L1 cache contains four
banks each of which is 1 KB. Therefore, it offers effective capaci-
ties of 1 KB, 2KB and 4 KB. Line size can be tuned to 16, 32 and 64
bytes while each cache set supports 1-way, 2-way and 4-way asso-
ciativity. There are totally h = 18 different configurations3. Even
if we have four cores with only two tasks each core and a 8-way
associative L2 cache, the total number of multicore architectural
simulations will be ((182)2)4×35. To be specific, 182 denotes the
number of IL1 and DL1 cache configurations for each task. (182)2

presents all possible L1 cache combinations of the two tasks in each
core. Upon that, (182)2)4 denotes all the possible combinations
across four cores. According to Equation (5), the size of P (i.e.,
|P|) equals 35 when m = 4 and α = 8. Obviously, this simulation
time is even longer than the age of the universe if each simulation
takes only 1 minute.

This problem can be greatly relieved by exploiting the indepen-
dence of the design space’s each dimension. We observe that each
task can actually be profiled individually. It is because the tasks
that we consider do not have application-specific interactions (e.g.,
2Our approach can be easily extended for individual deadlines.
3It is not equal to 33 since not all combinations are valid [9].



data sharing) except the contention for the shared resources. Es-
sentially, using L2 cache partitioning, each core pi can be viewed
as a uniprocessor with fi-way associative L2 cache (i.e., the capac-
ity is fi/α of the original). L1 cache activities are private at each
core while L2 activities happen independently in each core’s par-
tition. Therefore, we simulate each task in T independently under
all combinations of L1 cache configurations and L2 cache partition
factors (from 1 to α−1). In other words, the total number of single-
core simulations equals to h2 · (α−1) ·n. Using the same example
above, with 8 tasks, it is (182)× 7× 8. Note that this profiling
process is independent of the task mapping M and the number of
cores m. Apparently, it will take only reasonable static profiling
time (e.g., at most three days).

4.3 DCR + CP Algorithm
Static profiling results are used to generate profile tables for each

task. Each entry in the profile table records the cache energy con-
sumption, for both L1 and the L2 partition, as well as the corre-
sponding execution time of that task. The dynamic energy of L2
cache is computed using Equation (1) based on the statistics (ac-
cesses) from the core to which the task is assigned. The static
energy, however, is estimated by treating the allocated ways as a
standalone cache. In other words, the static energy is proportional
to the number of allocated ways. There are h2 · (α− 1) entries in
every task’s profile table. For task τk,i ∈ T (ith task on core pk), let
ek,i(h1,h2, fk) denote the total cache energy consumption if task τk,i
is executed with (IL1,DL1) configurations (ch1 , ch2 ) and L2 parti-
tion factor fk. Similarly, let tk, j(h1,h2, fk) denote the execution
time. Our problem now can be presented as to minimize:

E =
m

∑
k=1

ρk

∑
i=1

ek,i(h1,h2, fk) (6)

subject to:

max(
ρk

∑
i=1

tk,i(h1,h2, fk))6 D , ∀k ∈ [1,m] (7)

m

∑
i=1

fi = α ; fi > 1 , ∀i ∈ [1,m] (8)

Our algorithm consists of two steps. Since static partitioning is
used, all the tasks on each core share the same L2 partition fac-
tor fk. This fact gives us an opportunity to simplify our algorithm
without losing any precision. In the first step, we find the opti-
mal L1 cache assignments for the tasks on each core separately
under all L2 partition factors. Specifically, we find R to minimize
Ek( fk) = ∑

ρk
i=1 ek,i(c1,c2, fk) constrained by ∑

ρk
i=1 tk,i(c1,c2, fk) 6

D with k and fk fixed for ∀pk ∈ P and ∀ fk ∈ [1,α− 1]. This step
(sub-problem) is illustrated in Figure 4 for pm with fm = 2. Similar
to the uniprocessor DVS problem [25], each instance of this sub-
problem can be reduced from the multiple-choice knapsack prob-
lem (MCKP) and thus is NP-hard.

Since the subproblem size (measured by h2, ρk) and the em-
bedded application size (measured by energy value) are typically
small, a dynamic programming algorithm can find the optimal so-
lution quite efficiently as follows. Let emax

k ( fk) and emin
k ( fk) be de-

fined as ∑
ρk
i=1 max{ek,i(h1,h2, fk)} and ∑

ρk
i=1 min{ek,i(h1,h2, fk)},

respectively. Hence, Ek( fk) is bounded by [emin
k ( fk),emax

k ( fk)]. In
order to guarantee the timing constraint, the energy value is dis-
cretized in our dynamic programming algorithm. Let SEk

j denote
the partial solution for the first j tasks which has an accumulative
energy consumption equal to Ek while the execution time is mini-
mized. We create a two-dimensional table T in which each element
T [ j][Ek] stores the execution time of SEk

j . The recursive relation for
dynamic programming thus is:

T [ j][Ek] = min
h1,h2∈[1,h]

{T [ j−1][Ek−ek,i(h1,h2, fk)]+tk,i(h1,h2, fk)}

(9)
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Figure 4: Illustration of our algorithm.

Initially, all entries in T store some value larger than D. Based
on the above recursion, we fill up the table T [ j][Ek] in a row by
row manner for all energy values in [emin

k ( fk),emax
k ( fk)]. During

the process, all previous i− 1 rows are filled when the ith row is
being calculated. Finally, the optimal energy consumption E∗k ( fk)
is found by:

E∗k ( fk) = {min Ek | T [ρk][Ek]6 D} (10)

Algorithm 1 outlines the major steps in our DCR + CP approach.
Our algorithm iterates over all tasks in core pk (1 to ρk). During
each iteration, all discretized Ek values and L1 cache configura-
tions (1 to h2) for current task are examined. Therefore, the time
complexity is O(ρk · h2 · (emax

k ( fk)− emin
k ( fk))). Note that energy

values (reflected in the last term of the complexity) can always
be measured in certain unit so that they are numerically small to
make the dynamic programming efficient. The size of table T de-
cides the memory requirement, which is ρk · (emax

k ( fk)−emin
k ( fk)) ·

sizeo f (element) bytes. In each entry of T , we can use minimum
number of bits to remember the L1 configuration index instead
of real execution time values. For calculation purposes, two two-
dimensional arrays are used for temporarily storing time values for
current and previous iterations. The above process is repeated for
∀k ∈ [1,m] and ∀ fk ∈ [1,α− 1]. It is possible that, for some fk,
there is no feasible solution for core pk satisfying the deadline. We
mark them as invalid. The results form a new profile table G for
each core in which there are [1,α−1] entries and each entry stores
the corresponding optimal solution E∗k ( fk), as shown in Figure 4.

In the second step, the global optimal solution E∗ can be found
by calculating the overall energy consumption for all L2 partition
schemes in P which complies with Equation (8). Given a parti-
tion factor fk for core pk, the optimal energy consumption E∗k ( fk)
observing D has been calculated in the first step. Invalid parti-
tion schemes are discarded. We have E∗ = min{∑m

k=1 E∗k ( fk)} for
{ f1, f2, ..., fm}∈P. Therefore, for each L2 partitioning scheme, the
corresponding solution can be found in O(m) time. Since the size
of P is small (e.g., 455 and 4495 for 4 cores with 16-way and 32-
way associative L2 cache, respectively), an exhaustive exploration
is efficient enough for this step to find the minimum cache hierar-
chy energy consumption in O(m · |P|) time. Otherwise, a dynamic
programming algorithm can be used. Note that E∗ is not strictly
equal to the actual energy dissipation since the L2 cache still con-
sumes static power in its entirety after some cores finish their tasks.
Therefore, in our experimental results, we have added this portion



of static energy to make it accurate. If L2 cache lines are turned
off in those partitions using techniques such as cache decay [26]
to save static power dissipation, E∗ is already accurate. Each core
along with its private caches are assumed to be turned off after it
finishes execution.

Algorithm 1 DCR + CP Algorithm.
1: for k = 1 to m do
2: for fk = 1 to α−1 do
3: for l = emin

k ( fk) to emax
k ( fk) do

4: for h1,h2 ∈ [1,h] do
5: if ek,1(h1,h2, fk) == l then
6: if tk,1(h1,h2, fk)< T [1][l] then
7: T [1][l] = tk,1(h1,h2, fk)
8: end if
9: end if

10: end for
11: end for
12: for i = 2 to ρk do
13: for l = emin

k ( fk) to emax
k ( fk) do

14: for h1,h2 ∈ [1,h] do
15: last = l− ek,i(h1,h2, fk)
16: if T [ j−1][last]+ tk,i(h1,h2, fk)< T [ j][l] then
17: T [ j][l] = T [ j−1][last]+ tk,i(h1,h2, fk)
18: end if
19: end for
20: end for
21: end for
22: E∗k ( fk) = min{Ek | T [ρk][Ek]6 D}
23: end for
24: end for
25: for all Pi{ f1, f2, ..., fm} ∈ P do
26: E∗i = ∑

m
k=1 E∗k ( fk)

27: end for
28: return min{E∗i }

5. EXPERIMENTS

5.1 Experimental Setup
To evaluate our approach’s effectiveness, we use 20 benchmarks

selected from MiBench [23] – basicmath, bitcount, CRC32, dijk-
stra, FFT, patricia, qsort, sha, stringsearch, toast and untoast –
and SPEC CPU 2000 [24] – ammp, applu, gcc, lucas, mcf, parser,
swim, vpr and mgrid. In order to make the size of SPEC bench-
marks comparable with MiBench, we use reduced (but well veri-
fied) input sets from MinneSPEC [27]. Table 1 lists the task sets
used in our experiments which are combinations of the selected
benchmarks. We choose 4 task sets where each core contains 2
benchmarks, 3 task sets where each core contains 3 benchmarks
and 2 task sets where each core contains 4 benchmarks. As men-
tioned in Section 4.2, the task mapping is based on the rule that the
total execution time of each core is comparable. The deadline D is
set in a way that there is a feasible L1 cache assignment for every
partition factor in every core. In other words, all possible L2 par-
tition schemes can be used. We will examine the effect of timing
constraints (deadlines) in Section 5.3.

M5 [28], a widely used architectural simulator, is adopted in our
experiments. We enhanced M5 to make it support shared cache par-
titioning and different line sizes in different caches (IL1, DL1 and
L2) to support cache reconfiguration in CMP mode. We config-
ure the simulated system with a four-core processor each of which
runs at 500MHz. The TimingSimpleCPU model [28] in M5 is used
which represents an in-order core which stalls during cache ac-
cesses and memory response handling. The L2 cache configuration
is assumed to be 32KB, 8-way associative with 32-byte lines. The
memory size is set to 256MB. The L1 cache, L2 cache and memory
access latency are set to 2ns, 20ns and 200ns, respectively.

5.2 Energy Savings
We compare the following three approaches.

• CP: L2 cache partitioning only (optimal partition).
• DCR + UCP: L1 DCR with uniform L2 cache partitioning.
• DCR + CP: Our approach.

Here CP only approach uses optimal L2 partition scheme with
all L1s in base configuration. It can be achieved using our algo-
rithm in Section 4.3 without the first step. Figure 5 illustrates this
comparison in energy consumption for all task sets in Table 1. En-
ergy values are normalized to CP. As discussed in Section 4.2, our
reconfigurable L1 cache has a base size of 4KB. Here, we examine
two kinds of L1 base configurations: 4KB with 2-way associativity
and 32-byte line size (4KB_2W_32B), and 4KB with 4-way asso-
ciativity and 64-byte line size (4KB_4W_64B). In the former case,
DCR + CP can save 18.35% of cache energy on average compared
with CP. In the latter case, up to 33.51% energy saving (e.g., for
task set 4) can be achieved and averagely 29.29%. Compared with
DCR + UCP, our approach is able to achieve up to 14% more en-
ergy savings by carefully select cache partitioning scheme P. Note
that although results for only two L1 base configurations are shown
here, we observe that similar improvements can be achieved for
other base configurations (e.g., 19.30% for 2KB_2W_32B).

It is valuable to disclose the energy reduction ability of our ap-
proach. Using task set 4 in Figure 5 (b) as an example, CP selects
the best P = {1,5,1,1} with L1 configuration of 4KB_4W_64B. It
consumes total energy of 125.8 mJ and finishes all tasks in 1600
ms. With DCR + CP, the optimal P = {2,4,1,1} and the L1 caches
are configured differently for each task. For example, FFT on Core
1 uses 1KB_1W_64B and 4KB_4W_16B of IL1 and DL1, respec-
tively, while swim on Core 3 uses 4KB_4W_16B and 2KB_2W_32B.
Using DCR + CP, the energy requirement is reduced to 83.6 mJ and
all tasks finishes in 1788 ms.

5.3 Deadline Effect
It is also meaningful to see how deadline constraint can affect the

effectiveness of our approach. Using the same example above, for
task set 4, we vary the deadline from 1800 ms to 1520 ms in step
of 10 ms (there is no solution for deadlines shorter than 1520 ms).
Figure 6 shows the result for both CP and DCR + CP. We can ob-
serve that our approach can find efficient solutions and outperforms
CP consistently at all deadline levels.
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Figure 6: Deadline effect on total energy consumption.

6. CONCLUSION
In this paper, we presented an efficient approach to integrate dy-

namic cache reconfiguration (DCR) and cache partitioning (CP) for
real-time multicore systems. We discovered that there is a strong
correlation between L1 DCR and L2 CP. While CP is effective in
reducing inter-task interferences, applying DCR together can fur-
ther improve the energy efficiency without violating timing con-
straints. Our static profiling technique drastically reduces the ex-



Table 1: Multi-task benchmark sets.
Core 1 Core 2 Core 3 Core 4

Set 1 qsort, vpr parser, toast untoast, swim dijkstra, sha
Set 2 mcf, sha gcc, bitcount patricia, lucas basicmath, swim
Set 3 applu, lucas dijkstra, swim ammp, FFT basicmath, stringsearch
Set 4 mgrid, FFT dijkstra, parser CRC32, swim applu, bitcount
Set 5 mcf, toast, sha gcc, parser, stringsearch patricia, qsort, vpr basicmath, CRC32, ammp
Set 6 mgrid, parser, gcc toast, FFT, mcf bitcount, ammp, patricia applu, dijkstra, qsort
Set 7 vpr, sha, untoast CRC32, lucas, qsort mgrid, bitcount, FFT applu, parser, stringsearch
Set 8 sha, mcf, untoast, basicmath toast, gcc, bitcount, patricia lucas, FFT, CRC32, ammp vpr, applu, mgrid, swim
Set 9 gcc, stringsearch, parser, dijkstra untoast, mcf, ammp, bitcount lucas, patricia, qsort, vpr basicmath, toast, applu, CRC32
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Figure 5: Cache hierarchy energy reduction with L1 base configuration of: (a) 4KB_2W_32B; (b) 4KB_4W_64B.

ploration space without losing any precision. Our DCR + CP algo-
rithm, which can find the optimal L1 configurations for each task
and L2 partition factors for each core, is based on dynamic pro-
gramming with discretization in the energy values. We also stud-
ied the effect of deadline variation. Extensive experimental results
demonstrated that our approach can achieve 18.35% - 29.29% av-
erage energy savings compared with traditional cache partitioning
techniques.
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