
45.2

Instruction Set Compiled Simulation: A Technique for Fast
and Flexible Instruction Set Simulation

Mehrdad Reshadi Prabhat Mishra Nikil Dutt

Architectures and Compilers for Embedded Systems (ACES) Laboratory
Center for Embedded Computer Systems, University of California, Irvine, CA 92697, USA

(reshadi, pmishra, dutt) @cecs.uci.edu
http://www.cecs. uci .eduTaces

ABSTRACT
Instruction set simulators are critical tools for the explo-
ration and validation of new programmable architectures.
Due to increasing complexity of the architectures and time-
to-market pressure, performance is the most important fea-
ture of an instruction-set simulator. Interpretive simulators
are flexible but slow, whereas compiled simulators deliver
speed at the cost of flexibility. This paper presents a novel
technique for generation of fast instruction-set simulators
that combines the benefit of both compiled and interpre-
tive simulation. We achieve fast instruction accurate simu-
lation through two mechanisms. First, we move the time-
consuming decoding process from run-time to compile time
while maintaining the flexibility of the interpretive simula-
tion. Second, we use a novel anstructzon abstractaon tech-
nique to generate aggressively optimized decoded instruc-
tions that further improves simulation performance. Our
anstructaon set compzled szmulataon (IS-CS) technique deliv-
ers upto 40% performance improvement over the best known
published result that has the flexibility of interpretive simu-
lation. We illustrate the applicability of the IS-CS technique
using the ARM7 embedded processor.

Categories and Subject Descriptors
1.6.5 [Simulation And Modeling]: Model Development;
1.6.7 [Simulation And Modeling]: Simulation Support
Systems

General Terms
Design, Performance

Keywords
Compiled Simulation, Interpretive Simulation, Instruction
Set Architectures, Instruction Abstraction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 24,2003, Anaheim, Califomia, USA.
Copyright 2003 ACM 1-581 13-688-9/03/0006 ... $5.00.

1. INTRODUCTION
An instruction-set simulator is a tool that runs on a host

machine to mimic the behavior of running an application
program on a target machine. Instruction-set simulators are
indispensable tools in the development of new programmable
architectures. They are used to validate an architecture de-
sign, a compiler design, as well as to evaluate architectural
design decisions during design space exploration.

Traditional interpretive simulation is flexible but slow. In
this technique, an instruction is fetched, decoded, and exe-
cuted at run time as shown in Figure 1. Instruction decoding
is a time consuming process in a software simulation.

. L I

Figure 1: Traditional Interpretive Simulation Flow

Compiled simulation performs compile time decoding of
application program to improve the simulation performance
as shown in Figure 2. To improve the simulation speed fur-
ther, static compilation based techniques move the instruc-
tion scheduling into the compilation phase [4]. However, all
compiled simulators rely on the assumption that the com-
plete program code is known before the simulation starts
and is further more run-time static. Due to this assumption
many application domains are excluded from the utilization
of compiled simulators. For example, embedded systems
that use external program memories can not use compiled
simulators since the program code is not predictable prior to
runtime. Similarly, compiled simulators are not applicable
in embedded systems that use processors having multiple
instruction sets. These processors can switch to a different
instruction set mode at run time. For instance, the ARM
processor uses the Thumb (reduced bit-width) instruction
set to reduce power and memory consumption. This dy-
namic switching of instruction set modes cannot be consid-
ered by a simulation compiler, since the selection depends
on run-time values and is not predictable. Furthermore,
applications with run-time dynamic program code, as pro-

758

mailto:cecs.uci.edu
http://www.cecs

vided by operating systems (OS), can not be addressed by
compiled simulators.

Figure 2: Traditional Compiled Simulation Flow

Due to the restrictiveness of the compiled technique, in-
terpretive simulators are typically used in embedded sys-
tems design flow. This paper presents a novel technique
for generation of fast instruction-set simulators that com-
bines the performance of traditional compiled simulation
with the flexibility of interpretive simulation. Our instruc-
tion set compiled simulation (IS-CS) technique achieves high
performance due to two reasons. First, the time consuming
instruction decoding process is moved to compile time while
maintaining the flexibility of interpretive simulation. In case
an instruction is modified at run-time, the instruction is re-
decoded prior to execution. Second, we use an instruction
abstraction technique to generate aggressively optimized de-
coded instructions that further improve simulation perfor-
mance. The IS-CS technique delivers better performance
than other published simulation techniques that have the
flexibility of interpretive simulation. The simulation perfor-
mance of the IS-CS technique is upto 40% better than the
best known results [l] in this category.

The rest of the paper is organized as follows. Section 2
presents related work addressing instruction-set simulation
techniques. The instruction set compiled simulation (IS-CS)
technique is presented in Section 3. Section 4 presents sim-
ulation results using the ARM7 architecture, a commonly
used embedded processor. Section 5 concludes the paper.

2. RELATED WORK
An extensive body of recent work has addressed instruction-

set architecture simulation. The wide spectrum of today’s
instruction-set simulation techniques includes the most flex-
ible but slowest interpretive simulation and faster compiled
simulation. Recent research addresses retargetability of in-
struction set simulators using a machine description lan-
guage.

Simplescalar [3] is a widely used interpretive simulator
that does not have any performance optimizations for func-
tional simulation.

Shade [5], Embra [lo] and FastSim [8] simulators use dy-
namic binary translation and result caching to improve sim-
ulation performance. Embra provides the highest flexibility
with maximum performance but is not retargetable: it is
restricted to the simulation of the MIPS R3000/R4000 ar-
chitecture.

A fast and retargetable simulation technique is presented
in [SI. It improves traditional static compiled simulation by
aggressive utilization of the host machine resources. Such
utilization is achieved by defining a low level code gener-
ation interface specialized for ISA simulation, rather than
the traditional approaches that use C as a code generation
interface.

Retargetable fast simulators based on an Architecture De-
scription Language (ADL) have been proposed within the
framework of FACILE [9], Sim-nML [la], ISDL [14], MI-
MOLA [16], ANSI C [ll], LISA ([l], [2], [4]), and EXPRES-
SION [15]. The simulator generated from a FACILE de-
scription utilizes the Fast Forwarding technique to achieve
reasonably high performance. All of these simulation ap-
proaches assumes that the program code is run-time static.

In summary, none of the above approaches (except [l])
combines retargetability, flexibility, and high simulation per-
formance at the same time. A just-in-time cache compiled
simulation (JIT-CCS) technique is presented in [l]. The ob-
jective of the JIT-CCS technique is similar to the one pre-
sented in this paper - combining the full flexibility of inter-
pretive simulators with the speed of the compiled principle.
The JIT-CCS technique integrates the simulation compiler
into the simulator. The compilation of an instruction takes
place at simulator run-time, just-in-time before the instruc-
tion is going to be executed. Subsequently, the extracted
information is stored in a simulation cache for direct reuse
in a repeated execution of the program address. The simula-
tor recognizes if the program code of a previously executed
address has changed and initiates a re-compilation. This
technique makes an assumption to get performance closer
to complied simulation: the number of repeatedly executed
instructions should be very large such that 90% of the ex-
ecution time is spent in 10% of the code. This assumption
may not hold true for all real world applications. For exam-
ple, the 176.gcc benchmark from SPEC CPU2000 violates
this rule.

We propose an instruction set compiled simulation (IS-
CS) technique where the program is compiled prior to run
time and executed interpretively as shown in Figure 3. The
simulator recognizes if the program code of a previously ex-
ecuted address has changed and initiates a re-decoding. We
achieve both the performance of compiled simulation and
flexibility of interpretive simulation. The simulation perfor-
mance of the IS-CS technique is upto 40% better than the
best known result [l] in this category. There are two rea-
sons for its superior performance. First, the time consum-
ing instruction decoding process is moved to compile time
while maintaining the flexibility of interpretive simulation.
Second, we use a novel instruction abstraction technique to
generate aggressively optimized decoded instructions that
further improve simulation performance.

3. INSTRUCTION SET COMPILED SIMU-
LATION

We developed the instruction set compiled simulation (IS-
CS) technique with the intention of combining the full flex-
ibility of interpretive simulation with the speed of the com-
piled principle. The basic idea is to move the time-consuming
instruction decoding to compile time as shown in Figure 3.
The application program, written in C/C++, is compiled
using the gcc compiler configured to generate binary for the
target machine. The instruction decoder decodes one bi-
nary instruction at a time to generate the decoded program
for the input application. The decoded program is com-
piled by C++ compiler and linked with the simulation li-
brary to generate the simulator. The simulator recognizes if
the previously decoded instruction has changed and initiates
re-decoding of the modified instruction. If any instruction

759

Figure 3: Instruct ion Set Compiled Simulation Flow

is modified during execution and subsequently re-decoded,
the location in znstruction memory is updated with the re-
decoded instruction. To improve the simulation speed we
use a novel znstructaon abstractaon technique that generates
optimized decoded instructions as described in Section 3.1.
As a result the computation during run-time is minimized.
This technique achieves the speed of compiled simulation
due to compile-time decoding of application as described in
Section 3.2. Section 3.3 describes the simulation engine that
offers the full flexibility of interpretive simulation.

3.1 Instruction Abstraction
In traditional interpretive simulation (e.g., Simplescalar

[3]) the decoding and execution of binary instructions are
done using a single monolithic function. This function has
many if-then-else and switch/case statements that perform
certain activities based on bit patterns of opcode, operands,
addressing modes etc. In advanced interpretive simulation
(e.g., LISA [l]) the binary instruction is decoded and the
decoded instruction contains pointers to specific functions.
There are many variations of these two methods based on
efficiency of decode, complexity of implementation, and per-
formance of execution. However, none of these techniques
exploit the fact that a certain class of instructions may have
a constant value for a particular field of the instruction. For
example, a majority of the ARM instructions execute uncon-
ditionally (condition field has value always). It is a waste of
time to check the condition for such instructions every time
they are executed.

Clearly, when certain input values are known for a class
of instructions, the partaal evaluatzon [13] technique can be
applied. The effect of partial evaluation is to specialize a
program with part of its input to get a faster version of the
same program. To take advantage of such situations we need
to have separate functions for each and every possible for-
mat of instructions so that the function could be optimized
by the compiler at compile time and produce the best per-
formance at run time. Unfortunately, this is not feasible
in practice. For example, consider the ARM data process-
ing instructions. It can have 16 conditions, 16 operations,
an update flag (true/false), and one destination followed by

two source operands. The second source operand, called
shifter operand, has three fields: operand type (reg/imm),
shift options(5 types) and shift value (reg/imm). In total,
the ARM data processing instructions have 16 x 16 x 2 x 2
x 5 x 2 = 10240 possible formats.

Our solution to this problem is to define instruction classes,
where each class contains instructions with similar formats.
Most of the time this information is readily available from
the instruction set architecture manual. For example, we de-
fined six instruction classes for the ARM processor viz., Data
Processing, Branch, Loadstore, Multiply, Multiple Load-
Store, Software Interrupt, and Swap. Next, we define a set
of masks for each instruction class. The mask consists of 'O',
'1' and 'x' symbols. A '0' ('1') symbol in the mask matches
with a '0' ('1') in binary pattern of the instruction at the
same bit position. An 'x' symbol matches with both '0' and
'1'. For example, the masks for the data processing instruc-
tions are shown below:

"xxxx-001x xxxx-xxxx xxxx-xxxx xxxx-xxxx"
"xxxx-ooox xxxx-xxxx xxxx-xxxx xxxo-xxxx"
"xxxx-ooox xxxx-xxxx xxxx-xxxx Oxxl-xxxx"

We use C++ templates to implement the functionality for
each class of instructions. For example, the pseudo code for
the data processing template is shown below. The template
has four parameters viz., condition, operation, update flag,
and shifter operand. The shifter operand is a template hav-
ing three parameters viz., operand type, shift options and
shift value.

Example 1: Template for Data Processing Instructions

template <class Cond, class Op, class Flag, class Sftoper>
class DataProcessing :
E

SftOper -sftoperand;
Reg -dest, -srcl;

pub1 i c :
.
virtual void execute0

if (Cond: :execute())
c

E
-dest = Op::execute(-srcl. -sftOperand.getValueO);
if (Flag: :execute())
E

// Update Flags
.

>
>

>
>;

We also use a Mask Table for the mapping- between mask
patterns and templates. It also maintains a mapping be-
tween mask patterns and functions corresponding to those
templates.

This instruction abstraction technique is used to generate
aggressively optimized decoded instructions as described in
Section 3.2.

3.2 Instruction Decoder
Algorithm 1 decodes one binary instruction at a time to

generate the decoded program for the input application.
For each instruction in the application program it selects
the appropriate template using Algorithm 2. It generates
a customized template for the instruction using the- appro-
priate parameter values. Algorithm 3 briefly describes the

760

customized template generation process. Finally, the cus-
tomized template is instantiated and appended in the tem-
porary program Tempprogram. The Tempprogram is fed
to a C++ compiler that performs necessary optimizations
to take advantage of the partial evaluation technique, de-
scribed in Section 3.1, to produce the DecodedProgram. The
DecodedProgram is loaded into instruction memory which is
a separate data structure than main memory. While the
main memory holds the original program data and instruc-
tion binaries, each cell of instruction memory holds a pointer
to the optimized functionality as well as the instruction bi-
nary. The instruction binary is used to check the validity of
the decoded instruction during run-time.

Algorithm 3 describes the template customization prc-
cess. The algorithm's basic idea is to extract the values
from specific fields of the binary instruction (e.g., opcode,
operand etc.) and assign those values to the template. We
maintain the information for each class of instructions, tem-
plates, field formats, and mask patterns. These information
can be derived from the processor specification described us-
ing an Architecture Description Language such as LISA [l],
EXPRESSION [7] and nML [12].

Algorithm 1: Instructzon Decodang
Inputs: Application Program Appl (Binary), MaskTable maskTable.
Output: Decoded Program DecodedProgram.
Begin

Tempprogram = {}
foreach binary instruction znst with address addr in Appl

template = DetermineTemplate(znst, maskTable)
templatetnst = CustomizeTemplate(template, znst)
newStr = "InstMemory[addr] = new template,,,t"
Tempprogram = AppendInst(TempProgram, newStr)

endfor
DecodedProgram = Compile(Tempprogram)

End

Algorithm 2: DetermineTemplate
Inputs: Instruction inst (Binary), and Mask Table naskTable
Output: Template.
Begin

foreach entry < mask, template >

endfor

in Mask Table
if mask matches znst return template

End

Algorithm 3: CustomzzeTemplate
Inputs: Template template, Instruction anst (Binary).
Output: Customized Template with Parameter Values.
Begin

switch instClassOf(znst)
case Data Processing:

case 1110: conditzon = Always endcase
case

switch (inst[31:28])

...
endswitch
switch (inst[24:21])

case 0100: opcode = ADD; endcase
case _...
...

endswitch

return template < condition, opcode, >
......

endcase /* Data Processing */
case Branch: ... endcase
case LoadStore: ... endcase
case Multiply: .._ endcase
case Multiply Loadstore: ._ . endcase
case Software Interrupt: ... endcase
case Swap: .._ endcase

endswitch
End

We illustrate the power of our technique to generate an
optimized decoded instruction using a single data processing
instruction. We show the binary as well as the assembly of
the instruction below.

Binary: 11101000101001010010l0001l01010l00l0l0011
(condl0001 op I S 1 Rn I Rd lshift immedIshiftIOIRm)

Assembly: ADD r l , r2, r3 LSL #10
(opC<cond>>CS) Rd, Rn, Fun shift #<ironed>)

The DetermineTemplate function returns the DataPro-
cessing template (shown in Example 1) for this binary in-
struction. The CustomizeTemplate function generates the
following customized template for the execute function.

void DataF'rocessingtAlways, Add, False,

c
if

>
1

After

SftOpercReg, ShiftLeft, Iron>>: :execute0

(A1ways::executeO) C
-dest = Add::execute(-srcl, -sftOperand.getValueO);
if (Fa1se::executeO) C

// Update Flags
. . .

1

compilation using a C++ compiler, several opti-
mizations occur on the execute() function. The A1ways::exec-
Ute() function call is evaluated to true. Hence, the check is
removed. Similarly, the function call False::execute() is eval-
uated to false. As a result the branch and the statements
inside it are removed by the compiler. Finally, the two func-
tion calls Add::execute(), and -sftOperand.get Value() get in-
lined as well. consequently, the execute() function gets op-
timized into one single statement as shown below:

void DataF'rocessing<..skipped..>::executeO C
-dest = -sscl + -sftOperand.-operand << 10;

>

Furthermore, in many ARM instructions, the shifter oper-
and is a simple register or immediate. Therefore, the shift
operation is actually a no shift operation. Although the
manual says that the case is equivalent to shift left zero, we
use a no shift operation that enables further optimization.
In this way, an instruction similar to the above example
would have only one operation in its execute() method.

3.3 Simulation Engine
Due to compile time decoding and our instruction abstrac-

tion technique, the simulation engine is fast and simple. In
this section we briefly describe the three basic steps in the
simulation kernel viz., fetch, decode (if necessary), and exe-
cute.

The simulation engine fetches one decoded instruction at a
time. As mentioned earlier, each instruction entry contains
two fields viz., binary and pointer to the optimized func-
tionality for the instruction. Before executing the fetched
instruction, it is necessary to verify that the current instruc-
tion is valid i.e., this instruction is not modified during run
time. The simulation engine compares the binary part of
the current instruction having address addr with the binary
instruction of the application program stored in memory at
address addr. If they are equal then the decoded instruction
is valid and the engine executes the optimized functionality
referenced by the instruction.

761

However, if the instruction is modified then the modified
binary is re-decoded. This decoding is similar to the one
performed in the compile time decoding of instructions ex-
cept that it uses a pointer to an appropriate function. While
we develop the templates for each class of instructions, we
also develop one function for each class. The mask table
mentioned in Section 3.1 maintains the mapping between a
mask for every class of instruction and the function for that
class. The decoding step during run time consults the mask
table and determines the function pointer. I t also updates
the instruction memory with the decoded instruction i.e., it
writes the new function pointer in that address.

The execution process is very simple. It simply invokes
the function using the pointer specified in the decoded in-
struction.

Since the number of instructions modified during run time
are usually negligible, using a general unoptimized function
for simulating them does not degrade the performance. It is
important to note that since the engine is still very simple,
we can easily use traditional interpretive techniques for ex-
ecuting modified instructions while the instruction set com-
piled technique can be used for the rest (majority) of the
instructions. Thus, our instruction set compiled simulation
(IS-CS) technique combines the full flexibility of interpretive
simulation with the speed of the compiled simulation.

4. EXPERIMENTS
We evaluated the applicability of our IS-CS technique us-

ing various processor models. In this section, we present sim-
ulation results using a popular embedded processor, ARM7
[17], to demonstrate the usefulness of our approach.

4.1 Experimental Setup
The ARM7 processor is a RISC machine with fairly com-

plex instruction set. We used arm-linux-gcc for generating
target binaries for ARM7. Performance results of the dif-
ferent generated simulators were obtained using Pentium 3
at 1 GHz with 512 MB RAM running Windows 2000. The
generated simulator code is compiled using the Microsoft Vi-
sual Studio .NET compiler with all optimizations enabled.
The same C++ compiler is used for compiling the decoded
program as well.

In this section we show the results using two application
programs: adpcm and jpeg. We have used these two bench-
marks to be able to compare our simulator performance with
previously published results [l].

The arm-linux-gcc with -static option generates approxi-
mately 50K instructions for the benchmarks. When all op-
timizations are enabled in the MS VC++ compiler, it takes
about 15 minutes to compile and generate the decoded pro-
grams.

14.00 ;::.:.::.:: T::!::::. :..,:.I oRun-Time Check BNO Run-Time Check I
1 2 00

- 1 0 0 0

5 800
K!

U

E 600

g 400

2 00

0 00
ipeg adpcm

Benchmarks

Figure 4: Instruction Set Compiled Simulation

We are able to perform simulation at a speed of upto 12
MIPS using the P3 (1.0 GHz) host machine. To the best of
our knowledge the best performance of a simulator having
the flexibility of interpretive simulation has been JIT-CCS
[1]. The JIT-CCS technique could achieve a performance
upto 8 MIPS on an Athlon at 1.2 GHz with 768 MB RAM.
Since we did not have access to a similar machine, our com-
parisons are based on results run on a slower machine (Pen-
tium 3 at 1 GHz with 512 MB RAM) versus previous results
[l] on a faster machine (Athlon at 1.2 GHz with 768 MB
RAM). On the jpeg benchmark our IS-CS technique per-
forms 40% better than JIT-CCS technique. The same trend
(30% improvement) is observed in case of adpcm benchmark
as well. Clearly, these are conservative numbers since our
experiments were run on a slower machine.

14

12

- 10
P
E 8

8 e 6 c
$ 4

VI

U

2

0
JPeg adpcm

Benchmarks
4.2 Results

Figure 4 shows the simulation performance using our tech-
nique. The results were generated using an ARM7 model.
The first bar shows the simulation performance of our tech-
nique with run-time program modification check enabled.
Our technique can perform better if it is known prior to ex-
ecution that the program is not self modifying. The second
bar represents the simulation performance of running the
same benchmark by disabling the run-time check. We could
achieve upto 9% performance improvement by disabling the
instruction modification detection and updation mechanism.

Figure 5: Effect of Different Optimizations

There are two reasons for the superior performance of our
technique: moving the time consuming decoding out of the
execution loop, and generating aggressively optimized code
for each instruction. The effects of using these techniques
are demonstrated in Figure 5 . The first bar in the chart is
the simulation performance of running the benchmarks on
an ARM7 model of Simplescalar [3] that does not use any
of these techniques. The second bar shows the effect of do-

762

ing the decoding process at compile time and using function
pointers during execution. The use of function pointer in
the decoded instruction is similar to [l]. We are able to
achieve better result than JIT-CCS [l] even in this category
because of the fact that JIT-CCS technique performs decod-
ing of instruction during run-time (at least once) while we
are doing it during compile time. Besides, they use a soft-
ware caching technique to reuse the decoded instruction but
we do not. The last bar is our simulation approach that uses
both techniques: compile-time decode and using templates
to produce optimized code.

We have demonstrated that instruction set compiled sim-
ulation coupled with our instruction abstraction technique
delivers the performance of compiled simulation while main-
taining the flexibility of interpretive simulation. Our simu-
lation technique delivers better performance than other sim-
ulators in this category, as demonstrated in this section.

5. SUMMARY
In this paper we presented a novel technique for instruc-

tion set simulation. Due to the simple interpretive simula-
tion engine and optimized pre-decoded instructions, our in-
struction set compiled simulation (IS-CS) technique achieves
the performance of compiled simulation while maintaining
the flexibility of interpretive simulation. The performance
can be further improved by disabling the run-time change
detection which is suitable for many applications that are
not self modifying.

The IS-CS technique achieves its superior performance
for two reasons: moving time-consuming decode to compile
time, and using templates to produce aggressively optimized
code for each instance of instructions. We demonstrated per-
formance improvement of upto 40% over the best published
results on an ARM7 model.

Future work will concentrate on using this technique for
modeling other real world architectures using an architec-
ture description language to demonstrate the retargetability
of this approach.

6. ACKNOWLEDGMENTS
This work was partially supported by NSF grants CCR-

0203813 and CCR-0205712. We would like to acknowledge
members of the ACES laboratory for their inputs.

7. REFERENCES
[l] A. Noh1 et al. A Universal Technique for Fast and

Flexible Instruction-Set Architecture Simulation.
DAC, 2002.

[2] S. Pees et al. Retargeting of Compiled Simulators for
Digital Signal Processors using a Machine Description
Language. DATE, 2000.

[3] Simplescalar Home www.simplescalar. com.
[4] G. Braun et al. Using Static Scheduling Techniques

for the Retargeting of High Speed, Compiled
Simulators for Embedded Processors from an Abstract
Machine Description. ISSS, 2001.

Simulator for Execution Profiling. A CM
SIGMETRICS Performance Evaluation Review,
Volume 22(1), Pages 128-137, May 1994.

[6] J. Zhu et al. A Retargetable, Ultra-fast Instruction
Set Simulator. DATE, 1999.

[7] A. Halambi et al. EXPRESSION: A Language for
Architecture Exploration through Compiler/Simulator
Retargetability. DATE, 1999.

Simulation using Memorization. PLDI, 1998.

High-Performance Processor Simulators. PLDI, 1998.

Simulation. MMCS, 1996.

Specific Processor Architectures. HW/S W Codesign,
1999.

(121 M. Hartoog et al. Generation of Software Tools from
Processor Descriptions for Hardware/Software
Codesign. DAG', 1997.

Process-an Approach to a Compiler-Compiler.
Systems, Computers, Controls, Volume 2(5), Pages

[5] B. Cmelik et al. Shade: A Fast Instruction-Set

[8] E. Schnarr et al. Fast Out-of-Order Processor

[9] E. Schnarr et al. Facile: A Language and Compiler for

[lo] E. Witchel et al. Embra: Fast and Flexible Machine

[ll] F. Engel et al. A Generic Tool Set for Application

[13] Y. Futamura. Partial Evaluation of Computation

45-50, 1971.
[14] G. Hadjiyiannis et al. ISDL: An Instruction Set

Description Language for Retargetability. DAC, 1997.
[15] P. Mishra et al. Functional Abstraction driven Design

Space Exploration of Heterogeneous Programmable
Architectures. ISSS, 2001.

Compiled Instruction Set Simulators. DAC, 1999.
[16] R. Leupers et al. Generation of Interpretive and

[17] The ARM7 User Manual www.arm.com.

763

http://www.arm.com

