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Post-silicon validation is widely acknowledged as a major bottleneck for complex

integrated circuits. Due to increasing design complexity coupled with shrinking

time-to-market constraints, it is not possible to detect all design flaws (errors) during

pre-silicon verification. Post-silicon validation needs to capture these escaped

functional errors as well electrical faults. A major concern during post-silicon debug

is the observability of internal signals since the chip has already been manufactured.

Design overhead considerations limit the number of signal states that can be traced

or stored in a trace buffer. This dissertation proposes novel techniques to enhance the

observability during post-silicon debug. My research has three major contributions:

profitable signal-selection, efficient trace compression and observability-aware test

generation. It proposes efficient signal selection techniques to enhance the observability

of the circuit. Various signal selection constraints are explored including static versus

dynamic, trace versus scan and general-purpose versus architecture-specific features.

To improve the observability further, an efficient trace compression approach has been

proposed. Extensive experimental results demonstrate significant improvement in overall

signal observability. This dissertation also proposes observation-aware directed test

generation techniques to drastically reduce the overall post-silicon validation effort.
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CHAPTER 1
INTRODUCTION

Design complexity is increasing rapidly keeping pace with two-fold increase in

number of transistors every technology cycle. Drastic increase in design complexity

has led to significant increase in validation complexity. The report from International

Technology Roadmap for Semiconductors (ITRS) [1] as well as other reputed agencies

indicate that it is critical to develop efficient design verification techniques to secure

design productivity scaling at a pace consistent with process technology cycles. There

has been a plethora of research efforts in both industry and academia to develop

scalable design validation approaches using a combination of simulation based

techniques and formal methods. In spite of extensive efforts, it is not always possible

to detect all the functional errors and electrical faults during pre-silicon validation.

Post-silicon validation is used to detect design flaws including the escaped functional

errors as well as electrical faults. Post-silicon validation is widely acknowledged as a

major bottleneck for complex integrated circuits including modern microprocessors as

well as complex System-on-Chip (SoC) designs. Various industrial studies indicate that

the post-silicon validation effort consumes more than 50% of an SoCs overall design

effort (measured in total cost) at 65nm technology [2]. These studies also emphasize

the fact that the problem gets worse as the industry continues to move to even smaller

geometries.

Figure 1-1 shows the overview of three important validation and testing phases in

a typical SoC design methodology. Pre-silicon validation effort includes validation of

various functional as well as timing requirements across abstraction levels including

specification and implementation. Manufacturing testing is primarily used to detect

physical (structural) defects in each of the manufactured ICs. On the other hand, the

focus of post-silicon validation is to detect design flaws that have escaped pre-silicon

validation. In reality, vast majority of functional errors are captured in the pre-silicon
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stage. While a small percentage of functional errors remain, the time required to find

and fix them is still very expensive. It is important to note that majority of the electrical

faults (including crosstalk, delay and transient faults) are captured during post-silicon

validation, since it is difficult to model electrical errors during the pre-silicon verification

phase.

Circuit

Integrated

Integrated Circuit

Each copy of 

Implementation

(RTL/Gate level)

Pre−Silicon Verification

Post−Silicon Validation
Manufacturing Testing

Manufacturing

Figure 1-1. Validation and testing phases in IC design flow

Figure 1-2 presents an overview of the post-silicon validation and debug methodology.

Input tests are applied to the Device Under Test (DUT). Depending of the test generation

techniques, the input tests can be random, constrained-random or directed in nature.

During execution (run time), states of some selected signals are traced and stored in

an on-chip trace buffer. Note that the signals whose states to be stored are decided

during the pre-silicon (design) phase using suitable signal selection algorithms. To

increase the effective trace buffer size, various trace compression techniques can be

employed. When a failure is detected, the contents of the trace buffer is dumped out to

aid in post-silicon debug using an offline debugger.
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Figure 1-2. Overview of post-silicon validation

The remainder of this chapter is organized as follows. First we discuss about

potential faults and defects in a System-on-Chip (SoC). Next, we describe basics of

signal restoration and compare signal restoration and error detection. Finally, we discuss

various challenges associated with post-silicon validation and outline our contributions to

address these challenges.

1.1 Faults and Defects in Integrated Circuits

Defects and errors may get introduced at different phases of SoC design cycle

- design time, synthesis, manufacturing, etc. Efficient fault modeling of these are

necessary to effectively analyze, detect and fix them. Functional errors are introduced

during development of specification as well as implementation. It is extremely important

to detect and fix these functional errors. Some of the common defects in a chip [3]

include processing defects (parasitic transistors, oxide breakdown, etc.), material defects

(surface impurities), time-dependent failures (electromigration, dielectric breakdown,

etc.) and packaging failures (seal break). Studies [4] reveal that of all the defects

observed in a Printed Circuit Board (PCB), 51% are due to shorts, thus making electrical
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errors also important in any SoC validation methodology. Common fault models used to

model defects and errors are:

• Single Stuck-at-Fault (represented as s−a−0 or s−a−1)

• Transistor Open and Short Fault

• Memory Faults

• Glitch Faults

• PLA Faults

• Functional Errors

• Delay Faults

• Analog Faults

Post-silicon validation deals with errors and defects corresponding to all these

fault models. However, in case of manufacturing testing, errors primarily related

to manufacturing defects (such as stuck-at faults and transistor opens/shorts) are

considered.

Electrical defects manifest as important errors in modern SoCs. Soft errors

and crosstalk faults are two important defects that can adversely affect the correct

functionality of the chip. While soft errors are caused by radioactive effects on design

impurities, crosstalk faults occur due to imperfect coupling capacitance between two

lines in the chip. Soft errors can be modeled using single stuck-at-faults. Effects

of crosstalk can be represented as glitches and delay faults. Effective directed test

generation strategies need to be employed in order to detect these faults. The tests

should be able to activate the faults and propagate them towards the observation points,

e.g., primary outputs or internal trace signals.

Now we discuss about two important concepts related to signal selection, signal

restoration and error detection. Since only a few signals can be observed during

post-silicon validation, it is important to restore the unknown signal states as much

as possible to enhance the observability of the chip. On the other hand, it is equally

important to actually observe the errors through the trace signals.
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1.2 Restoration of Unknown Signals

In post-silicon debug, unknown signal states can be reconstructed from the traced

signal states in two ways - forward and backward restoration. Forward restoration deals

with the restoration of signals from input to output, that is, knowledge of input states can

help in restoring the value of the output. Backward restoration, on the other hand, deals

with reconstructing the input from the output. Forward and backward restoration can be

illustrated using the example in Figure 1-3. We use a 2-input AND gate to explain the

restoration process. Forward restoration is shown in Figure 1-3(a). When one input is

0 or both inputs are 1, the output can be constructed. Figure 1-3(b) shows backward

restoration. When the output is 1 or the output 0 with one input 1, the other input can

be reconstructed. It is easier to reconstruct signals using forward rather than backward

restoration. If all but the unknown signal values are known, forward restoration can

definitely determine the unknown, while backward might fail to do so in specific cases.

For example, in Figure 1-3(c), when the output is 0 and one of the input is 0, there

is no way to determine the state of the other input. Although we have illustrated the

signal reconstruction using a 2-input AND gate, the restoration procedure can also be

described in a similar manner for other types of logic gates as well as with more inputs.

c
a = 0
b = X

c = 0
a
b = 1

b = 1
a = 1

c = 1

(a) (b) (c)

c = 0
a
b = 0

b
a

c = 1

Figure 1-3. Signal restoration
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Figure 1-4. Example circuit

The signal reconstruction procedure is illustrated using a simple circuit shown in

Figure 1-4. Let us assume that the trace buffer width is 2, that is, states of two signals

can be recorded. We try to restore the other signal states by application of the existing

signal selection methods presented in [5] and [6]. The results are shown in Table 1-1.

The ‘X’s represent those states which cannot be determined. The selected signals

are shown in shades. For both [5] and [6] the signals selected are C and F, in that

order. Restoration ratio, which is a popular metric for calculation of signal restorability is

defined as:

Restoration Ratio =
number of states restored + number of states traced

number of states traced
. (1–1)

Let us calculate the number of restored states in Table 1-1. If we consider the row

corresponding to signal A, two entries have value 0, while the rest have value X

(non-restored state). Thus, two states are known. Similarly, two states are known

for the row corresponding to signal B. Since signal C is traced, all the states are known

(no X in the row). For signal D, three entries in the row have value 0, hence three states

are reconstructed. Computing in this manner, a total of 26 states are reconstructed.

Out of them, 10 entries (corresponding to signals C and F) are traced states. Therefore,

Restoration Ratio in this case is 2.6.
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Table 1-1. Restored signals using two selected signals

Signal Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
A X 0 X 0 X
B X 0 X 0 X
C 1 1 0 1 0
D X X 0 0 0
E X X 0 0 0
F 0 1 1 0 0
G X 0 0 X 0
H X 0 0 X 0

1.3 Signal Restoration Versus Error Detection

This section compares two widely used metric, state restoration and error detection.

Majority of the existing signal selection approaches [6, 7] try to focus on restoration

of unknown signals using the knowledge of known signal states. Let us consider an

example circuit in Figure 1-5 comprised of 12 flip-flops. In Figure 1-5, tracing states

of flip-flops A and B in cycle t, helps to restore the state of flip-flop D in cycle t + 1,

since the input to flip-flop D is an OR of the outputs of flip-flops A and B. Similarly,

since flip-flops C and H are connected by a NOT gate, tracing H in cycle t provides the

state of C in cycle t− 1. Note that signal restoration can proceed in both forward (input

to output) and backward (output to input) direction. For example, the restoration of D

from A and B was in forward direction, while the restoration of C from H is in backward

direction.

In case of error detection only backward restoration is meaningful. To explain this

scenario, a part of the illustrative example of Figure 1-5 has been redrawn in Figure 1-6.

When flip-flop D is in error, the bug can only propagate along a forward direction in its

fan-out cone towards flip-flops E and G. Therefore, in order to detect the error in D, we

have to trace either of these two flip-flops. Tracing the inputs of D, or those flip-flops

that are in its fan-in cone (A and C) do not help. Given that a designer is interested in

detecting an error, it is meaningful to focus directly on error detection metric instead of

restoration performance.
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Figure 1-5. Example circuit with 12 flip-flops

1.4 Challenges

There are many challenges in developing efficient techniques for post-silicon

validation and debug. This section describes five important challenges that I have

addressed in this dissertation.

Challenge 1: The signals to be traced should be selected carefully in order to

maximize the restoration. Signal selection techniques based on partial restoration

(described in Chapter 3) were proposed by Ko et al. [5] and Liu et al. [6]. If the

trace buffer width is n, both these approaches selected n signals with highest partial

restoration abilities for tracing. However, signal selection based on partial restoration

does not provide the best reconstruction. Also, these methods are computationally

inefficient, since they require long signal selection time operating on gate-level netlists.
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An efficient algorithm is needed which can select trace signals providing high restoration

of untraced signals with fast signal selection time.

Challenge 2: The time requirement for gate-level signal selection algorithms is

high because of the excessive number of variables used to represent flip-flops and other

internal signals. One promising alternative to reduce signal selection time is to explore

at higher abstraction level like Register Transfer Level (RTL). Ko et al. [8] developed

a signal selection approach which selects some signals from the RTL-level and some

from the gate-level netlist description of the circuit, that is, their signal selection does

not depend on the RTL-level design alone. It is desired that a signal selection technique

be developed which solely relies on the RTL-level implementation of the design, thus

reducing the memory and time requirement associated with any gate-level netlist. The

primary challenge to develop an RTL-level signal selection algorithm is to ensure that

this approach does not incur any restoration penalty compared to gate-level signal

selection algorithms.

Challenge 3: Scan based debugging is popular in manufacturing test domain.

They are primarily used to identify fabrication defects. The use of scan chains for

improving signal observability during post-silicon debug has been extensively studied

[9–11]. Several approaches [12, 13] have studied the combination of scan and trace
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signals for post silicon debug. A major challenge is that the number of trace signals,

scan signals and scan dump frequency are inter-dependent. For example, selecting

more trace signals implies less space for scan signals, and vice versa. Even when the

space for scan signals is reserved, choosing a large scan chain (too many scan signals)

implies longer scan dump frequency. In other words, there needs to be a critical balance

between how many signals to observe versus how many signal states can be obtained

in a specific clock cycle.

Challenge 4: Till now, we have considered how tracing some signals helps us to

reconstruct the untraced signals. Debugging involves detection of errors by the traced

signals. Thus, it is necessary to trace signals with an aim of maximizing the number

of errors detected. During debug, some parts of the circuit may be less important for

debug purposes than the rest during particular cycles. For example, the debug engineer

might be interested in detecting errors in the “processor” block of an SoC instead of the

“memory” block. Therefore, it is important to develop a signal selection algorithm that

can dynamically select signals based on the currently active regions to enhance error

detection.

Challenge 5: The circuit observability can be further enhanced by compressing

the trace buffer contents. This allows more signal states to be stored in the trace buffer

without increasing its size. Since the trace buffer does not contribute to the actual

chip functionality except debug, its size should be as small as possible. The trace

buffer has two parameters, width and depth. Width refers to the total amount of debug

data that can be stored per cycle, while depth refers to the total number of cycles

over which debug data can be stored. In order to keep the trace buffer size constant,

while increasing the amount of trace data that can be stored, either the depth or the

width has to be compressed. Different techniques of trace data compression, either by

depth [14, 15] or by width [16] have been proposed. Depth compression approaches

deal with selecting the cycles where the data are likely to be erroneous, and store the
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data for only those cycles. On the other hand, in width compression, the trace data

obtained every cycle is first compressed and then stored in the trace buffer. An efficient

lossless trace data compression technique is necessary which can provide both fast

compression and high compression efficiency without introducing significant hardware

overhead.

Challenge 6: Efficient signal selection and trace compression enhance the

observability during post-silicon debug. However, it is equally important to improve

controllability aspect during post-silicon validation. The input tests applied to the

circuit should be carefully designed in order to maximize error detection. This involves

estimating the corner case scenarios and designing tests that can activate those

scenarios to allow the errors to propagate to the traced signals. Therefore, it is important

for the test designer to have knowledge of the signals that are being traced. Conversely,

if the tests are known a priori, the trace signals can be selected efficiently to enhance

error detection capability.
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Efficient Trace
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Signal Selection
Restoration Aware Dynamic

Figure 1-7. Research contributions
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1.5 Research Contributions

My research proposes novel techniques to address challenges in enhancing the

signal observability for post-silicon validation and debug. The objective of my research

is to develop efficient signal selection and test generation as well as adept approaches

for trace compression. The four major contributions of my research are summarized as

follows. Figure 1-7 highlights these contributions in IC design methodology.

Contribution 1 [Trace Signal Selection]: This contribution addresses the first

three challenges outlined in Section 1.4. Existing signal selection algorithms used

partial restorability, which is not optimal for signal restoration. A total restorability1

based signal selection algorithm has been proposed which is computationally more

efficient and produces significantly better restoration performance compared to the

existing approaches. We have extended the signal selection approach to RTL level,

to reduce the signal selection time as well as the memory requirements, without

sacrificing significantly on the restoration performance. We have also proposed an

efficient technique to determine the profitable combination of trace and scan signals

for post-silicon debug. The entire trace buffer width is divided to accommodate both

trace and scan signals. Our approach uses a graph based representation to select

three important aspects: (i) efficient trace signals to be stored every cycle, (ii) the most

profitable scan signals to be included in the shadow scan chain, and (iii) the scan dump

frequency based on the trace buffer width constraints.

Contribution 2:[Dynamic Signal Selection]: This contribution addresses Challenge 4.

Existing trace signal selection algorithms deal with improving the restoration of untraced

signals and does not focus on error detection. We have proposed a signal selection

algorithm which selects profitable signals for efficient error detection. Our algorithm

lays emphasis on how errors, which propagate from error origin towards signals in

1 Partial and total restorability have been discussed in Chapter 3.
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the fan-out cone can be detected. We have also proposed a region-aware signal

selection algorithm (RSS) that selects profitable signals during design time based on

the knowledge of functional regions and associated error zones. We have developed

a low-overhead dynamic signal tracing (DST) hardware to enable designers to trace

different set of signals during execution based on active (relevant) functional regions.

This lays emphasis on the active error zones in the circuit that can be detected using

a specifically selected set of trace signals. To the best of our knowledge, this is the

first attempt in developing an efficient spatio-temporal solution for dynamic trace signal

selection.

Contribution 3:[Trace Data Compression]: This contribution addresses Challenge 5.

Existing trace compression algorithms choose the dictionary online (thus includes all the

unique entries in the dictionary), which results in poor compression performance as well

as increased hardware overhead. Studies [14, 15] reveal that the difference between the

actual trace data and the ideal (error-less) trace data is very small for post-silicon debug

(2-5%). This motivated us to develop a lossless dictionary based width compression

scheme that operates on real-time to compress the trace data using a statically selected

dictionary. This provides a better compression performance since only profitable entries

are stored in the dictionary. This also provides huge reduction in compression hardware

overhead. Three different compression algorithms have been proposed to trade-off

between compression performance and hardware overhead.

Contribution 4:[Observability-Aware Test Generation]: This contribution addresses

Challenge 6. The tests that are used during post-silicon validation are produced using

random or constrained-random test generation techniques. However, error detection

performance can be enhanced if the tests are designed keeping the detection objective

in mind. The tests should be designed to excite the errors (specially corner case ones)

and propagate them to the observation points, that is, to the traced signals. Moreover,

the trace signals are chosen assuming the input tests are random in nature. However, if
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the test sets are known a priori, adequate trace signals can be selected to enhance error

detection. We propose efficient techniques to determine the trace signals as well as the

test sets that would help in detecting errors in the design.

1.6 Dissertation Organization

The dissertation is organized as follows. Chapter 2 presents related approaches

for signal selection, trace compression and test generation. Chapter 3 describes our

trace signal selection algorithm. Chapter 4 explores an efficient combination of trace

and scan signals. Chapter 5 describes our signal selection technique that focuses on

error detection. Chapter 6 presents our dynamic signal selection algorithm. A trace

compression technique based on static dictionary selection is presented in Chapter 7.

Chapter 8 describes observability-aware test generation techniques. Finally, Chapter 9

concludes the dissertation.
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CHAPTER 2
BACKGROUND AND RELATED APPROACHES

The focus of this dissertation is to reduce the overall effort of post-silicon validation,

which is one of the most critical stages in System-on-Chip (SoC) design methodology.

Post-silicon validation and debug comprises of signal observation and analysis as

described in Section 1.2. A primary problem for post-silicon debug is the limited

observability of internal signal states since the chip has already been fabricated.

Once the signal states are known, they can be analyzed using some algorithms like

failure propagation tracing [17] to identify the errors in the circuit. Koushanfar et al.

[18] proposed a method to obtain the internal states of a system using a “golden cut”.

However, their method is not applicable for post-silicon debug since it is difficult to stop

execution of a process running on a chip and obtain the knowledge of all the current

signal states. Formal analysis for post silicon debug proposed by De Paula [19] is not

applicable to circuits with a large number of gates. Physical probing techniques were

proposed by Nataraj et al. [20]. Decrease in feature size and growing complexity of IC

designs have made it diffcult to implement these techniques in practice. A method for

validation of memory subsystem in CMPs was proposed by DeOrio [21], which only

focuses on the memory subsystem. Scan based debugging techniques such as [11] are

not appropriate since they require to stop the circuit functionality when the scan data is

being written. This is particularly not beneficial in cases where the functional errors are

drastically apart. Double buffering [22] of scan elements helps to mitigate this problem,

but with a large area penalty.

Design-for-Debug (DfD) techniques have been used extensively to increase the

observability of internal signals of the silicon. Generally this is performed by sampling

the data which is stored in on-chip trace buffers. Various DfD techniques like embedded

logic analyzer (ELA) [23] and shadow flip flops [22] have been proposed over the years

for post-silicon debug. ELA can be used to probe into the chip and record some internal
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logic states. The trace is then recorded in an on-chip trace buffer. During debug, the

contents of trace buffer is transferred to an offline debugger via some Joint Test Action

Group (JTAG) interface. In the following subsections, we discuss related approaches in

the area of signal selection, trace compression and test generation.

2.1 Trace Signal Selection

Since ELA allows only a few signals to trace, they should be carefully selected

in order to enhance the overall observability during post-silicon validation. A logic

implication based trace signal selection method was proposed by Prabhakar et

al. [24]. The authors used the primary inputs, in addition to the traced signals for

restoration purposes. Ko et al. [5] and Liu et al. [6] have proposed generic trace signal

selection algorithms in which a few important signals can be traced and others can be

reconstructed from them. All these approaches use gate-level netlist model of a design

for signal selection purposes. Both space and time complexity can be reduced if the

same operation is performed at higher abstraction levels like RTL. However, care should

be taken to avoid degradation of restoration performance. Considerable research has

been performed over the years involving both gate and RTL-level designs in the fields

of testing and validation. An RTL fault grading approach was used to ameliorate the

gate-level fault coverage by Mao et al. [25]. RTL-level tests were generated and reused

for detecting gate level stuck-at-faults by Yogi et al. [26]. Recently RTL-level signal

selection algorithms for post-silicon validation were proposed by Ko et al. [8]. However,

[8] selects some signals from the RTL-level and then the rest from the gate-level

description of the circuit. Thus, both RTL-level and gate-level models of the design are

necessary in [8] to select signals that adds to the memory and time overhead of signal

selection.

Scan chains have been used for improving the signal observability during

post-silicon debug [9–11]. A combination of scan and trace signals for post silicon

debug was first proposed by [12]. In their approach, the trace buffer is used to determine
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the time window over which the bug might have occurred. The experiment is then re-run

with the scan data concentrating on that particular time window. Combination of trace

and scan data were also used by [13] for silicon debug. They used multiple runs of

the same experiment to obtain the trace data. The scan data were used to select a

known state. Both of these approaches assume repeatable experiments i.e., the circuit

response is uniform for multiple debug runs. Ko et al. [27] proposed an approach of

combining scan and trace data that works well even in non-repeatable experiments.

However, their method used an exhaustive exploration of all possible trace-scan

combinations to determine the best result for a particular circuit. This exhaustive

exploration may not be suitable for practical purposes.

2.2 Dynamic Signal Selection

Existing trace signal selection algorithms statically selected a set of signals that

would be traced every cycle. Prabhakar et al. [28] proposed an approach to alternate

between two sets of signals in alternate cycles. As a result, it is a very specific case

of temporal distribution of errors without any consideration for spatial distribution. A

multiplexed signal selection for error detection was proposed by Liu et al. [29]. Their

approach is an ad-hoc signal selection heuristic based on error visibility metric. It

approach does not consider the challenges associated with dynamic signal selection in

the presence of spatial and temporal distribution of errors.

2.3 Trace Data Compression

To increase the amount of data that can be stored in a trace buffer while keeping the

trace buffer size constant, trace compression techniques have been proposed [14–16],

which compress the trace data before storing them into trace buffer. This enables us

to observe more trace data while keeping the trace buffer size constant. The trace

buffer has two parameters - width and depth. Width refers to the number of signals

whose states can be stored every cycle, while depth refers to the number of cycles

over which the trace is stored. Existing trace compression approaches differ in terms of
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compression objectives - while [16] compresses the width of the trace buffer, [14, 15]

compress the depth.

2.4 Observability-Aware Test Generation

Soft errors and crosstalk faults are two major electrical errors found in a fabricated

SoC. Effect of soft errors on memory devices had been studied as early as in 1979 by

May et al. [30]. Over the years, researchers [31–34] have studied the various aspects

of soft errors. Sanyal et al. [35, 36] have proposed different methods for directed test

generation for soft errors. However, these approaches are not designed for post-silicon

validation purposes, that is, they assume all the output signals of a logic block are

visible. However, during post-silicon validation, since the chip is fabricated, observing

the output signals of every component may not be feasible since these components can

be embedded in an SoC. The only observable points would be the trace signals. The

test generation algorithms need to be modified to take this into account.

Crosstalk faults occur when two lines in a circuit are so near that their mutual

capacitance affects their state. Effects of crosstalk faults on digital circuits [37–40]

have been studied extensively. Existing test generation algorithms for crosstalk faults

[41–43] suffer from the same problem as the corresponding test generation algorithms

for soft errors - that is, they are not suitable for application in post-silicon validation due

to limited observability through trace signals.
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CHAPTER 3
RESTORATION-AWARE TRACE SIGNAL SELECTION TECHNIQUES

During post silicon debug, the signal states are stored in an on-chip trace buffer.

Limited size of the trace buffer allows only some signals to be traced. The rest of the

signals have to be reconstructed from them. Therefore, the signals to be traced should

be carefully selected in order to enhance the overall signal restoration across the circuit.

Existing signal selection approaches [5, 6], which utilize partial restorability1 are not

able to provide best possible signal reconstruction. We propose total restorability2

based signal selection algorithms that can outperform existing approaches in both signal

selection time and the quality of the selected signals.

Signal selection at higher abstraction levels is promising to reduce the overall signal

selection time. Since the number of variables used to represent the registers and other

signals is less at RTL-level, the overall complexity is much reduced. We have proposed

an efficient signal selection approach in RTL level. Our RTL-level signal selection

reduces the signal selection time as well as the memory requirements significantly

without significant penalty in restoration performance. Our proposed method has

similarity with the signal selection approach developed by [8] since both use a control

data flow graph. However, there is a basic difference between the two approaches.

While [8] selects some signals from the RTL-level and the rest from the gate-level

description, our proposed approach operates only on the RTL-level description. Hence,

unlike [8], it does not require the gate-level model of the circuit for signal selection.

1 Partial Restorability of a signal refers to the probability that the signal value can be
reconstructed using known values of some other traced signals

2 Total Restorability measures whether a group of signals can definitely reconstruct a
set of signal states.
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3.1 Gate-level Signal Selection (GSS)

Algorithm 1 shows our gate-level signal selection procedure (GSS) that has five

important steps. Edge and node values are calculated in the first two steps. Total

restorability computation is then used to create region and recompute node values,

accompanied by signal selection. The remainder of this section describes each of the

steps in detail.

Algorithm 1: Gate-level Signal Selection
Input: Circuit, Trace Buffer
Output: List of selected signals S (initially empty)
1: Compute the node values.
2: Find the state element with highest value and add to S.
3: Create Initial Region.
while trace buffer is not full do

4: Recompute the node values of state elements.
5: Compute region growth by finding the state element with highest value not
in S and add to S.

end
return S

3.1.1 Computation of Edge Values

An edge between two state elements is the path taken to reach an element from

another, while passing through a number of combinational gates between them, that

is, there cannot be any state elements in between them. The edge may be in the

forward or backward direction. In Figure 1-4, an edge between the two flip-flops A and

C passes through an OR gate. In a general case, there can be any number and type

of combinational gates in an edge. To find the probability that C is influenced by the

value at A (which is the value of the edge AC ), there can be two cases (independent and

dependent) as discussed below:3

3 We are showing calculations for forward restorabilities; however, those for backward
restorabilities can be derived in similar lines.
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3.1.1.1 Independent signals

Consider two edges AC and BC in Figure 1-4. Here, the two input signals of the

OR gate in front of flip-flop C are driven by flip-flops A and B, which are independent.

Hence, the edges AC and BC are independent. To calculate the edge values for an

independent scenario, we use a generic example in Figure 3-1. Later, we will show how

the calculation works for the specific case in Figure 1-4.

K

m inputs

L
G2G1 Gn

Q’

QD
Q’

QD

Figure 3-1. Example circuit with n gates

Figure 3-1 has two flip-flops K and L. We want to find how the input of L is

sensitized by the output of K. The input of L corresponds to the output of the gate

Gn. The path from K to L is independent of any other paths through which the output

of K propagates. Let’s consider the gate G1. We define four probabilities: P I 0,N , P I 1,N ,

PO0,N and PO1,N . Here, P I 0,N indicates the probability that a node n (gate or flip-flop)

has an input value of ‘0’ when another node is controlling it. Similarly, P I 1,N , PO0,N and

PO1,N indicate the cases for input value of ‘1’, output value of ‘0’ and ‘1’, respectively.

The output of flip-flop K can influence the output of G1 in two cases: i) output of K is a

controlling value, and ii) all the inputs to G1 are complement of the controlling value. Let

us consider G1 to be a 2-input AND gate. We define PG1 as the overall probability of K

controlling G1. According to [44],

PG1 = P
O

1,G1 +P
O

0,G1 (3–1)

Now, let’s define PO0,G1 and PO1,G1 . Let Pcond0,G1 and Pcond1,G1 be the probability

that the output of G1 follows the output of K, i.e., the output of G1 is 0(1), when the output

of K is 0(1). For simplicity of calculation, in this example, we assume P I 0,G1 = P I 1,G1= 0.5
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(that is, occurrence of 0 or 1 follows equal probability at the input).

PO0/1,G1 = Pcond0/1,G1 ×P
I
0/1,G1 (3–2)

Now, for a 2-input AND gate, Pcond0,G1 is 1, since 0 is the controlling input. Therefore, we

obtain PO0,G1 = 0.5. Similarly, since 1 is the non-controlling input, Pcond1,G1 is 0.5, which

gives PO1,G1 = 0.25. From Equation 3–1, it can be seen that PG1 = 0.75. Now, we return

to our main goal, that is, to determine how K controls L. We first find the effect of the

output from K as it propagates to the next gate G2 and then extrapolate along the entire

path to L. We use the same set of Equations 3–1 and 3–2 again, except that the input is

G1 here and the output is G2. Obviously, the values of P I 0,G2 and P I 1,G2 would be PO0,G1

and PO1,G1 obtained from Equation 3–2. For example if G2 is also a 2-input AND gate,

applying Equation 3–2, we obtain, PO0,G2 = 0.5, and PO1,G2= 0.125. Therefore, we get

PG2 = 0.625, where PG2 is the probability for the gate G2 defined in Equation 3–1.

In this way, the calculation continues until we reach L, to obtain the value of the

edge KL. If there are n combinational gates between K and L, we get

PO0/1,Gn = ∏
1≤i≤n

(Pcond0/1,Gi )×P
I
0/1,G1 (3–3)

Finally, Equation 3–1 is used to compute the probability PGn , which corresponds to the

value of the edge KL.

We use these computations to show how an edge value is computed in case of

the circuit in Figure 1-4. Let’s compute the value of edge AC. We name the OR gate

in between the two as gate G and we assume that P I 0,G = P I 1,G = 0.5. Since it is an

OR gate, Pcond0,G=0.5 and Pcond1,G=1. Therefore, Equation 3–2 can be used to obtain

PO0,G=0.25 and PO1,G=0.5. Equation 3–1 can now be used to obtain PG=0.75, which

represents the value of the edge AC.
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3.1.1.2 Dependent signals

In case of dependent signals, we need to determine the probability of a state

element output influencing an m-input gate, when the output of the state element affects

l inputs (l ≥ 2) of the gate. We have used a generic example in Figure 3-2 to calculate

the edge value in case of dependent signals. It should be noted that dependent signals

were not considered by [5] or [6].

G1

Gp

Gn
L

K

x
m inputs

yG2

D

Q’
Q’

QD
Q

Figure 3-2. Example circuit

Let’s consider Figure 3-2. It can be seen that two inputs (x ,y ) of the m input gate Gn

are affected by flip-flop K. For this, our goal would be to combine the dependent edges

so that the edge will have independent signals. We can then easily utilize the formula

used in Section 3.1.1.1 to compute the edge value. We desire to find PO1,Gn and PO0,Gn ,

in lines with the parameter P I/O0/1,N defined in Section 3.1.1.1. Let us assume that Gn

is an AND gate. For an AND gate, since 0 is the controlling value, having either of the

inputs as 0 will ensure a 0 being propagated into the gate Gn. Therefore

P I 0,Gn = P
O

0,x +P
O

0,y −PO0,x&y (3–4)

PO0,x&y subtracts the probability when both are 0, since it is being computed twice.

Similarly, since 1 is the non-controlling input, we get

P I 1,Gn = P
O

1,x&y (3–5)

where PO1,x&y is the probability when both x and y are ‘1’. Let’s evaluate the terms

PO0,x&y and PO1,x&y . Let Pcond0/1,x/y be the probabilities that x(y) is 0(1) when the
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output of K is 0(1). PO0/1,x&y can be defined as

PO0/1,x&,y = (Pcond0/1,x ×Pcond0/1,y )×PO0/1,K

With the help of Equation 3–2, this can be reduced to

PO0/1,x&y =
PO0/1,x ×PO0/1,y

PO0/1,K
(3–6)

Since the paths from K to x and from K to y are assumed to be independent4 , Equation

3–3 can be used to obtain the values PO0/1,x/y . Application of Equations 3–4 and 3–5

provide the values of P I 0/1,Gn . The final PGn can be obtained using Equations 3–1 and

3–2, and the information on the number of inputs to the gate Gn. This corresponds to the

value of the edge KL.

3.1.1.3 Example

We now proceed to show how the calculations described in Section 3.1.1.1 and

Section 3.1.1.2 can be used to determine the edge values for the circuit in Figure 1-4. A

graphical representation of the circuit is shown in Figure 3-3.

C

E
B

F

H

A
3/4

3/4

3/4
3/4

3/4

3/4

3/4

3/4

3/4

3/4

G

3/4

3/4

D

Figure 3-3. Graphical representation of example circuit

The state elements are represented by nodes and an edge between two state

elements is represented by a straight line. It should be noted that there are no

4 If any one of these paths consist of dependent signals, the above procedure can be
applied in a recursive manner until it becomes an equivalent independent path.

36



dependent edges in this example. All the edges have one two-input gate in between

them, As a result, all the edge values are 3
4 (obtained from Section 3.1.1.1). We will use

this graph to explain our signal selection algorithm.

3.1.2 Initial Value Computation for State Elements

We define the value of a state element as the sum of all the edges attached with it,

in both forward and backward direction. For example, in Figure 3-3, the value of flip-flop

c is the sum of the weights of all edges connected with it, that is, CA, CB, CD and CE .

It is important to note that we have used a “threshold” in order to prevent combinational

loops inside the circuit during edge value computation. This parameter was used by [5]

as well.

Our computation of the state element values are independent of the sequential

loops in the circuit. In a sequential loop, the output of a state element depends on

another in both the previous and the next cycle. However, both cannot be true at the

same clock cycle; that is, the same state element cannot determine the output of

another in the same cycle by both forward and backward restoration. While forward

restoration can determine the state in at least the next cycle, backward can determine it

at most the previous cycle.

3.1.3 Initial Region Creation

A region is a collection of state elements attached together. It is not necessary

that all the state elements have an edge with each other in the region. However, each

state element in the region must have at least one edge with another state element in

the region. In Figure 3-3, the flip-flops A, B, C , D and E form a region. The first state

element to be chosen is the one with the highest value, based on the calculations in

Section 3.1.2. It is added to a list called “known”. Now, all state elements which have an

edge with the recently selected element are added to the region.

We show by an example in Figure 3-4A how this portion of our algorithm is used to

perform the selection of the profitable signals. The edge values are shown along each
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Figure 3-4. Region creation and growth

edge. The values of the flip-flops (addition of all it’s edge values) are shown in bold

alongside each flip-flop. For example, a has 3 edges AC , AD and AG , each having a

value 3
4 . Therefore, the value for a is 3

4 +
3
4 +

3
4 = 9

4 . The flip flop with the highest value in

Figure 3-4A is C . All the nodes which have an edge from C are included in the region.

The region is represented by the spline in Figure 3-4A.

3.1.4 Recomputation of Node Values

The first state element in Figure 3-3 to be traced is already known (c in the previous

example). However, there are other state elements that need to be traced as well.

To select the subsequent state elements, their values are recomputed. The state

element whose value is being computed may have an edge to an element inside the

region as well as one outside the region. Edges to state elements inside the region

are given higher weight. As discussed before, many restorability computations require

knowledge of more than one signal of the input/output5 . Therefore, it is better to

gain more knowledge of the signals that are already in the region, thus increasing

their restorability values and therefore, aiming for total restorability of those signals.

Existing approaches [5] and [6] recompute the restorability values after each iteration,

5 For example, when all the inputs to a gate are complement of the controlling value.
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which when translated to the graph in Figure 3-3, would correspond to edge value

recomputation. Clearly, this is more computationally intensive.

3.1.5 Region Growth

The state element with the highest restorability and not in the list “known” is

determined. If two state elements have the same value, the one with the higher forward

restoration is traced. This is because, backward restoration fails in some cases whereas

forward restoration does not when all the inputs are known. For example in Figure 3-4A,

the next state element to be traced is A. It is included in the list “known”. If the trace

buffer is already full, calculations will stop, otherwise the region is continued to grow. All

state elements having an edge to the recently selected node are added in the region. As

shown in Figure 3-4B, in this case G is added since G is the only node connected to a

and not in the region. The dotted line indicates the original region. Next, recomputation

of state element values as in Section 3.1.4 is reconsidered and this process is iterated

until the trace buffer is full.

3.1.6 Complexity Analysis

In this section, we compute the complexity of our algorithm. Let V be the number

of state elements in the circuit and E be the number of edges in the circuit. Let n be the

number of signals to be traced, that is, the size of the trace buffer is n. The first step,

that is, edge value computation takes O(E ) time, while flip-flop value computations for

each time a signal is selected takes O(V ) time. To select n signals, the time required is

O(NV ). Therefore, the overall time complexity of our algorithm is O(E +NV ). On the

other hand, the time complexity of existing algorithms is O(NE ). Since, E >> V , the

time complexity of our proposed algorithm is less. The overall space complexity of our

algorithm is O(E +N+V ). Since, E >> N+V , the space complexity reduces to O(E ).

3.2 Motivational Example

We now employ our proposed method (described in Section 3.1) for selecting

signals in the circuit in Figure 1-4. The first signal that we trace is C . Note that this
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was the same signal that was chosen by [5] and [6]. The second signal that we choose

is A, based on total restorability computations. Tracing A along with C guarantees to

reconstruct D every cycle. As indicated earlier, existing methods select F as the second

traced signal. Clearly, C and F together do not provide any such guarantees. The

results are shown in Table 3-1. It can be seen that our method provides a restoration

ratio of 3.2, which is better than the one provided by [5] and [6].

Table 3-1. Restored signals using our method

Signal Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
A 0 0 0 0 1
B 1 0 1 0 X
C 1 1 0 1 0
D X 0 0 0 0
E X 1 0 0 0
F X X 1 0 0
G X 0 0 0 0
H X X 0 0 0

3.3 RTL-level Signal Selection (RSS)

To show how signal reconstruction can be efficiently performed in RTL level, let’s

consider the Verilog design in Figure 3-5A. The design consists of three register-variables

namely a,b and c (each correspond to a set of flip-flops) as well as two input signals d

and e. There are also three other signals m1, m2 and m3. In the example, a and b

are 8 bits long, c and e are of 7 bits, while d is just a one-bit signal. To show how

reconstruction is performed, let’s observe how each of these flip-flops are assigned - a

is the concatenated value of d and c ; b is the result of logical operations between a, m1,

m2 and m3 while c attains the sum of an arithmetic operation between e and a constant

number. Let’s assume that we trace the state of a. We now explain how tracing of a in

cycle k helps us to reconstruct the other states. The assignment of b shows that the

state of b in cycle k + 1 can be reconstructed from the state of a by forward restoration.

From the assignment of a, the states of c and d in cycle k − 1 can be reconstructed
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from state of a by backward restoration. Finally, from the last statement, that is, the

assignment of c , state of e can be restored in cycle k−2 by backward restoration. Thus,

we see that tracing of only one state of a can reconstruct the states of 4 other variables

in different cycles.

always @ (posedge clk or negedge reset) 

begin 

if  (!reset) 

  begin 

    a <= 7’b0;    b <= 7’b0; c <= 7’b0; 

end 

else 

  begin 

   a <= {d, c}; b <= (a & m1) || (m2 & 

m3); c <= e + 7’b1; 

  end 

end 
 

! A RTL Verilog example

m3

posedge

==

1

Y
1

==
Y

!reset

N

negedge reset

|

clk

e
7’b1

+c, b, a

0

c

d

{}

a
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|

b

m1m2

&

B CDFG of Verilog code

Figure 3-5. Verilog code and CDFG

Algorithm 2 shows our signal selection procedure that has six important steps. In

the first step, a control data flow graph (CDFG) is generated to model the entire system.

Since in the RTL-level, each register variable represents multiple state elements, we

use the register variables for signal selection purpose. However, the trace buffer width

refers to the total number of state elements represented by these register variables.

For example, the register variable [7 : 0]a will represent 8 state elements, and therefore

selection of variable a implies that 8 trace buffer locations are needed. The relationship

between the different register variables is obtained from the CDFG. These relations

are used to produce the total restorability values for the variables. The register variable

with the highest value is chosen for tracing. Once a variable is chosen for tracing, all the

other variable values are recomputed in the same manner as in Algorithm 1. The steps
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4− 6 are continued until the trace buffer is full. The remainder of this section describes

each of the steps in detail.

Algorithm 2: RTL-level Signal Selection
Input: RTL description of design, No. of trace entries
Output: List of selected signals S (initially empty)
1: Develop the CDFG of the RTL description.
2: Find the relationship between the register variables.
3: Find the initial values of the register variables.
while trace buffer is not full do

4: Find the register variable with the highest value.
5: Add all corresponding state elements to the list S.
6: Recompute values for all the register variables.

end
return S

3.3.1 CDFG Generation

The first step of RTL level signal selection is to generate the Control Data Flow

Graph (CDFG) from the RTL model. CDFG can be generated using any standard HDL

parser. For our use, we have generated the CDFG by modifying the open source Icarus

Verilog parser [45] for the Verilog circuits. Although, our studies are based on Verilog

benchmarks; our approach is also applicable for VHDL designs. The format of our

CDFG representation is similar to Mohanty et al. [46].

Figure 3-5B shows the CDFG representation of the Verilog code in Figure 3-5A. The

CDFG can represent both the movement of control signals as well as data values. The

dotted arrows indicate the control-flow (transitions) in the CDFG, while the bold arrows

represent the data flow (computations). For example, in the right hand side of Figure

3-5B, there is a bold arrow from a to the AND gate. This is because a is an input of the

AND gate. The circles in the CDFG represent operational and control nodes, while the

boxes represent storage nodes. For example, the circle in the top represents an OR

assignment for the conditional statement always, while the square at the bottom in

right hand side of Figure 3-5B represents the storage in the node b. It should be noted

that direct assignments like a <= 7b0 are just represented as a bold arrow with value 0
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entering a box for storage of value a. In this case, since three variables a,b and c are all

being assigned 0 together, they are grouped in a single box.

This basic representation can be further extended to represent the CDFG of

a complex design. This CDFG representation is used as input to the next step,

relationship computation.

3.3.2 Relationship Computation

The relationship of a signal with others can be obtained from the CDFG. The

relationship computation for a single signal in the circuit provide the effect of that signal

on others. To compute the relationship of the signals, we first note that there can be two

main relationship types, namely direct relationship and conditional relationship. These

two classes and their respective relationship computations are explained as follows.

3.3.2.1 Direct relationship

Two signals are said to be directly dependent when they occur on the same line

of a signal assignment. For example, in the RTL description shown in Figure 3-5A, the

signal pairs (a,b) and (a,c) have direct relationship. This is because both the variable

assignments occur inside the “if’” block. Direct relationship can be of two types, namely

forward and backward relationship. Forward relationship deal with the propagation of

values in the forward direction, that is from the right hand side of the assignment to

the left hand side. Backward relationship on the other hand deals with the reverse,

that is from left hand to right hand side of the assignment. For example, in the RTL

description of the example in Figure 3-5B, a has a forward relationship on b, while b has

a backward relationship on a. We will use a simple generic example to show how the

direct relationship computation is performed. Later, we will consider a specific example

shown in Figure 3-5B. A typical signal assignment statement looks like

y <= x1 OP1 x2 OP2 x3 OP3 ....... xn
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where OP represents any operation (eg., AND, OR, etc.). We can see that there are

n signals on the right hand side of the assignment statement. We want to find out the

relationship of each of these signals on y . Let us assume that each of these signals are

k bits long and all the xi ’s are independent. We also assume that each of the OPi ’s are

AND gates. Therefore, the assignment statement can be rewritten as

y <= x1 & x2 &...........& xn

The same computations can be extended to other operations, as well as different

operations for each OPi . Let’s compute the relationship of xi (1 < i < n) on y. The

relationship of y on xi is computed as a probability that y completely follows xi .

Therefore, the relationship can be found in the same way as the independent edge

value computation in Section 3.1.1.1. Essentially, the relationship of y and x , Py 0/1,xi is

equivalent to Pcond0/1,y in Equation 3–2. It should be noted that y follows xi completely

when either all the k bits of xi are 0 (P0), or when all the xi ’s have their k bits as 1

(P1)(Since 0 is the controlling input of AND gate). In all other cases, some of the k bits

of y are different from xi . The relationship of y on xi is given by

Py 0,xi =
2k×(n−1)

2k×n
(3–7)

Py 1,xi =
1

2k×n
(3–8)

According to [44] and assuming for simplicity that 0 or 1 can occur with equal probability,

we get,

Py xi =
2k×(n−1)+1

2k×n
(3–9)

The numerator on the right hand side consists of two terms. The first term corresponds

to the case when all the bits of xi are 0. Therefore, each of the k bits of the other n− 1

variables can have 2k×(n−1) values. The last term, 1 on the numerator, corresponds

to the case when all the bits of all the xi ’s are 1. The denominator denotes all the
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possible cases of value assignments to the x ’s. These calculations, as stated above,

can be extended for other operations as well. For example, if OP was an OR operation,

Equations 3–7 and 3–8 will be modified as

Py 1,xi =
1

2k×n
(3–10)

Py 0,xi =
2k×(n−1)

2k×n
(3–11)

1

m3m1 m2

& &

b

g1 g2

|

a
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d

{}

0.0000001

1.0000001

Figure 3-6. A portion of the CDFG in Figure 3-5B

We now apply these computations to the specific example in Figure 3-5B. Figure

3-6 shows a portion of Figure 3-5B that shows dependency of b and c on a. We assume

that all the signals are independent here. Two new variables g1 and g2 are introduced

for the ease of illustration. Clearly, we have

g1 = a & m1

g2 =m2 & m3

b = g1 | g2
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To find the relationship of a on b, we first find the relationship of a on g1, and then g1 on

b. It can be seen from Equation 3–7 and 3–8,

Pg1
0,a =

28

216

Pg1
1,a =

1
216

To find the second part, that is the relationship of g1 on b, we use Equations 3–10 and

3–11,

Pb1,g1 =
1

216

Pb0,g1 =
28

216

Combining these two sets of equations, we get the relationship of a on b as

Pb1,a =
1

216 ×
28

216

Pb0,a =
1

216 ×
28

216

Finally, using Equation 3–3, we get,

Pba =
1

223 = 0.0000001

Since c and a have a direct concatenation relationship, the value of Pac is obtained as

1.0. Since there is no direct assignment relationship between b and c , there is no edge

between them. Thus, we obtain the values of edges ba and ac of Figure 3-6. Figure

3-7 shows a simplified version of Figure 3-6 with the edge values (shown below the

edges). The node values are computed by adding the edge values. For example, the

node c is connected to only one edge with value 1.0, therefore, the node value of c is

1.0. Similarly, the node value for a is 1.0 + 0.0000001 = 1.0000001. Likewise, the node

value for b is 0.0000001. These node values are shown in the figure (on top of nodes).

In this section, we have described the direct relationship when the signals are

independent. However, similar to Section 3.1.1.2, we can have dependent signals as
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Figure 3-7. Simplified version of Figure 3-6

well. The nature of dependent signals are derived from multiple branches of the CDFG.

Computations for dependent signals are similar to the computations in Section 3.1.1.2.

3.3.2.2 Conditional relationship

Conditional relationship corresponds to the non-assignment dependencies. For

example, in the RTL code corresponding to Figure 3-5B, the signals a and b have

conditional relationship on reset6 . We generally do not consider backward conditional

relationship, since, these are not in direct assignment statements. Conditional

relationship are computed in the same way as in Equation 3–7, however the operations

are checked inside the conditional block. For example, we consider the following code:

if (m or n) x <= y ;

Here, the symbol x has a conditional dependence on m and n. Since there are only

two variables m and n in the conditional dependency; the dependency value is 3
4 , as

obtained from Equations 3–1 and 3–2 in Section 3.1.1.1. The conditional relationships

are computed in this manner for all the signals in the circuit.

3.3.3 Signal Selection

Once the values of the variables are computed, the next step is to select the

best one for tracing. The signal selection procedure is similar to the gate level signal

selection. The variable with the highest value is selected and the rest of the values are

recomputed using region growth. This part is same as in Algorithm 1 and hence not

6 It should be noted that we do not consider conditional relationship of general control
signals like clock (clk) or reset.
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discussed here. In Figure 3-7, register variable a having the highest value is chosen for

tracing. The process continues until the trace buffer is full.

3.4 Experiments

In this section, we first compare our approach with existing gate-level signal

selection techniques [5, 6]. Next, we demonstrate how our proposed RTL-level signal

selection can further improve signal selection time.

3.4.1 Experimental Setup

We applied our gate-level signal selection approach (GSS) on the ISCAS’89

benchmarks used by [5] and [6] to compare with their methods and hence show the

effectiveness of our algorithm. We have designed a simulator in the lines of the one

described by [6] for our purpose. We have implemented the simulator as an iterative

process which terminates when it is not possible to restore any more states. We have

fed the simulator with 10 sets of random values and noted the average restoration ratio.

Signal mapping to

RTL Design

Synthesis RSS Restoration

Gate−level Design

GSS Restoration

Compare 

Gate−level signal

Figure 3-8. Overview of our experiments to verify RSS
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Figure 3-8 gives an overview of our experimental setup to verify the RTL level signal

selection algorithm (RSS). For this purpose, we have used Verilog circuits obtained

from Opencores website [47]. It should be noted that we have not used the ISCAS ’89

benchmarks since an RTL description of these were not available. We have modified the

Icarus Verilog parser [45] to generate the Control Data Flow Graph (CDFG). The CDFG

is then parsed by another program, which provides the list of selected signals using

Algorithm 2. As can be seen in Figure 3-8, we have compared the results obtained using

GSS and RSS on the same circuits to compare the restoration performance of each

approach. The signals selected using RSS are mapped to gate-level and the restoration

performance is noted. Simultaneously, the RTL design is synthesized to gate-level

netlist7 , and GSS is applied on the netlist. A comparison of the restoration performance

using the two algorithms reveal that they are almost same as discussed in Section 3.4.3.

Thus, our RTL-level signal selection algorithm does not incur any significant restoration

penalty compared to the gate-level signal selection algorithm.

3.4.2 Results on Gate-level Signal Selection (GSS)

Table 3-2. Comparison with Ko et al.
Restoration Ratio Restoration Ratio

with random inputs with deterministic inputs
Circuit Ko Our Impro- Ko Our Impro-

et al. approach vement et al. approach vement
s38584 38 42 1.1 6 20 3.33
s38417 9 16 1.8 9 16 1.8
s35932 48 50 1.04 25 35 1.4

We would like to compare our signal selection approach with the other closely

related methods. Table 3-2 compares the performance of our approach with the one

proposed by Ko et al. [5] using the three largest ISCAS ’89 benchmark circuits. All the

7 any synthesis tool can be used for this purpose; we have used Synopsys Design
Compiler
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experiments have been performed with a trace buffer of width 32. Table 3-2 is divided

into three distinct parts. The first column indicates the circuit name. The next three

columns compare the performance when random sets of inputs are used to drive the

circuits. In this case, even the control signals are driven using random inputs. As a

result, the circuit might fall into one of the reset states. The improvement can be defined

as the ratio between the restoration ratio using our approach and that of [5]. The third

part of Table 3-2 compares our approach with [5] when the gates of the circuit are driven

deterministically. This means that the control signals are driven using values that prevent

it from going to a reset state, while the other signals are driven with random inputs.

From Table 3-2, it can be seen that the improvement obtained using random inputs is

moderate (31% on average). On the other hand, considerable gain (117% on average)

is obtained when we use our algorithm for deterministic inputs. As discussed earlier,

random inputs to control signals might lead to reset states, which are responsible for

high restoration for both the approaches. Therefore, improvement obtained is less in

this case. As stated in [6] deterministic inputs are actually used in circuits during real-life

applications. Hence, gain obtained with them are more significant.

Table 3-3 compares the restoration ratio of our proposed approach with the one

proposed by Liu et al. [6] for the three largest ISCAS’89 benchmarks. As before, a trace

buffer width of 32 is used. In this case, the inputs are deterministic in nature. An average

improvement of 65% is observed. It can be seen that the improvement here is less

than the one obtained in Table 3-2. This can be attributed to the fact that the algorithm

proposed by [6] is more efficient than [5].

Table 3-3. Comparison with Liu et al. with deterministic inputs

Restoration Ratio
Circuit Liu et al. Our approach Improvement
s38584 9 20 2.22
s38417 14 16 1.14
s35932 22 35 1.6
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We now compare our approach with the one proposed by Prabhakar et al. [24].

[24] have used the primary inputs along with the traced signals for signal restoration.

Till now, we only used the trace signals to restore the rest of the signals on the chip.

However, to enable fair comparison, we have included the primary inputs for our signal

restoration. The results are shown in Table 3-4 using a trace buffer of width 32. It should

be noted that the improvements are moderate (on an average 10%) in this case. When

we use the primary inputs for restoration, most of the states at later clock cycles can

be recovered. On the other hand, the states where the input test vectors cannot reach

due to state depth in early cycles can be restored using the traced data. As reported in

[24], about 90-95% of the states were restored using their method. Hence, the scope for

improvement is limited.

Table 3-4. Comparison of GSS with Prabhakar et al.

Restoration Ratio
Circuit Prabhakar et al. Our approach Improvement
s5378 4.84 5.0 1.03
s9234 5.2 6.0 1.15
s15850 13.9 15.8 1.14
s38584 34.8 40.5 1.16
s35932 52.4 53.3 1.02

Figure 3-9 compares our signal selection time against the time taken by Ko et al. [5]

and Liu et al. [6] for the three largest ISCAS’89 benchmark circuits. The X-axis denotes

the different trace buffer widths. It can be seen that our approach takes significantly

less time (up to 90%) compared to them. This is primarily due to the fact that [5] and [6]

recomputes edge values in every iteration whereas we only recompute the node values.

Although our gate-level signal selection algorithm provides significant improvement

over the existing approaches ([5] and [6]), it does not guarantee the maximum

restoration possible using the same trace buffer size. For example, if we consider a

trace buffer of width 32, GSS does not guarantee to choose the best 32 signals that can
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Figure 3-9. Comparison of Signal Selection Time

provide the maximum restoration possible. A detailed analysis is needed to determine

the maximum restoration possible using a particular trace buffer size and the signals to

be traced in order to obtain that restoration performance.

3.4.3 Results on RTL-level Signal Selection (RSS)

In this section, we discuss how our RTL level signal selection algorithm can further

improve the signal selection time without compromising the restoration ratio significantly.

As discussed before, we have applied our approach on the designs obtained from the

Opencores benchmarks. We have compared our RSS approach with the gate-level

signal selection procedure (GSS). The results are shown in Table 3-5. Similar to the

previous experiments, we have assumed a trace buffer of width 32.

Table 3-5. RTL-level versus gate-level signal selection

Circuit Memory Size Reduction Speedup
Total CPU 8.1 697
Wishbourne LCD controller 22.81 1923
dmx512 tranceiever 191.24 733
OPB onewire 3.22 3600
Simple RS232 Uart 3.8 500
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The first column in Table 3-5 provides the circuit name. The second column shows

the memory size reduction which is the ratio of memory size in gate-level and RTL-level.

The last column gives the speedup obtained using RSS compared to GSS. Speedup

can be defined as the ratio of gate-level signal selection time to RTL-level signal

selection time. As can be seen, RSS is up to 3600 times faster and requires up to

191 times less memory compared to GSS.
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Figure 3-10. Comparison of Restoration Performance

Finally, we would like to compare the restoration performance of RSS and GSS

using three Opencore benchmarks ( OPB onewire, dmx512 transceiver and Wishbourne

LCD controller). The results are shown in Figure 3-10 when the benchmarks are driven

using deterministic inputs. As we can see in Figure 3-10, the restoration performance

for gate-level and RTL-level are similar. The gate-level restoration performance is found

to be slightly better than the RTL-level in some cases. The primary reason for this is the

representation of state elements as arrays in RTL-level. Whenever we select a signal for

tracing, we are actually tracing all the elements in the array. However, all of the signals
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in the array may not be equally beneficial. Some other signals could have been selected

for better restoration performance.

It should be noted that our proposed trace signal selection algorithm has a high

temporal observability (since the signals are traced every cycle) but a low spatial

observability. If the circuit does not have many dominating signals or if the circuit is such

that the overall restoration capacity of the trace signals are low, tracing a small set of

signals would not help in restoring many of the untraced signal states. A possible option

to improve observability is to increase the set of trace signals. However, this would mean

an increase in trace buffer size which definitely adds to the debug overhead. In order to

trace more signals while keeping the trace buffer size same, a possible alternative is to

compromise on temporal observability but improve spatial observability. This alternative

has been explained in Chapter 4.

3.5 Summary

Effeicient signal selection is important to enhance observability during post-silicon

debug. We developed techniques to employ total restorability for selecting the most

profitable signals that can provide better restoration compared to when signals are

selected using partial restorability equations. We observed the performance of our

gate-level and RTL-level signal selection algorithms using ISCAS’89 and Opencores

benchmarks. Our experimental results demonstrated two major advantages - our

approach can provide faster (up to 90%) signal selection as well as significantly better

(up to 3 times) restoration ratio compared to existing approaches. Our RTL-level

signal selection approach can further improve signal selection time by several

orders-of-magnitude and also requires less memory compared to the gate-level signal

selection algorithms.
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CHAPTER 4
EFFICIENT COMBINATION OF TRACE AND SCAN SIGNALS

The trace signal selection algorithms described in Chapter 3 lack spatial observability

since a small set of signals is being traced every cycle. To improve the spatial

observability during post-silicon debug while keeping the trace buffer length fixed,

scan data can be combined with trace signals. Recently, Ko et al. [27] have shown

the importance of combining scan chains and trace signals. They use a part of the

trace buffer input bandwidth to store selected trace signals every cycle. The remaining

input bandwidth is used to dump the scan signals at a certain frequency. Although this

approach produced promising results, there are several challenges to make it useful

in practice. One major issue is that it used exhaustive exploration to determine the

profitable combination of trace and scan signals. Such an exhaustive exploration can

be infeasible for real designs. Another major concern is that the selected scan signals

include almost all the flip-flops. Such an approach is neither practical nor profitable in

many real scenarios, since a huge number of shadow flip-flops will be necessary. Also,

the time for scan dump will increase, thus effectively decreasing the number of scan

dumps (only about 20 over 1000 cycles for the ISCAS ’89 benchmarks).

We have proposed an efficient technique to determine the profitable combination

of trace and scan signals. Our approach uses a graph based representation to select

three important aspects: (i) efficient trace signals to be stored every cycle, (ii) the most

profitable scan signals to be included in the shadow scan chain, and (iii) the scan dump

frequency based on the trace buffer width constraints. It is important to note that trace

signal states are stored every cycle whereas scan signal states of a specific clock

cycle are stored based on dump frequency1 . A major challenge is that these three

1 For example, if the trace buffer width is 32, and 8 trace signals are used, we have
space left for only 24 scan signals. If we choose a scan chain of 48 flip-flops, the scan
dump should be in every two (48 ÷ 24 = 2) cycles. In other words, in clock cycle 0, states
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aspects are inter-dependent. For example, selecting more trace signals implies less

space for scan signals, and vice versa. Even when the space for the scan signals is

reserved, choosing a large scan chain (too many scan signals) implies longer scan

dump frequency. In other words, there is a critical balance between how many signals

to observe versus how many signal states can be obtained for a specific clock cycle.

Our proposed approach addresses these challenges. Our experimental results show

that our method can significantly improve restoration performance compared to existing

methods.

4.1 Background and Motivation

To explain how combination of trace and scan signals can be used to improve signal

observability, we will refer back to Figure 1-4 in Chapter 1. Using only trace signals, A

and C, we were able to reconstruct 32 signal states, including 10 traced ones and 22

newly reconstructed ones.

We now show how combination of trace and scan signals can help in signal

reconstruction using the same circuit. In the previous example, the trace buffer stored a

total of 10 states (width 2 and depth 5). In this case, we use a trace buffer that can store

11 states. Signal C is selected for tracing every cycle. The other two important signals,

A and F are used as scan signals. The scan dump is performed in alternate cycles. The

modified circuit is shown in Figure 4-12 .

Table 4-1 shows the traced, scanned and restored signals using [27]. The state

values for signal C is traced every cycle whereas the state values for scan signals (A

of 8 trace signals are stored, whereas only the states of first 24 scan signals are stored.
Similarly, in the next cycle, 8 trace signal states and the last 24 scan signals (with states
of cycle 0) are stored.

2 Our method uses partial scan. Recent research by Alawadhi et al. [48] has shown
that partial scan can be used without incorporating additional penalty compared to full
scan.
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Figure 4-1. Example circuit with both scan and trace signals

and F) are dumped in alternate cycles. The scanned signal states are shown in bold.

Although scan signals are dumped in alternate cycles, the table shows states for both

A and F in cycle 1, cycle 3, and so on. This is because in cycle 1 the state of signal A

is dumped whereas in cycle 2 the state of signal F in cycle 1 is dumped. However, the

scan chain (i.e., A and F using shadow flip-flops) holds the state for the same cycle,

although different parts were dumped in different cycles. In other words, the signal state

of F captured at cycle 1 is dumped in cycle 2. As described by [27], the scan chains

need not consist of flip-flops that are physically connected. For example, the scan chain

here consists of flip-flops A and F that are connected via flip-flop D, which is not part of

the scan chain. In other words, a virtual scan chain can be developed only comprising

of the two flip-flops A and F. Although the restoration ratio obtained here is 3.1 (less

than the trace-only method), the number of states restored is 34 which is higher than

obtained earlier (32 in case of Table 1-1, as seen in Section 1.2). Thus, more signal

states provide a more detailed view of the internal state of the circuit.

The primary problem of combining scan and trace together is to determine what

signals to select for tracing, and which ones to be incorporated in the scan chain. Trace

signals should be chosen such that they comprise of the important signals in the circuit
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Table 4-1. Restored signals using trace and scan

Signal Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
A 0 0 0 0 1
B 1 0 1 0 X
C 1 1 0 1 0
D X 0 0 0 0
E X 1 0 0 0
F 1 X 1 0 0
G X 0 0 0 0
H X 1 0 0 0

that can control significant parts of the circuit. Scan chains on the other hand should be

distributed around the circuit so that the snapshot of the circuit at a particular clock cycle

can be obtained during debug. Since the trace buffer is getting divided between the

trace signals and the scan chains, it is also important to know how this division is done.

Clearly, an equal division might not be beneficial since it would mean less importance to

the scan signals and decreasing the number of scan dumps. Ko et al. [27] explored all

combinations of number of trace signals and scan dump frequency to obtain a beneficial

combination. We have developed an algorithm to select an efficient combination of trace

and scan signals to maximize the overall signal restoration.

4.2 Trace and Scan Signal Selection

Similar to trace-only debug approaches, both the trace and scan signals are chosen

during the design phase of a particular circuit. The states of the trace signals are

monitored every cycle, while the scan signals are dumped at certain time intervals in a

repeated fashion. We first introduce our debug architecture. Next, we describe our trace

and scan signal selection algorithms.

4.2.1 Trace+Scan Debug Architecture

Our trace-scan combined architecture is motivated by the design of Ko et al. [27].

The entire space of the trace buffer is divided into two parts - one for the trace data

and the other for the scan dump. The states of trace signals are offloaded into the
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trace buffer at every clock cycle. The trace buffer width determines the number of

scan signals dumped as well as the scan dump frequency. However, since the trace

buffer size is constant, the total amount of data that can be stored remains fixed. With

an increase in number of flip-flops in the scan chain, the amount of data produced in

each dump increases. As a result, the number of scan dumps has to be decreased

in order to maintain the trace buffer constraints. The scan chain is divided into small

sub chains to allow complete utilization of the total trace buffer width in the same

way as [49]. These are represented as n sub chains in Figure 4-2. The partitions are

shown to be numbered from 1 to n. Each of these n sub chains utilize the trace buffer

inputs for dumping. To facilitate the tradeoff between scan and trace data, [27] have

proposed introduction of multiplexers in front of the trace buffer inputs. This helps in

dynamically reconfiguring the inputs for the trace or the scan signals. In our case, the

inputs to the trace buffer are predetermined for a particular circuit. Hence, multiplexers

are not needed, and this reduces the hardware overhead as well as delay associated

with dynamic reconfiguration mechanism. The trace buffer has a width w and depth

D. Therefore, the total number of bits that can be stored in the trace buffer are w × d .

Here, m of the inputs are dedicated for trace signals, while n sub-scan chains dump their

values in the trace buffer. Clearly, w = n+m.

Our proposed algorithm comprises of two parts. First, we determine which trace

signals are beneficial. Next, we determine profitable set of scan signals and scan dump

frequency.

4.2.2 Trace Signal Selection Algorithm

In this section, we determine the signals that are needed to be traced during debug.

The main problem that we face here are twofold. First of all, the trace signals need to be

chosen efficiently in order to incorporate the advantages of using the scan signals during

debug. Also, unlike the trace-only approaches ([7] and [5]), the number of signals to be

traced is not fixed. Although, the maximum number of signals to be traced is equal to the
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trace buffer width, the actual number of trace signals can be less to accommodate the

scan signals.

We use two terms connectivity and threshold in our algorithm. The connectivity of

a state element is defined as the number of state elements connected with it through

other combinational gates (only) in both forward and backward directions, as explained

in Section 4.1. The threshold is a minimum limit on the connectivity of a state element,

so that it is selected for tracing. We now explain these terms using the example in Figure

1-4. The connectivity of the flip-flops can be determined using the circuit diagram.

For example, in Figure 1-4, the connectivity of C is 4, since flip-flops A, B, D and E

are connected to it. Similarly, connectivity of flip-flop A is 2 since only C and G are

connected to it.

Algorithm 3 outlines the major steps in our trace signal selection algorithm. First

we create a graph from the circuit, with each node representing a state element. The

edges between the nodes represent the path taken to reach from one state element to
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the other. This graph construction follows the same methodology described in Figure

3-3. The graph is redrawn in Figure 4-3.
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Figure 4-3. Graphical representation of example circuit

Once the graph is constructed, the node with the highest connectivity is selected

as the most profitable trace signal. All the adjacent nodes and itself are deleted from

the graph. The next node with highest connectivity is chosen. If the connectivity of the

node is less than the threshold, the computation stops, otherwise the signal selection

procedure goes on until the trace buffer width is reached.

Algorithm 3: Trace signal selection algorithm
Input: Circuit, threshold
Output: List of trace signals S (initially empty)
1: Create a graph GP from the circuit.
while trace buffer is not full do

2: Find node with highest connectivity in GP.
3: If connectivity is less than threshold return S.
4: Otherwise, add the new node to the list S.
5: Delete it and its adjoining nodes from GP.
6: Re-compute the connectivities of all nodes.

end
return S

Let GP denote the graph model of Figure 4-3. In this example, we use 40% of

the total number of flip-flops in the circuit (i.e., 3.2) as threshold. The node with the

highest connectivity is C, 4, which is more than the threshold. Therefore, C is selected

for tracing. Let R{C}, defined as relations of C, be the set of nodes connected with
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C, including C i.e., R{C} = {A,B,C ,D,E}. Step 5 of Algorithm 3 recalculates GP =

GP−R{C}. In other words, after deletion of C and its adjoining nodes, the modified GP

consists of only three nodes (F, G and H) where F is connected to both G and H. The

node with the next highest connectivity in GP is F, with a connectivity of 2. Since this is

less than 40%, F is not considered as a profitable trace signal. The algorithm returns C

as the selected trace signal.

4.2.3 Scan Signal Selection Algorithm

In this section, we describe our proposed algorithm for selection of both scan

chain and scan dump frequency. The procedure to determine the scan chain is shown

in Algorithm 4. First, we create a graph from the circuit, in the same way described

in Section 4.2.2. Once the graph is constructed, all the nodes that are part of the

trace signals or are connected to those trace signals are removed from the graph.

Then, a minimal node set is obtained from the graph. A minimal node set has two

requirements. First, it is a group of nodes such that each and every other node in the

graph is connected to at least one node in the set. Also, it should be minimal i.e., the

set should have the least number of nodes. The procedure to obtain the minimal node

set is shown in Algorithm 5. The flip-flops corresponding to the nodes in the node set

constitute the scan chain. We first describe how the minimal node set is created. Next,

we use an illustrative example to describe how the algorithm works.

Algorithm 4: Scan signal selection algorithm
Input: Circuit, already selected trace signals
Output: List of scan signals S (initially empty)
1: Create a graph from the circuit.
2: Remove the nodes related to trace
signals and its immediate neighbors.
3: Compute the node values.
4: Find the minimal node set S.
return S
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4.2.3.1 Creation of minimal node set

The first step constructs a graph model of the circuit. Once the graph has been

created, the minimal node set has to be determined. During the creation of the minimal

node set, care must also be taken to ensure that the nodes having higher connectivity

are selected for scanning. The algorithm for minimal node set construction is shown in

Algorithm 5.

Algorithm 5: Minimal signal set creation
Input: Circuit as graph, Node values
Output: Minimal Node Set S (initially empty)
1: Put all the nodes in a list GPS.
while GPS is not empty do

2: Find the node with the highest connectivity.
3: Remove the node from GPS.
4: Remove all nodes associated with that node from GPS along with their
associated edges.
5: Recompute connectivity values.

end
return S

4.2.3.2 Illustrative example

We now explain each of the steps in the algorithm using the graph in Figure 4-3.

It should be noted that since the circuit in Figure 1-4 is small, we have not taken into

consideration the effect of nodes that have been selected for tracing; that is, we have

shown the scan signal approach independently of the algorithm described in Section

4.2.2. In other words, we assumed that there are no trace signals in this case. As

can be seen from Figure 4-3, the node C and F have highest connectivity. We choose

node C as the initial node. The nodes associated with it (i.e., A, B, D and E) are also

removed along with their corresponding edges. The node connectivity information is

then recomputed. After deletion of C and its adjoining nodes, the modified GP consists

of only three nodes (F, G and H) where F is connected to both G and H. In other words,

the connectivity values for F, G and H are 2, 1 and 1, respectively. The node with the

next highest connectivity is F. Once F is selected and the adjoining nodes (G and H) are
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deleted, the graph becomes empty. Therefore, the computation stops. The scan chain

obtained comprises of the two flip-flops C and F.

The basic idea behind this form of scan cell selection is that each node in the entire

circuit is either in the minimal set or connected to at least one node in the set. Therefore,

when the scan dumps (of flip-flops in the minimal set) are performed, the signal states

of the nodes that are not in the minimal set can be reconstructed based on scan dumps.

For example, in Figure 4-3, if the state of C is dumped in cycle i , the states of A and B

may be obtained in cycle i −1, while the state of D and E may be obtained in cycle i +1.

Now we describe how to compute scan dump frequency for a set of scan signals

(scan chain) based on a particular trace buffer size and number of inputs dedicated to

the trace signals. Let the trace buffer depth and width be D and w respectively. Let m

be the number of inputs dedicated to the trace signals. Therefore, the number of inputs

of the trace buffer dedicated to the scan chain per cycle are w −m. Let the scan chain

length be l . Therefore, number of cycles it takes to dump the entire scan chain into the

trace buffer is l
w−m . This determines the scan dump frequency, since the scan chain will

be dumped after each l
w−m cycles. Since the depth of the trace buffer is D, the number

of scan dumps would be d×(w−m)
l .

4.3 Experimental Results

Table 4-2 shows the results of comparison with the existing technique [27]. We

implemented both the approaches for the 3 largest ISCAS ’89 benchmarks. The trace

buffer is chosen with a width of 32 and a depth of 1024. In case of our approach, a

threshold value of 10% is chosen for selecting the trace signals. To maintain fairness, in

our implementation of the method proposed by [27], we have used the same number of

trace signals as our approach and driven the inputs of the benchmarks with the same

set of random values. The first column in Table 4-2 shows the circuit name. The second

and third columns represent the number of states restored using our approach and the

one proposed by [27]. Finally, the last column gives the improvement, which is the ratio
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of the number of extra states restored by our approach compared to the states restored

using [27]. Our approach performed consistently better than [27] and produced up to

17.3%3 improvement in restoration performance.

Table 4-2. Comparison with existing technique

Restored States
Circuit Our Approach Existing Technique % Improvement

s38584 332854 283792 17.3%
s38417 601878 540603 11.3%
s35932 338090 326602 3.5%
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Figure 4-4. Comparison with Ko et al. and Basu et al.

We now compare our proposed approach with the existing trace-only approaches

presented by Ko et al. [5] and Basu et al. [7]. Figure 4-4 shows the comparison of

3 The maximum improvement we obtained is 44% in case of s9234. Since [27] did not
report it in their paper, we also omitted it.
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restoration ratio using the 3 largest ISCAS ’89 benchmarks. As expected, our proposed

approach outperforms the other two techniques for s38417. However, our proposed

approach outperforms [5] for the remaining benchmarks but produces comparable

results with [7]4 . The main reason is that these benchmarks have large number of

dominating signals, which needs to be traced every cycle. Tracing only a few of them

and performing scan dumps at regular frequencies is not helpful. On the other hand,

the number of such dominating signals in s38417 is low which requires a high spatial

observability of trace signals for improved restoration. Hence, a better performance is

obtained with the trace-scan combined approach.

4.4 Summary

Combining trace (non-scan) and scan signals is a promising approach to enhance

signal reconstruction during post-silicon debug. We developed efficient algorithms

to select profitable trace signals and scan chains to maximize the restoration ratio.

Our experimental results using ISCAS’89 benchmarks demonstrated that our method

provides up to 17% higher restoration compared to existing approaches. We observed

that it is profitable to select only trace signals if a design has large number of dominating

signals, otherwise selection of both trace and scan signals is beneficial.

4 In these cases, our approach can be considered as a trace-only approach, that is,
a trace-scan combined approach with zero scan dumps, which selects the best trace
signals using the method in [7].
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CHAPTER 5
ERROR DETECTION AWARE TRACE SIGNAL SELECTION

Existing trace signal techniques are based on the primary objective of maximizing

the restoration of untraced signals, and not detection of errors in the circuit. Error

detection in a circuit can be illustrated using the example circuit in Figure 1-4. Errors

in a signal are only propagated along the forward propagating path towards the output.

Therefore, a signal which is only on the fan-out cone of the erroneous signal can get

affected by the error. For example, in Figure 1-4, when flip-flop F is in error, tracing

any flip-flop in its fan-in cone (A, B, C , D or E ) would not help to reconstruct it. Instead

tracing any flip-flop in its fan-out cone (G or H) has a possibility of detecting the error in

F . Existing signal selection algorithms rely on both forward and backward restoration1

for reconstructing an untraced signal. Since an error in the fan-out cone of a signal can

not be detected, forward restoration is not meaningful for error detection.

Therefore, restoration ratio, the metric used to measure the efficiency of existing

signal selection algorithms is not appropriate for error detection. Section 1.3 motivates

the need for a new metric that can provide an estimate of the percentage of total errors

detected in the circuit. Yang et al. [50] proposed a signal selection algorithm to facilitate

early detection of errors. Their approach is focused more on latency and does not deal

with the total number of errors detected. Shojaei et al. [51] developed a technique which

is dedicated to detection of timing errors only. The authors considered how switching

activity and power droop can be used to estimate the errors in a portion of the circuit.

However, the authors did not consider the importance of functional or logical errors

that might be propagating to the traced signals. We have proposed a signal selection

1 Forward restoration deals with restoration of the output signal state when one or
more of the input signal states are known. On the other hand, backward restoration
obtains the input signal states when the output signal state is known. This is discussed
in detail in Section 1.2.
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algorithm which selects profitable signals for efficient error detection. Our algorithm lays

emphasis on how errors, which propagate from an error origin towards its fan-out cone

can be detected. Compared to the existing signal selection algorithms, our approach is

more efficient (up to 2X) in detecting errors across the entire circuit.

Algorithm 6: Signal Selection Algorithm
Input: Circuit, Trace buffer width
Output: List of signals to be traced, TS
TS = ϕ /*Initialize to NULL*/
1: Create a graphical representation of the circuit.
2: /*Compute Edge Values*/
For each node es,d , which is an edge between two nodes s and d , compute the
edge value ps,d .
3:/*Compute Node Value*/
Create a set for each node i : Si = {(ej1,i ,pj1,i),(ej2,i ,pj2,i), ....(ejn,i ,pjn,i)}, where ejk ,i
represents an edge between node jk and i , where jk is in the fan-in cone of i , and
pjk ,i is the value of the edge.
Value for node i : vi = ∑k=nk=1 pjk ,i , where n = |Si |
4: /*Select Trace Signals*/
while trace buffer is not full do

Select the node with the largest node value.
Let this node be i .
/*Add the node to the list*/
TS = TS ∪ i
/*Remove Overlaps*/
foreach element ti in Si do

foreach element tl in Sl do
if they have common source m

& pm,i ≥ pm,l then
Sl = Sl − (em,l ,pm,l)

end
end

end
end
Return the list of selected signals, TS .

5.1 Trace Signal Selection for Error Detection

In this section, we propose a signal selection algorithm that is dedicated to error

detection in the circuit. Algorithm 6 describes our signal selection algorithm, which has

68



four important steps. The remainder of this section describes each of these steps in

detail.

5.1.1 Graph based Modeling of Circuits

Figure 5-1 shows a modified version of Figure 1-4 with labeled signals. Figure

5-2 shows the graphical representation of Figure 5-1. Here, each node corresponds

to a signal in the circuit. An edge represents the connectivity/flow between two nodes

(signals). For example, presence of the OR gate between signals a and p is represented

as an edge between the corresponding nodes. The edges have been shown using

directional arrows, which indicate the propagation of error from a source to its fan-out

cone. Flow of error from one node to another which is not directly connected will pass

through several intermediate nodes. For example, in Figure 5-2, an error from a to c will

pass through a,p,c .
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Figure 5-1. Example circuit with labeled signals

5.1.2 Edge Value Computation

We now describe how to compute individual edge values depending on the type of

gate. Next, we explain the computation of compound edge values. A compound edge is

one which passes through multiple nodes, that is, a compound edge comprises of two or

more individual edges.
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Figure 5-2. Graphical representation of Figure 5-1

AND Gate. To compute the probability of error propagation, we consider the

examples in Figure 5-3A, which shows a multi-input AND gate. The graphical representation

is shown in Figure 5-3B. Let the inputs be named i1, i2,...,in and the output o1 respectively.

Let’s consider the error propagation from i1 to o1. In order for any error (0/1 or 1/0) to

propagate to o1, it is necessary that all the other inputs be tied at 1. If any of the other

inputs is at state 0, the error will not propagate. If one of the inputs is at state 0, the

output will always be at a state of 0, irrespective of i1 being correct or erroneous and

hence, the error gets undetected. Here, we assume all the other inputs to the AND gate

are independent. We consider dependent edges later. Therefore, the probability that all

of them are 1 simultaneously is the product of each of the individual probabilities. Let P1
in

be the probability that input in is at state 1. Therefore, the probability that all the other

inputs are at 1 is

Probi1 = ∏
2≤k≤n

P1
ik

(5–1)

which is the probability that an error at i1 will get propagated to o1. Similar computations

can be performed if the gate had been a NAND gate.
OR Gate. The computations for an OR gate follows the approach similar to an

AND gate. Let’s consider a multi-input OR gate as shown in Figure 5-4A, and the

corresponding graph in Figure 5-4B. As before, let the inputs be named i1, i2,...,in and

the output o2, respectively. Let’s consider the error propagation from ii to o2. Since in an
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Figure 5-3. Example using AND gate

OR gate, 0 is the non-dominating input; in order to propagate an error in i1 to o2, all the

other inputs must be held at a state of 0. The probability that an input ik is held at 0 is

P0
ik

. The joint probability that all the inputs other than i1 is held at 0 is

Probi0 = ∏
2≤k≤n

P0
ik

(5–2)

which is the probability that an error at i1 gets propagated to o2. Similar computations

can be performed for any of the n inputs and also for a NOR gate.
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Figure 5-4. Example using OR gate

Flip-flop and NOT Gate. To show how the error propagates through flip-flops and

NOT gates, let us consider the examples in Figure 5-5. Figure 5-5(a) shows a D-type

flip-flop whose input is i1 and output is o3. Any error in i1 will be transmitted to o3 in the

next cycle. Since there is no other signal dependency between i1 and o3, there’s no

hindrance in error propagation. Therefore, the probability of error propagation is 1 and

hence, the value of the edge between the nodes i1 and o3 is 1.

Figure 5-5(b) shows a NOT gate whose input is i1 and output is o4. Similar to the

D-type flip-flop, there is just one input, and hence, any error in i1 will get propagated to

o4. Thus, the edge value between the nodes i1 and o4 is 1.
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Figure 5-5. D flip-flop and NOT gate

Figure 5-6 shows the values of the edges in Figure 5-2. For simplicity, we assume

that all the nodes have a 50% probability of having a state of 0 or 12 .
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Figure 5-6. Edge values for the graph in Figure 5-2

Now we discuss how the probability of error transmission changes across multiple

edges. To calculate the edge value across multiple gates, that is, probability of error

propagation from one node to the others in its fan-out cone, we have to consider both

independent and dependent edges.

Compound Independent Edge. An independent edge is one which passes from

one node to another with each internal node along the path visited at most once. We

explain the independent edges scenario using the graphical representation in Figure

5-2. The edge from q to s is an independent edge, since there exists only one path from

q to s, via d . In other words, eq,s is traversal of eq,d followed by ed ,s . Since there is a

2 In our experiments, we use the profiling information to determine the probability of
inputs (nodes) staying at a particular state
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flip-flop between q and d , the value of eq,d is 1. This is written as pq,d = 1. To compute

the value of the edge between d and s , it can be seen that the other input to s is node

e. The value of the edge ed ,s is the probability that the node e is at state 0, which in this

case is 0.5. Therefore, pd ,s = 0.5. The value of edge between q and s, is the product of

pq,d and pd ,s , that is, pq,s = 0.5. This is intuitive because both gates are independent,

and hence, the final probability will be a product of how the error gets propagated

through each of them. Thus, for an independent edge, the edge value is the product of

all the edges which are components of the independent edge. In general, if there are n

edges, e1, e2,..., en comprising an independent edge e, value of e is

pe = ∏
1≤k≤n

pek (5–3)

Compound Dependent Edge. A dependent edge is one which starts from a node,

branches of, and finally combines to reach another node. As before, we explain the

dependent edge computation using the graphical representation in Figure 5-2. There

exists two edges between nodes n and r . One edge is n,b, r while the other is n,b,p,c , r .

To compute the value of the compound edge en,r , we need to compute these edge

values separately. The value of the edge n,b, r is product of pn,b and pb,r (follows from

independent edge value computation). Thus, value of edge n,b, r , that is, pn,b,r is 0.5.

On the other hand, pn,b,p,c,r is 0.25. pn,r is defined as pn,r = max(pn,b,r ,pn,b,p,c,r ). This

is because when the effect of two different edges are already taken into consideration,

an edge with a higher error propagation probability will always dominate, and thus,

can be considered an edge value from one to another. In general, if there are n edges

e1, e2,..,en between two nodes s and d , then the value of the edge between s and d ,

ps,d =max(pe1,pe2, ....,pen)

5.1.3 Node Value Computation

We are now ready to compute the node values for Figure 5-6. For each node, we

obtain the set of nodes in its fan-in cone and the corresponding edge values. Let us
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consider the node p. As can be seen, it falls in the fan-out cone of four nodes, a,b,m

and n. The corresponding edge values are computed and the set Sp is obtained as

Sp = {(em,p,0.5),(ea,p,0,5),(en,p,0.5),(eb,p,0.5)}3 . The node value at p is defined as

the sum of all these edges, that is, vp = 2. In this way, the node values are computed for

every node in the graph. Figure 5-7 shows the node values for the nodes in Figure 5-6.
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Figure 5-7. Node values for the graph in Figure 5-6

5.1.4 Signal Selection

In this section, we describe the final step in our signal selection algorithm. Once

the node values are computed, the node with the highest value is selected for tracing,

which is g (or h) in Figure 5-7. The subsequent signals should be carefully selected

so as to enhance the error detection. We should delete contributions from signals

which have a high probability of error detection from the already traced signals. Step

4 of Algorithm 1 is used for this purpose. For each signal in the circuit, we check how

much of its contribution is to the already selected signal as well as to the others. If the

contribution to the selected signal is larger than the contribution to some other signal,

its contribution to the latter is removed. To illustrate this feature, we refer to Figure 5-8A.

The edge values as well as the (edge, value) pair sets have been shown for each node.

After g is selected for tracing, the node values are recomputed by removing the overlap.

3 Each entry in the set is an (edge,value) pair
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As can be seen in Figure 5-8A, ps,t = 0.5 and ps,g = 0.5. Since the probability of an

error at s getting detected at t and g are same and g has already been selected for

tracing, contribution of s is removed when recalculating the node value of t. By similar

arguments, the contribution from f to t, i.e., (ef ,t ,0.5), will be also deleted from St .

On the other hand, since the value of es,f is greater than es,g, it is not deleted from Sf .

The recomputed sets for each of the nodes are shown in Figure 5-8B. Since f has the

highest node value, it will be selected next.
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Figure 5-8. Signal Selection based on removal of overlap

5.2 Expriments

5.2.1 Experimental Setup

In this section, we discuss the performance of our algorithm using the ISCAS ’89

benchmarks. For each of the benchmarks, 50 different error sites are chosen randomly.

The error model is described in Section 5.2.2. A complete simulation of 1000 cycles is

performed for both the correct and erroneous scenarios. The signals to be traced are

monitored at each clock cycle during simulation. Their states are compared with the

states obtained from the perfect simulation. Any discrepancy is reported as error. We

define Error Detection Ratio (EDR) as a metric for measuring the effectiveness of a

signal selection algorithm. EDR is defined as:

EDR =
Number of Errors Detected

Number of Detectable Errors
(5–4)
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In a circuit, all errors may not be detected by the state elements. Some of the

errors get suppressed before reaching a state element (flip-flops and primary outputs).

Hence, it is important to consider the number of errors that can be detected using

state elements and not the total number of errors introduced in the circuit. The second

and third columns in Table 5-1 show the number of flip-flops and primary outputs

respectively, for the four ISCAS ’89 benchmarks on which we have performed our

experiment. The next two columns indicate the number of errors that are detected using

flip-flops or outputs. Note that the total number of detectable errors (last column) are not

the summation of values in fourth and fifth columns since there are overlap of detectable

errors.
Table 5-1. Detectable Errors for the ISCAS’89 benchmarks

Circuit #FFs #outputs Detectable Detectable Detectable
by FFs by outputs (total)

s5378 179 49 30 33 38
s9234 228 22 26 2 26
s13207 669 121 38 19 38
s15850 597 87 29 9 29

5.2.2 Error Model

We have assumed a periodically recurring error model which tries to represent a

real scenario. Initially, we select a set of random nodes as potential erroneous ones.

A random function generator is used for this purpose. We consider each of the errors

independently, that is, we consider one error at a time. Once the nodes are selected, a

random time stamp is chosen which should be significantly lower than the trace buffer

depth4 . After each occurance of this time stamp, the erroneous node is assumed to

malfunction. We have chosen a simple bit-flip model for our purpose. When the node

4 We have chosen a timestamp of 100 cycles, which is less than the trace buffer depth
of 1000 cycles.
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is supposed to malfunction, it just flips its correct state. The erroneous state is then

propagated along its fan-out cone.

5.2.3 Results

In this section, we compare our signal selection performance with restoration

aware signal selection approach [7]. Though there are other signal selection methods

such as [5] and [6], we compare our approach with [7], that provides the best results.

We have used the same set of signals used by [7] and compared the EDR using both

approaches. The results are shown in Figure 5-9. As can be seen, our method provides

up to twice improvement compared to [7], when 32 state elements are traced. This is

because the scheme proposed in [7] considers both forward and backward restoration

when selecting signals for tracing, whereas only forward error propagation (equivalent to

backward restoration) is useful for error detection.
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Figure 5-9. Comparison with Restoration aware signal selection

In the next set of experiments, we explore how EDR changes when we increase

the number of signals (flip-flops and outputs) to be traced. We consider the number

of trace signals 32, 64 and 128 and note the changes in error detection performance.
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The results are shown in Figure 5-10. For s5378, an EDR of 84% is obtained with a

trace buffer width of 32. Further increase of trace buffer width increases the number of

errors detected by a small amount (up to 95%). In case of s9234, EDR value of 46% is

obtained using a trace buffer width of 32. As expected, increase in trace buffer width

increases the EDR value. Almost 77% EDR can be obtained using a trace buffer width

of 128. For s13207, the initial error detection is small (18% EDR with a trace buffer width

of 32); however, a sharp increase in error detection performance is obtained when the

trace buffer width is increased. In fact, the EDR triples when the trace buffer width is

128. Although s15850 is a large benchmark like s13207, we see a considerable large

EDR when the trace buffer width is 32 (38%). Since there are 673 state elements,

further increase in trace buffer width to 64 and 128 does not reflect a sharp increase in

EDR value.
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Figure 5-10. Variation of error detection with number of trace signals

Our next experiment is to see how EDR changes when we select only flip-flops for

tracing. The results are shown in Figure 5-11. The variation trend is almost similar to

that in Figure 5-10, since the number of flip-flops form a major portion of the number of
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state elements. As before, s5378 has most of the errors detected when the trace buffer

width is 32, and hence any further increase has minor impact. On the other hand, s9234

and s13207 have sharp increase in EDR when the trace buffer width is increased.
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Figure 5-11. Variation of error detection with number of flip-flops traced

Finally, we would like to see how the error detection varies with variation in the

number of output signals for tracing. In this case, we trace only the output signals. Since

the number of output signals are relatively small, the trace buffer width is varied in steps

of 4, 8, 16 and 32. Note that the denominator of EDR computation uses the values of

column 5 in Table 5-1. The results are shown in Figure 5-12. For s5378 and s13207,

variation of trace buffer width produces a sharp increase in the value of EDR. For s9234,

the EDR becomes 100% with width of 4. This is because for s9234, only 2 errors can be

detected using all the outputs, and these are detected when only 4 outputs are traced.

Except s13207, which has 121 outputs, 16-bit trace buffer achieves 80-100% EDR for all

other benchmarks.
5.3 Summary

In order to detect an error, the traced signals should remain in the fan-out cone

of the error signal. We have proposed an algorithm which takes into account this fact
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Figure 5-12. Variation of error detection with number of outputs traced

and selects signals with an objective of detecting errors. We have analyzed several

cases where any signal, only flip-flops and only output signals are used for tracing. Our

proposed approach is significantly better (up to 2X) in error detection compared to the

state-of-the-art existing signal selection algorithms.
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CHAPTER 6
DYNAMIC SIGNAL SELECTION

To improve the observability during post-silicon debug, existing techniques

[5–7, 52] select a small set of profitable signals during design time. The applicability

of the existing methods is limited for various reasons. First, these methods treat

each component (functional regions) of the design as equally important from debug

perspective and therefore select signals that are globally beneficial based on restoration

capability. In other words, it assumes uniform “spatial” and “temporal” distribution of

errors. In reality, certain regions may not be relevant during some cycles of operation

for various reasons. For example, a set of cores in a multicore architecture may be in

power saving mode (using clock gating) during certain timeframe. Therefore, no error

is possible in those cores during that timeframe. Similarly, certain regions (such as

well verified datapath) are less likely to have errors compared to other control-intensive

regions. In general, only a small set of regions may be relevant during a particular

timeframe for debugging an error. Therefore, a verification engineer would like to have

knobs that allow him to trace a different set of signals at different timeframe.

Prabhakar et al. [28] proposed an approach to select between two sets of signals

in alternate cycles. As a result, it is a very specific case of temporal distribution of errors

without any consideration for spatial distribution. A multiplexed signal selection for error

detection was proposed by Liu et al. [29]. Their approach is an ad-hoc signal selection

heuristic based on error visibility metric. There is no discussion on how such a selection

is beneficial for their targeted debug scenario. In other words, their approach does not

consider the challenges associated with dynamic signal selection in the presence of

spatial and temporal distribution of errors.

We propose an efficient signal selection algorithm and associated trace controller

design that would enable verification engineers to dynamically trace different set of

signals for improved error detection. We propose a region-aware signal selection
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algorithm (RSS) that selects profitable signals during design time (static analysis) based

on the knowledge of functional regions and associated error zones. We also develop

a low-overhead dynamic signal tracing (DST) hardware to enable designers to trace

different set of signals during execution based on active (relevant) functional regions.

This lays emphasis on the errors in active zones in the circuit that can be detected using

a specifically selected set of trace signals. Although our work might seem similar to

traditional test-point insertion and observability analysis [53], it is fundamentally different

in two aspects. First, our approach is designed specifically for post-silicon validation

and debug. Also, in case of [53], the observation points are determined by the number

of signals in the fan-in cone, and not on the error propagation probability from the

signals to the observation points. To the best of our knowledge, this is the first attempt

in developing an efficient spatio-temporal solution for dynamic trace signal selection.

Our experimental results using both ISCAS’89 benchmarks and opencores circuits

demonstrate that our approach is able to detect up to 3 times more signals compared to

existing state-of-the-art techniques.

6.1 Problem Formulation

The goal of this chapter is to develop an efficient dynamic signal selection technique

to maximize detection of currently active errors1 in a circuit. Various industrial studies

highlight the fact that error locations are not uniformly distributed across the circuit,

instead they are clustered in multiple small zones. We call them error-prone zones

(or error zones, in short). We assume that error zones during post-silicon validation

closely resemble those in the pre-silicon phase. We divide the circuit into multiple parts

where each part contains one or more error zones. We call these parts as functional

regions (or region, in short). A natural boundary for a region would be the component

boundary of an SoC. For example, each core in a multicore SoC can form a region.

1 Those located in active regions, explained later in this section.
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If one component has multiple error zones, we may even divide that component into

multiple regions following some functional boundary. For example, a processor core can

be divided into two regions, one covering fetch and decode units and the other covering

the rest. In our construction, an error zone is completely contained inside a region of

the circuit, that is, we assume no overlap of an error zone between multiple regions.

There is a trade-off between number of regions versus error zones. One region per error

zone may create too many regions (partitions) and lead to unacceptable computational

complexity and hardware overhead. On the other hand, a large region with many disjoint

error zones may reduce the effectiveness of dynamic signal selection.

Let us consider a circuit represented by the rectangle in Figure 6-1. The entire

circuit is divided into m regions named R1 to Rm. Each region can have one or more

disjoint error zones. For the ease of illustration, we assume one error zone per region.

It does not lose any generality since one error zone can be viewed as a composition of

multiple disjoint error clusters. For example, the error zone ZR1 for region R1 consists of

two disjoint error clusters in Figure 6-1. These two clusters together form the error zone

ZR1.
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Figure 6-1. Illustrative example showing regions and error zones

We consider a trace buffer of width n, that is, n signal states can be stored in the

trace buffer per cycle. During any particular cycle, some of the functional regions remain

active (relevant). A region is considered active if the gates in the particular region
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function normally and not dormant due to power-saving mode (using clock gating) or any

other reason. Regions which do not have any signal transition during certain timeframe

are considered inactive and hence are not relevant. There are two extreme scenarios.

When all the regions are active, our signal tracing algorithm gives proportional emphasis

to every region and the associated error zones. However, when only one region is

active, beneficial signals from that region need to be traced. We select n signals from

each of the m regions, forming a total set of m×n signals. During execution, depending

on the currently active regions, n best signals will be chosen out of m×n signals. It must

be noted that the n signals from region Ri (where 1 ≤ i ≤m) used to detect errors in ZRi

can be from anywhere in Ri (inside as well as outside of ZRi ). Our region-based signal

selection algorithm (RSS) in Section 6.2 describes how these signals are selected, while

an efficient hardware implementation for dynamic signal tracing (DST ) is described in

Section 6.3.

6.2 Region-based Signal Selection (RSS)

Algorithm 7 describes our region based signal selection algorithm (RSS) for

selecting profitable signals during design time. The first step creates a graph-based

model of the circuit. Next, for each region it computes the error propagation probability

(defined in Section 6.2.2) from each node in the error zone to the other nodes in the

entire region. Finally, for each region the most profitable n signals are selected. The

remainder of this section describes these steps in detail.

6.2.1 Graph Based Modeling of Circuits

The first step of Algorithm 7 is to construct a graphical representation of the circuit.

We explain this step using our example circuit in Figure 1-5. We redraw the circuit in

Figure 6-2 where the 2 regions of the circuit are shown clearly.

The graphical representation is shown in Figure 6-3. Each signal in the circuit is

represented by a node and any data flow between two nodes represented by an edge.

The edge is irrespective of the type of gate between two nodes. For example, flip-flops
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Algorithm 7: Region-based Signal Selection (RSS)
Input: Circuit, Trace buffer width n, Error zones Z1,...,Zm
Output: m lists of selected signals, SS1,...,SSm
SSi = ϕ /*Initialize all lists to NULL*/
1: Create a graphical representation of the circuit.
Divide the circuit into m regions, Ri contains the error zone Zi .
2: /*Compute error propagation probability for each region Ri*/
For each node s in Zi , compute the probability of an error at s getting propagated
to any node d in region Ri .
4: /*Select n trace signals for each region Ri*/
while SSi does not have n signals or Ri empty do

4.1 For each node d in Ri , compute the summation of the error propagation
probability for each node s at Zi .
This is the total error detection probability (EDP) at node d .
4.2 Select the node j with the largest EDP value.
4.3 Add the node to the list SSi = SSi ∪ j
4.4. Remove node j and its overlap from Ri

end
Return the lists (SSi ,...,SSm) with selected signals

C and H are connected by a NOT gate, hence, the two nodes representing them have

an edge connecting them. Directed arrows signify the error propagation direction. R1

and R2 represent two different functional regions of the circuit with respective error

zones, ZR1 and ZR2 . Let us consider the region R1. The probable sources of error are the

nodes A and B. Any errors in these nodes can propagate to the other nodes in R1 which

are in their respective fan-out cones. Therefore, the error at A can propagate to F ,D,E

and G . We would like to compute the possibility of an error at any of these two probable

erroneous nodes (A and B) to propagate to the other nodes. We call this probability as

error propagation probability, as described next.

6.2.2 Error Propagation Probability Computation

We first describe how to compute error propagation probability through single gates.

Error propagation probability is defined as the probability of an error present at an input

of a gate being propagated to its output. Error propagation probability over multiple
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Figure 6-2. Example circuit with 2 regions and 12 flip-flops

gates will be explained later. We consider each of the single gates and compute the

probability of an error at one of the inputs getting propagated to the output.

Individual Gates. To compute the probability of error propagation, we first consider

a multi-input AND gate in Figure 6-4A. Let the inputs be named i1, i2,...,in and the output

o1 respectively. Let us assume an error occurs at one of the inputs, say, i1. We want to

compute the probability of the error to be propagated to o1. In order for any error (0/1

or 1/0) to propagate to o1, it is necessary that all the other inputs of the AND gate be

tied at 1. If any of the other inputs is at state 0, the output will always be at a state of

0, irrespective of i1, hence, the error gets undetected. Here, we assume all the other

inputs to the AND gate are independent. Therefore, the probability that all of them are

1 simultaneously is the product of each of the individual probabilities. Let p1
ik

be the

probability that input ik is at state 1. Therefore, the probability that all the other inputs are
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at 1 is P1
i1
= ∏2≤k≤n p

1
ik

which is the probability that an error at i1 will get propagated to

o1, that is the error propagation probability through the AND gate. Similar computations

can be performed for a NAND gate.

O

1i
i2

in
1

...

A AND gate

Oi
i

i

1
2
n

2

...

B OR gate

Figure 6-4. Examples using AND and OR gates

The computations for an OR gate follows the approach similar to an AND gate. A

multi-input OR gate is shown in Figure 6-4B. Let’s consider the error propagation from

i1 to o2. In order to propagate an error in i1 to o2, all the other inputs of the OR gate

must be held at a state of 0. The probability that an input ik is held at 0 is p0
ik

. The joint
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probability that all the inputs other than i1 is held at 0 is P0
i1
= ∏2≤k≤n p

0
ik

which is the

error propagation probability from i1 to o2. Similar computations can be performed for a

NOR gate. For any one input and one output node (such as flip-flop and NOT gate), the

error propagation probability is always 1.

Now we discuss how the probability of error propagation changes across multiple

gates. Since there are more than one gates involved, we need to consider both

independent and dependent paths. A path is defined as the series of logic gates which

are placed in between source (s) and destination (d) nodes. In other words, it signifies

the path traversed by a potential error at node s to reach node d .

Independent Paths through Multiple Gates. An independent path is one which

passes across a set of logic gates with each gate being visited at most once. We explain

the independent path scenario using Figure 6-3. To keep things simple, we assume

each internal signal being in a state of 0 or 1 with a probability of 50%2 . The edge

from A to E is an independent path, since there exists only one path from A to E , via D.

Since there is only an OR gate between A and D, the probability of an error at A getting

propagated to D is the probability of L (the other input to the OR gate) being in a state

of 0, which is 0.5 in this case. Hence, the error propagation probability between A and

D is 0.5. Similarly, since there is only a 2-input AND gate between D and E , the error

propagation probability between D and E is 0.5. Since none of the signals are visited

more than once, the overall error propagation probability between A and E is the product

of these two, which is 0.25. In general, if there are n+1 signals in an independent path

between nodes s and d , with their intermediate error propagation probabilities being p1,

p2,..., pn, the overall error propagation probability across the path is P(s,d) = ∏1≤k≤n pk

2 This assumption is for explanation purpose only; in real experiments, we gather
profiling information to determine the state probability. It is explained in detail in the
Section 6.4.
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Dependent Paths through Multiple Gates. A dependent path is one in which

while moving from a source node to a destination node, at least one of the internal

nodes is visited more than once. We explain the error propagation probability computation

using Figure 6-3. There exists two independent paths between nodes A and G . One

edge is (A,F ,G ) while the other is (A,D,E ,G ), both branching out at A and combining

at G . In order to compute the error propagation probability across the path between

A and G , we need to compute these independent path values separately. For the

path (A,F ,G ), the error propagation probability is the product of the probabilities

between the paths (A,F ) and (F ,G ), both of which, for obvious reasons are 0.5. Thus,

the error propagation probability of path (A,F ,G ) is 0.25. On the other hand, since

the path (A,D,E ,G ) passes through 3 independent two-input gates, the eventual

error propagation probability is 0.125. The error propagation probability through path

(A,G ) can be computed as p(A,G ) = max(p(A,F ,G ),p(A,D,E ,G )). This is because during

computation, the effect of two different paths are already taken into account, and a

path with a higher probability of detecting an error will always dominate. In general, if

there are n independent paths e1, e2,..,en between two nodes s and d , then the error

propagation probability of the paths between s and d , p(s,d) =max(pe1,pe2, ....,pen)

6.2.3 Signal Selection Based on Node Values

In this section, we describe the final step in our signal selection algorithm. The first

node chosen for tracing in a region is the node with the highest value. The value of a

node is the sum of error propagation probabilities of all paths in which the node is the

destination. For example, in Figure 6-5, if we concentrate on Region R1, the node value

of E will depend on paths (A,D,E ), (L,D,E ) and (D,E ). Since in this example only A

and B are possible error locations for R1, the relevant path would be (A,D,E ); the paths

(L,D,E ) and (D,E ) is not relevant because D and L are not in error zone. Therefore

the node value of E will be the sum of error propagation probability across the path

(A,D,E ), that is, 0.25. We can have similar computations for other regions. The node
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values of all the nodes in R1 are shown in Figure 6-5. Each node value is represented by

a number beside it.
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Figure 6-5. Node values for region R1 in Figure 6-3

In Figure 6-5, three nodes (A, B and F ) have highest node values of 1. A and B are

not valid choices since any of them cannot detect the error in other node, whereas F can

detect error in both A and B with 50% probability. Therefore, we choose F as the first

node to trace. The subsequent signals should be carefully selected to enhance the error

detection in the region. Contributions from signals which have a high error detection

probability from the already selected signals should be deleted. Step 4.4 of Algorithm

2 is used for this purpose. The basic idea is that if an already selected node (e.g., F )

can detect an error (e.g., in A) with equal or higher probability than another node (e.g.,

D), then the overlap from the other node should be removed. For example, since F can

detect an error in A with 50% probability, the contribution claimed by D (also 50% for A)

should be deleted from D during the next iteration. This process continues until n best

signals are selected for each region or there are no more signals to be selected.
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6.3 Dynamic Signal Tracing (DST)

Algorithm 8 describes our dynamic signal tracing (DST) procedure for improved

error detection. The input to the algorithm are the chip design, trace buffer size, active

regions and associated relevance and signal lists. Relevance of a region indicates

how important the region is in error detection, or the possibility of finding an error

in that region compared to other regions. The relevance information is provided by

the pre-silicon verification engineer based on percentage of errors found in the error

zone in that region (compared to other error zones) during pre-silicon validation. If no

information is available, we can consider the size of the error zone in that region as

relevance. If the trace buffer size is n, and there are m active regions in the circuit,

during design time our RSS procedure (Algorithm 1) will select m× n signals. During

execution, our DST procedure needs to choose n signals from these m×n signals that

are most profitable at a certain duration depending on the k (1 ≤ k ≤m) active regions.

Algorithm 8: Dynamic Signal Tracing (DST)
Input: Circuit, Trace buffer size n, k active regions (Ri ), and respective relevance

(ri ) and selected signal lists (SSi )
Output: List of n signals to be traced, TS
TS = ϕ /*Initialize to NULL*/
1: Here, ri denote the relevance of region Ri , and SSi is the most profitable n
signals selected for region Ri , where 1 ≤ i ≤m.
Let r = ∑i=mi=1 ri
2: Find the contribution from Ri , Ci =

n×ri
r

3: Select the best Ci signals from SSi
4: Put the selected signals in TS .
5: Repeat steps 3-4 for all k regions 1 ≤ i ≤ k .
Return the selected signals TS

Since we have to select n out of m×n signals for tracing, it is reasonable to adopt

n multiplexers, each of which will provide a signal corresponding to the trace buffer

output. The main problem is to divide the m×n signals among the n multiplexers so that

all possible combinations of trace signals can be achieved. An obvious but expensive
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Table 6-1. Selected Signals for each MUX for n = 4 and m = 4
Mux name Input Signals for each MUX
MUX 1 A1, B2, B3, B4, C2, C3, C4, D2, D3, D4
MUX 2 B1, A2, A3, A4, C2, C3, C4, D2, D3, D4
MUX 3 C1, A2, A3, A4, B2, B3, B4, D2, D3, D4
MUX 4 D1, A2, A3, A4, B2, B3, B4, C2, C3, C4

solution would be to use n multiplexers each having all the m× n signals as input as 1

output.

One optimization can be achieved by the following observation. Let us consider a

circuit with 4 regions, RA, RB , RC , RD . Suppose the signals responsible for detecting

errors in region RA are named A1, A2,...,An, in the order of priority. If signal A1 is not

selected for tracing, subsequent signals, that is, A2, A3,....An will not be selected for

tracing. Thus, it is not necessary to keep the signals under the same multiplexer

input as A1. The number of initial signals selected from each region to feed into the n

multiplexers are n
m . A total of n signals will fill in the first stage of each multiplexer. Now,

number of signals remaining for each region is given by

n remain = n− n
m

Under each multiplexer, all these signals except the one from the same region will be

stored. For example, if multiplexer 1 has signal A1, the signals A2, A3 and A4 need not

be part of its input. Therefore size of each multiplexer is size×1 where

size = 1+(m−1)× (n− n
m
)

Thus savings obtained is m×nsize which reduces to m×n
1+m×n−2×n+ nm

. For this example, m = 4

and n = 4; therefore the value for size is 10. Our initial multiplexer design was of size

(m×n)×1, which in this case, means 16×1. Thus, we could reduce the multiplexer size

by 16
10 , that is, 1.6. Table 6-1 shows the configurations of each multiplexers indicating the

signals entering each of them.
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Table 6-2. Table for n = 2 and m = 2
Current State Selected

RA RB Signals
0 1 (B0, B1)
1 0 (A0, A1)
1 1 (A0, B0)

Now, we would like to explore the design for our dynamic signal tracing algorithm.

The total possible number of states is 2m − 1 since at least one of m regions will be

active at a time. This is independent of n, that is, the trace buffer width. However each

of the states will be defined by n signals, signifying the n signals to be traced at that

time. Table 6-2 shows a simple example controller illustrating different signal selections

depending on the state of currently active regions when m = 2 and n = 2. Let the two

regions be RA and RB . The two signals selected from each region being A0, A1 and B0,

B1 respectively. At any point, only two of the signals are chosen for tracing. When only

region RA is active, the signals to be traced are the two signals from region RA, indicated

by A0,A1. Similarly, when only region RB is active the two signals to be traced are B0,B1.

When both regions are active, the trace signals to be selected are A0,B0.

AR RB
A2 A3 B1 B2 B3 1 C2C

DATAPATHTo Trace Buffer

CONTROLLER

1MUX 2MUX 3MUX

A1 C3

RC

Figure 6-6. Datapath and controller design for m = 3 and n = 3

Similarly, when m = 3 and n = 3, it is evident that there will be 7 different states for

this configuration. Let the 3 error regions be RA, RB and RC . Signals in RA are named
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as A0,A1,A2 and similarly for all other regions. Figure 6-6 shows the controller and

datapath design for such a configuration.

The overall structure of our proposed design is shown in Figure 6-7. Here we

consider a design with n multiplexers that would produce n trace signals. The output of

the multiplexers are fed to a trace buffer. The trace controller provides the control signals

to the multiplexers based on the logic mentioned above. The trace controller operates

under the same clock as the Design Under Test (DUT). An external knob is applied on

the trace controller (generally by the validation engineer) which contains information on

the currently active error zones in the circuit.

6.4 Experiments

6.4.1 Experimental Setup

We verified the effectiveness of our region-based signal selection (RSS) and

dynamic signal tracing (DST) algorithms using some of the largest ISCAS’89 benchmarks

as well as opencores circuits. In each of the subsequent experiments, we consider a

number of regions with each region having one error zone. Each error zone comprises
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of about 5% of the respective region. We inserted 50 random errors in the error zones

of the active regions, with the error density proportional to the region size. We assume

a simple bit-flip model for error, that is, at particular cycle, the error signal will just flip

its state. Profiling information is obtained by running an ideal simulation of 1000 cycles

with random input vectors and noting the percentage of each signal state. We perform

two simulations, one for the ideal case, when all the signals are assumed to be error

free, and one with the erroneous signals included. It should be noted that we consider

the errors individually, in order to prevent each error’s effect from suppressing another.

The error model is assumed to be sporadic, that is, errors do not kick off every cycle,

but after certain intervals. For our case, we assume the errors to be manifested after a

hiatus of 100 cycles. The simulation performed is of total 1000 cycles, that is, a total of

50000 cycles for the 50 errors. Any discrepancy in the traced signal states is reported as

error. The metric used to measure error detection performance is Error Detection Ratio

(EDR), as defined in Equation 5–4.

We have applied our algorithms using a wide variety of total regions (m) and active

regions (k , k ≤ m). In this section, we summarize the results for three scenarios (each

having several subcases): 2 regions (both active and only one active), 3 regions (all

active, two active, and only one active), 4 regions (all active, three active, two active,

and only one active). In each of these subcases, we present the average of all possible

scenarios. For example, in case of k = 1 and m = 2, the results show the average of

two possible scenarios: R1 is active or R2 is active. We compare the following three

approaches:

• GSS. This approach represents the existing techniques that focus on global signal
selection (GSS) without any knowledge of error zones or active regions, assumes
that the errors are uniformly distributed across the circuit. The signals are selected
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in an approach similar to [7]3 ; the only difference being that we have considered
error detection and not restoration during signal selection.

Trace Signals

Circuit

GSS
Trace Buffer

Figure 6-8. GSS

• EZ-GSS. We extend the existing methods with the knowledge of the error zones
to evaluate their effectiveness in handling error zones. We call this approach as
error-zone aware global signal selection (EZ-GSS). This is a static signal selection
assuming all zones are active.

EZ−GSS

Trace Buffer

Trace Signals

Error Zones

Circuit

Figure 6-9. EZ-GSS

• RSS+DST. Our approach is essentially a combination of region-aware signal
selection (RSS) and dynamic signal tracing (DST).

6.4.2 Results for Two Regions

For each of our experimental circuits, we created two regions each having one

error zone. In the first set of experiment, we assume both zones are active. In this case,

3 Although there are other similar techniques like [6, 24, 52] which can be considered
as GSS; none of them considers error detection (instead focuses on restoration ratio).
Moreover, these approaches do not take into account the presence of error zones and
the ones currently active. Therefore, none of these approaches are expected to provide
a significant performance. We have chosen one ([7]) from all these approaches as a
representative of GSS.
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Figure 6-10. RSS+DST

EZ-GSS and RSS+DST are same, since we have to consider both zones for signal

selection even during DST. The results are shown in Figure 6-11. As expected, our

approach performs better than GSS, with the maximum improvement being 1.75 times,

since our approach lays more emphasis on the error zones.
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Figure 6-11. Comparison of EDR performance when both regions are active

In the next experiment, we assume one of the two error zones are active at a

particular time. Now, we would like to compare the EDR performance of our three

approaches, GSS, EZ-GSS and RSS+DST. The results are shown in Figure 6-12.

GSS performs the worst among the three since it has no knowledge of where the error

is located or which region is active. EZ-GSS performs better than GSS but has no

knowledge of active regions. RSS+DST performs the best since it dynamically selects

signals with the complete knowledge of currently active error zones. The maximum

improvement obtained by our approach against GSS is almost 3 times.
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Figure 6-12. Comparison of EDR performance when only one region is active

We would now like to observe the performance of our approach on some real

circuits obtained from the Opencores [47] website. We choose three circuits for our

purpose, namely RS232 Uart, OPB Onewire and i2cslave. These will be referred to

as uart, one and slave respectively for further discussion. We synthesized these using

Synopsys Design Compiler to obtain the gate-level netlist from the RTL descriptions.

For each of these circuits, we consider two error regions of which one is active at a

time. The results are shown in Figure 6-13. As expected, for all three benchmarks, our

proposed methods EZ-GSS and RSS+DST performs much better than GSS. RSS+DST

performs best in all cases; however for one performance of EZ-GSS and RSS+DST are

similar. This is because of all the signals selected using RSS+DST, the ones which can

detect most of the errors are selected using EZ-GSS as well.

6.4.3 Results for Three Regions

In these experiments, we created three regions for each circuit. In the first

experiment, we assume only one of the three regions are active. The EDR performance

comparison is shown in Figure 6-14. The RSS+DST numbers are the average of three

possible scenarios of one active region in the circuit. Up to 3 times improvement is

obtained by our approach compared to GSS, while compared to EZ-GSS, RSS+DST

has a maximum improvement of 1.56.

98



!"#

$!"#

%!"#

&!"#

'()*# +,-## ./(0-#

12
3#

455# 167455# 3558259#

Figure 6-13. Comparison of EDR performance on the Opencores circuits
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Figure 6-14. Comparison of EDR performance when one region is active

In the next set of experiments, we compare when two of the three regions are

active. The results are shown in Figure 6-15. The RSS+DST numbers are the average

of three possible scenarios of two active regions in the circuit. RSS+DST performs the

best among the three approaches, with the maximum improvement obtained 2 times

(compared to GSS) and 1.3 times (compared to EZ-GSS).

6.4.4 Results for Four Regions

In this case, we create four regions in each circuit. In the first experiment, we would

like to compare when one among the four zones is active. The results are shown in
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Figure 6-15. Comparison of EDR performance when two regions are active

Figure 6-16. As expected, RSS+DST performs best with the maximum improvement

obtained 3.2 times compared to GSS.
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Figure 6-16. Comparison of EDR performance when one region is active

In the next experiment, we observe the EDR performance when 2 of the 4 zones

are active. The results are shown in Figure 6-17. RSS+DST performs up to 2 times

better in error detection compared to GSS and 1.4 times compared to EZ-GSS.

Finally, we assume that three out of the four zones are active and try to observe the

error detection performance. The results, shown in Figure 6-18, reveal that RSS+DST

performs better error detection than any of the other two approaches. Note that the

improvement is not as significant as in other scenarios. This is because when more
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Figure 6-17. Comparison of EDR performance when two regions are active

zones are active, GSS and EZ-GSS can deliver better results relative to RSS+DST

compared to when only few regions are active.
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Figure 6-18. Comparison of EDR performance when 3 regions are active

6.4.5 Hardware Overhead

We have developed a Verilog module that is parameterizable for m regions per

circuit and n trace signals. We have synthesized both our controller (that generates

selected signals for the MUXes) and the datapath (MUX structure) described in Section

6.3 using Synopsys Design Compiler with lsi 10k technology library. The controller

area corresponding to n = 32 and m = 4 (a reasonably realistic scenario) is 239µ. The

corresponding datapath area consisting of 32 multiplexers is 185µ. Therefore the total
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area for our design is 239+ 185 = 424µ. The trace buffer, which is an integral part

of post-silicon debug methodology would occupy much more area compared to the

controller. A typical trace buffer of 32× 1024 bits, when synthesized using the same

library is found to occupy an area of almost 60000µ, which is about 141 times more than

the controller area. We believe that the trace controller has acceptable (negligible) area

overhead considering that our approach can detect up to 3 times more errors compared

to state-of-the-art existing methods.

6.5 Summary

Existing trace signal selection techniques assume that errors are uniformly

distributed across the circuit. This assumption may not be valid in many practical

scenarios. During design time, our region-aware signal selection approach selects

beneficial signals for each region based on information regarding error zones. During

execution, our dynamic signal tracing controller enables designer to trace a different

set of signals based on regions that are relevant (active) during a certain duration. Our

experimental results demonstrated that our approach can detect significantly more (up

to 3 times) errors compared to existing approaches.
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CHAPTER 7
TRACE DATA COMPRESSION USING STATICALLY SELECTED DICTIONARY

During post-silicon debug, the traced signal states are stored in an on-chip trace

buffer. The trace buffer size dictates the amount of data that can be stored, and hence

directly affects the observability of the design. Since the trace buffer is used only

for debugging, it is better to keep its size as small as possible to reduce the overall

cost, area and energy requirements. An option to enhance the observability without

compromising on the debug overhead is to compress the trace data before storing them

in the trace buffer. We have proposed a lossless dictionary based width compression

scheme that operates in real-time to compress the trace data. Unlike [16], our method

chooses the dictionary offline, which provides a better compression performance as well

as huge reduction in compression architecture overhead. Three different compression

algorithms have been proposed to trade-off between compression performance and

architecture overhead.

We have used Compression Ratio, defined in Equation 7–1, as a metric to measure

the efficiency of a compression algorithm. A higher compression ratio implies a better

compression.

Compression Ratio =
Uncompresssed Data Size

Compressed Data Size
(7–1)

7.1 Trace Data Compression

The existing compression techniques compress the trace data by selecting a

dictionary dynamically during execution. This not only results in inferior compression

performance (due to non-optimal dictionary selection), but also increases the architecture

overhead. This section describes our trace data compression techniques. The overview

is shown in Figure 7-1.

Our approach is based on an important observation. In any post-silicon debug

environment, after the trace data is collected from the chip, it is validated by checking
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Figure 7-1. Overview of our trace compression procedure

with a set of ideal trace data, that is obtained from a golden model. Since very few

(2-5%) bugs actually remain to be tracked during the post-silicon debug phase, there

are a few cycles which produce erroneous values [14, 15], that are different from the

ideal ones. We utilize this information to design our approach. Since the difference

between the ideal and the actual trace data is very small, the same dictionary applicable

for ideal trace data compression can be reused for compression of the actual trace data.

This takes care of the two problems by providing a better compression performance,

and reducing the architecture overhead1 as well. These compressed data are then

read out through a channel to a debugger, where they are checked against the ideal

trace data. Any discrepancy in the trace data is reported as error. As can be seen from

our analysis in Section 7.1.3, introduction of 2-5% error in trace data results in 2-6%

penalty in compression performance, which is acceptable. It can be seen from the

discussions in Section 7.2, even with the introduction of errors, our technique provides

less compression penalty compared to the existing trace compression methods [16].

The remainder of this section describes our dictionary selection algorithms and also

performs a theoretical analysis of the maximum penalty possible when the dictionary

from the ideal trace data is used to compress the actual (potentially erroneous) trace

data.

1 no need to implement a dynamic dictionary selection algorithm.
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7.1.1 Dictionary Selection Algorithms

We have explored three compression algorithms for compression of the trace data,

namely Dictionary based compression (DC), Bitmask based compression (BMC) and

fixed Dictionary MBSTW (fMBSTW) based compression. All these three techniques use

a dictionary for compression. The dictionary selection is extremely vital since it would be

reused to compress the actual trace data. We will now describe how the dictionaries are

selected in order to achieve the maximum compression performance.

7.1.1.1 Dictionary-based compression (DC)

Algorithm 9 outlines the dictionary selection method. In a dictionary based

compression, the main aim is to include in the dictionary all the unique entries which

have maximum repetitions in the dataset. Therefore, the first step determines all the

unique entries in the dataset. We then find the number of repetitions for each entry.

The unique entries are sorted in a descending order of the number of repetitions. The

entries with the highest number of repetitions are included in the dictionary. Details on

dictionary selection for bitmask-based compression has been explained in [54, 55].

Algorithm 9: Dictionary selection algorithm for DC
M = Number of unique entries
N = Number of Dictionary Entries
DIC = Dictionary
for each entry in M do

Calculate the number of repetitions in the entire dataset
end for
Sort the M entries in decreasing order of repetition count
Include the first N entries in DIC

7.1.1.2 Bitmask-based compression (BMC)

The dictionary selection for bitmask based compression follows the same trend as

the dictionary based compression, that is, select dictionary entries giving the maximum

savings. However, there is a minor difference between the two. While savings for DC

corresponds to just the repetitions, for BMC it includes those due to bitmask based
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matchings as well. Hence, the savings for each unique entry should be calculated based

on the direct as well as bitmask based matches. The entries are then sorted in order of

savings and included in the dictionary. The dictionary selection algorithm is shown in

Algorithm 10.

Algorithm 10: Dictionary selection algorithm for BMC
M = Number of unique entries
N = Number of Dictionary Entries
DIC = Dictionary
for each entry in M do

Calculate the savings due to repetition and bitmask based matching in the entire
dataset

end for
Sort the M entries in decreasing order of total savings
Include the first N entries in DIC

7.1.1.3 Fixed dictionary MBSTW compression (fMBSTW)

The compression technique for fMBSTW algorithm follows the same technique as

MBSTW compression [16]. The difference from MBSTW is that the dictionary is selected

statically and the number of dictionary entries is limited. We would now explain the

dictionary selection steps for fMBSTW in Algorithm 11. This algorithm is shown for a

2-fMBSTW (2-strings are encoded together, similar to 2-MBSTW). This can be further

extended to 3-fMBSTW, where 3 strings are encoded together.

Figure 7-2 shows an illustrative example for dictionary selection using Algorithm

11. In this example, the strings in the trace data are represented using p,q, r ,s,t. The

amount of savings for each 2-tuple is shown in Figure 7-2. We want to have a dictionary

of size 4. As can be seen, the highest savings is obtained from the 2-tuple < r ,s >. Both

of these are now included in the dictionary. The last entry is s here. Now, we proceed to

see which 2-tuple with the first entry s has the maximum savings. < s,p > is selected as

the 2-tuple and included in the dictionary. When searching for the next 2-tuple, it is seen

that < p, r > gives the highest savings. However, r is already present in the dictionary.
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Algorithm 11: Dictionary selection algorithm for fMBSTW
M=No. of unique entries
N=No. of Dictionary Entries
DIC=Set of Dictionaries
first entry = last entry =NULL
Create a 2-tuple for each pair of entries in M
for each 2-tuple do

Calculate the savings across the entire dataset assuming only this tuple is in the
dictionary

end for
Find the 2-tuple with the highest savings and add it to DIC
first entry = first entry of 2-tuple
last entry = last entry of 2-tuple
N = 2
while Size of DIC less than N do

find the 2-tuple that starts with last entry and produces maximum savings
if such a 2-tuple exists then

Include the 2-tuple in DIC, N = N+1
else

Find any 2-tuple (not containing an entry already in DIC) which has the highest
savings and include it in DIC
last entry = last entry of the 2-tuple, N = N+2

end if
end while

Hence, < p, r > is avoided. The 2-tuple having the next highest savings is < p,t >.

Therefore, t is selected for the dictionary. In this way, the dictionary is built up.

7.1.2 Dynamic Trace Data Compression

Our final goal is to debug the DUT, for which we need the trace data from it.

Application of a set of tests produces the trace data from the DUT which are compressed

to reduce the size of the trace buffer. The overview of the compression architecture

is shown in Figure 7-3. As can be seen, the compression architecture consists

of two parts, the dictionary and the actual compression engine. Depending on

the design and associated constraints, a specific compression algorithm and its

corresponding dictionary is used. For example, when BMC is most suitable for a design,

the compression engine will have BMC in it and the dictionary will be the one selected
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for BMC. It should be noted, that the dictionary size is fixed here and not variable as in

the case of dynamic dictionary selection [16]. Actually, [16] tried to include every single

unique string in the dictionary. This increases the dictionary size, thereby introducing

significant architecture overhead and also degrades the compression performance

(since the number of bits used to index the dictionary increases with an increase in

dictionary size). Our approach eliminates these disadvantages by keeping a limited

number of profitable entries in the dictionary.

7.1.3 Performance Analysis with Erroneous Trace Data

Our approach is promising due to use of statically selected dictionary. However,

this dictionary will be used to compress actual (potentially erroneous) trace data. This

section analyzes our procedure and determines the performance degradation that

may occur when the dictionary obtained from ideal trace data is used to compress

the actual trace data. We have kept the trace data length constant at 32 bits. We

introduce a term compression penalty, which is the ratio of the number of extra bits

needed for compression when error is introduced, compared to the original trace data

length. Obviously, a lower compression penalty signifies less number of bits needed to

accommodate the error, and hence, a better compression performance.

Compression Penalty (CP) =
Number of extra bits needed

Size of original trace data
(7–2)

We first analyze the compression penalty for DC and BMC. Next, similar analysis is

performed for fMBSTW.

7.1.3.1 Compression penalty for DC and BMC

We try to obtain the compression penalties for the two methods DC and BMC. In

this section, we make two important observations.

Theorem 1. When statically selected dictionary (based on golden trace data) is

used, the compression penalty is bounded by the percentage of error introduced in the

actual trace data.
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Proof. Let there be x strings in the original trace data. Let the percentage of error in

case of actual trace data be l , expressed as a fraction (l < 1). The introduction of error

changes l × x strings. In the worst case, all these l × x strings will be among the strings

originally compressed, and these will now be uncompressed due to contamination. Let

the number of bits required to compress the rest (that is (1− l)× x strings) in the dataset

be M2 . It should be noted that these strings are not affected due to error injection and

hence, the value of M remains constant in both cases. Let the number of dictionary

entries be 2d , so that d bits are needed to represent the dictionary. The l × x strings

were compressed in the ideal case using (1+d) bits each. If yideal be the number of bits

after compression for the ideal trace data, it can be rewritten as,

yideal =M+ l × x × (1+d) (7–3)

Now, let’s analyze the actual trace data. In the worst case, all of the l × x strings

remain uncompressed. Each of these strings will require 33 bits3 to be represented.

The M bits required to represent the (1− l)× x strings will remain the same. If yfaulty is

the number of bits needed to represent the strings now, it can be represented as

yfaulty =M+ l × x × (33) (7–4)

which implies,

yfaulty = yideal + l × x × (32−d) (7–5)

Therefore, number of extra bits needed, represented as yextra, is

yextra = yfaulty − y ideal = l × x × (32−d) (7–6)

2 Some of the strings may be compressed, while the rest uncompressed

3 32 bits (original size), plus one bit to indicate not compressed
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If CPDC is the compression penalty for DC, then from the definition,

CPDC =
l × (32−d)

32
(7–7)

As can be seen CPDC is always less than l , and hence is bounded by it.

For example, with 8 dictionary entries, we have d=3, and assuming the error rate is

5%, (which is the maximum error rate in these scenarios [14, 15]), we get

CPDC = 4%

Thus, we see that a very slight compression penalty is introduced in DC even in the

worst case. It can be seen from Equation 7–7 that increase in dictionary size can lessen

this degradation.

Theorem 2. Compared to the ideal case (if dictionary was selected using

erroneous trace data), the compression penalty using statically selected dictionary

(using golden trace data) will be bounded by the twice the percentage of error.

Proof. We would like to see if the actual trace data were compressed without

the help of ideal dictionary, how much compression would be obtained. In this case,

the dictionary entries might differ from the ideal dictionary. If n is the extra number of

strings that can be compressed in the actual case and M is the number of strings that

were compressed in the ideal case, then the total number of strings compressed are

m+ n− l × x . It is obvious that the maximum value of n can be l × x , otherwise, these

new strings would have been compressed in case of ideal trace compression, that is,

these new strings would have been represented in the ideal dictionary. Therefore, the

maximum number of strings compressed is M, which is the same case as in golden

trace data.

As an example, consider a hypothetical trace data set of 20 entries. Suppose we

choose the best 2 entries in the dictionary, each of which can compress a total of 5

entries. Therefore the total number of compressed entries will be 10. Corresponding to
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the symbols described above, x=20, m=10 and d=2. Let the error rate be 10%, that is

l=0.1. When error is introduced, the number of strings contaminated is l × x , that is, 2. In

the worst case, both these strings were part of M and are now left uncompressed due to

errors. The number of compressed strings now are m− l × x , which is equal to 8. Now, if

we try to compress these erroneous data with a different set of dictionary, let the number

of extra strings being compressed be n. It is obvious that if n is greater than 2, the new

dictionary would have been selected in the first place, so that the value of M would be

different. So, the maximum value of n is bounded by l × x .

However, in the best case, these contaminated strings can be all compressed using

some other entry, which is not part of the dictionary now. Let us reiterate our previous

example to explain this. For example, all of the l × x contaminated entries can be

compressed using some other entry. Now, if that entry has high enough frequency, it will

be included in the dictionary. In this example, the maximum frequency (original, without

contamination) that an entry can have is 5; otherwise, it would have been included in the

original dictionary. Therefore, the maximum number of strings that can be compressed

with the new dictionary is m+ l × x , that is, 12 in this case. Hence, the maximum number

of strings that can be compressed extra using the dynamically selected dictionary is

(m+ l × x)− (m− l × x), that is, 2× l × x , which means the difference in compression

ratio should be 2× l . Therefore, the difference in compression efficiency between the

dictionary based on golden data and dictionary based on actual data, will be bounded by

twice the error rate in the data.

It can be noted that the analysis for BMC will be similar to DC. This is because,

even for BMC, the worst case comes when some strings which were completely

compressed (not using bitmasks) change to uncompressed due to error introduction.

7.1.3.2 Compression penalty for fMBSTW

To find the compression penalty, we analyze the worst case condition for 2-fMBSTW

here. The worst case scenario can be divided in two parts. The first part is similar to
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that of DC and BMC, that is, the worst part comes when some completely compressed

strings become uncompressed. The second part of the condition is explained as follows.

Suppose, two consecutive strings correspond to two consecutive dictionary entries a,b.

Therefore, all the two strings will be compressed using the 11 prefix, followed by the

dictionary entry corresponding to a. However, if either a or b gets contaminated by error,

in the worst case, one of them is uncompressed and the other one gets compressed

separately, which requires more bits to compress the trace data. We now investigate the

compression penalty in this approach.

Let the error rate and the number of strings be l and x as before. Let d be the

number of bits to represent the dictionary index. Therefore, the number of such strings

changed is l × x . Each of these string corresponds to a < a,b > tuple which is broken

due to perturbation. Before the introduction of error, the number of bits required to

compress these is given as yideal in Equation (7)

yideal = l × x × (2+d) (7–8)

Here, 2 bits are needed to represent the prefix 11 and d bits for the dictionary index of a.

After perturbation (of b), in the worst case, a is independently compressed as single bits

using the prefix 014 . Therefore, the number of bits needed to represent are (36+d)5 .

There will be l × x such occurances. Therefore, the total number of bits needed to

represent the erroneous tuples is given by yfaulty as

yfaulty = l × x × (36+d) (7–9)

4 as discussed in Section 7.1.1.3

5 (2 + d) + (2 + 32), where 2 + d bits are needed to compress a and 2 + 32 bits are
needed to represent the uncompressed string b
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As before, let M be the number of bits required to compress the other (1− l)× x strings.

Since M is unchanged in either case, the number of extra bits needed, is given by

yextra = yfaulty − yideal = l × x ×34 (7–10)

Therefore, the compression penalty is given by,

CPfMBSTW =
l ×34

32
(7–11)

With a 5% error rate we can see that,

CPfMBSTW = 5.31%

Thus, even with an introduction of 5% error, the compression penalty is small. These

analysis will be later verified with experimental results in Section 7.2.3.

7.2 Experiments

We have compared the compression performance of our approach with the

algorithms proposed by Anis et al. [16] (MBSTW and WDLZW). We have also

investigated our compression performance when the number of dictionary entries are

varied. We have shown that our methods require much less compression architecture

overhead compared to those in [16]. Finally, in Section 7.2.3, we have also analyzed

the effect of introduction of errors on compression ratio and validated the equations

developed in Section 7.1.3. We have applied all the algorithms on the 5 largest ISCAS

89 benchmarks.

7.2.1 Compression Performance

First, we compare the compression performance of our algorithms with the

algorithms in [16] using the traces obtained from ISCAS 89 benchmark circuits. The

traces were obtained by following the approach outlined in [7]. The results are reported

in Figure 7-4. We have fixed the dictionary entry to be 8 in each of the two compression
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algorithms, DC and BMC. For MBSTW, we have used the 2-MBSTW algorithm6 .

For the fMBSTW algorithm, the number of dictionary entries is floored to the nearest

integer which is a power of 2. It can be seen that the fMBSTW approach works best

in all cases except s38584. This is because the traces of s38584 have very less

number of unique entries. As a result, even with 8 dictionary entries, a large portion

of the circuit can be compressed using DC. DC works better than MBSTW in most

cases and worse only in some cases (s9234 and s35932). The reason for this is the

large number of unique entries in those trace data, which are effectively captured by

MBSTW, but not by the 8-entry dictionary used in DC. If the number of bits needed to

represent the compressed data is analyzed, it can be seen that fMBSTW provides up

to 60% reduction in compressed data size compared to MBSTW and 70% compared to

WDLZW. WDLZW provides worst performance for almost all the benchmarks. The high

redundancy in the trace dataset is responsible for its somewhat good performance in

s38584 and s38417.

Next, we vary the dictionary size of DC to see the effect on compression ratio. The

results are shown in Figure 7-5. We have varied the number of dictionary entries from

8, 16, 32 and 64. As can be seen from Figure 7-5, the variation is not uniform for all

the benchmarks. For s9234, s13207 and s35932, the compression ratio increases

with increase in dictionary entries. On the other hand, for s38584 and s38417,

increase in number of dictionary entries worsens the compression ratio and the optimal

compression is achieved at 8 dictionary entries. Once we reach an optimal compression

ratio, any increase in the number of dictionary entries will add to the total compressed

data size both due to the increased number of entries in the dictionaries and increase in

the number of bits representing the dictionary index.

6 Provides better performance than the 3-MBSTW algorithm
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7.2.2 BRAM Requirement (Hardware Overhead)

The dictionary for compression has to be stored in on-chip 32-bit BRAMs. We

have computed the total size of BRAMs needed for compression using each of these

algorithms. Figure 7-6 compares the requirements for each of these approaches. It can

be seen that since the dictionary size is always fixed (8 entries) for DC and BMC, the

number of BRAMs required in these two algorithms is significantly less than any other

approaches. WDLZW has the highest number of BRAM requirements since it captures

all the double symbol repetitions (which worsens the compression performance). For

fMBSTW, the number of BRAMs is kept floored to the nearest higher power of 2 for the

number of unique entries in the stream7 . From Figure 7-6, it can be seen that our two

methods (DC and BMC) provides almost 96% less compression architecture overhead

compared to MBSTW and almost 99% less than WDLZW.

It can be seen that there is a tradeoff between better compression ratio and lower

architecture overhead. As can be seen from Figure 7-4 and Figure 7-6, either of the two

techniques BMC or fMBSTW can be applied based on priority - BMC can be used for

least area overhead (up to 96% reduction) with reasonable compression improvement

(10%) compared to MBSTW, whereas fMBSTW should be used for best possible

compression (up to 60%) while providing reasonable (up to 84%) reduction in BRAM

requirement.

7.2.3 Compression Performance with Erroneous Trace Data

We now like to validate the analysis done in Section 7.1.3. Errors have been

inserted randomly at a rate of 2% to 10% in steps of 2% in the trace data, and the

same is compressed using DC, BMC and fMBSTW. Figure 7-7 shows the comparison

of compression penalty in DC with varying percentage of error. It can be seen that

the change in compression penalty complies with Equation 7–7 in Section 7.1.3. For

7 Results in Figure 7-4 are also reported using this configuration
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Figure 7-6. BRAM requirements

example, putting a value of l = 2% in Equation 7–7 will result in a compression penalty of

less than 2%, which matches in the figure for all the benchmarks. We have conducted

similar experiments for BMC based compression technique as well. The results in Figure

7-8 shows that the compression penalty also follows Equation 7–7.

Now, we would like to verify the last part of the discussion in Section 7.1.3, that is,

the change in compression penalty with error rate for fMBSTW. We have conducted

similar experiments and the results are shown in Figure 7-9.

An important observation here is that the change in penalty is sharper than the case

of Figure 7-7 or Figure 7-8. This is quite obvious as per the discussion in Section 7.1.3,

since in fMBSTW, 2 strings are affected when an error is introduced, whereas in DC or

BMC, only 1 string is affected.

Finally, we compare how the introduction of errors affect the compression

performance in cases of MBSTW and fMBSTW. The results are shown in Figure
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Figure 7-9. Comparison of compression penalty for fMBSTW

7-10. We have introduced 2% error for every benchmark’s trace data. It can be seen

that the compression penalty obtained using fMBSTW is always less than MBSTW, the

maximum difference being 4% for s38417. The reason for higher penalty in MBSTW is

that if error gets introduced early, MBSTW cannot benefit from a profitable sequence.

In summary, our approach (fMBSTW) will perform significantly better irrespective of the

percentage of errors in the dataset.

7.3 Summary

The trace buffer size is limited due to area/cost constraints. Trace data compression

schemes have been popular which deals with dynamic dictionary based compression

that enables to store more signal states using a fixed size trace buffer. We have

proposed a trace data compression technique, which employs a statically computed

dictionary. We have used three compression algorithms for compressing the trace

data. Our approaches can produce up to 60% better compression performance, and
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reduce the compression hardware overhead up to 84% compared to best-known existing

approaches.
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CHAPTER 8
OBSERVABILITY-AWARE DIRECTED TEST GENERATION

Two major problems governing efficient error detection are the quality of input tests

and selected trace signals. Chapters 3 - 6 primarily focused on improvement of signal

observability. However, in order to detect errors, it is equally important to consider the

controllability aspect of tests. During post-silicon validation, not all the primary outputs

of a design block are visible (since they may be internally connected to some other

components of the SoC design). Also, the number of primary outputs of a circuit is

typically larger than the trace buffer width, which determines the number of signal states

that can be stored per cycle. Hence, the primary outputs can not be used as observation

points. Existing methods [5–7] on signal selection assume that the input tests are always

random in nature. However, once the trace signals are known, Automatic Test Pattern

Generation (ATPG) tools can be used to generate efficient tests for error detection if the

probable error locations are available. In modern SoC design methodology, it is found

that regions where errors are detected during pre-silicon verification are more likely

to be erroneous during post-silicon validation. Therefore, the pre-silicon engineer can

provide information about the probable erroneous locations for post-silicon validation.

This information is extremely essential in determining the input tests as well as the trace

signals. The inter-dependence of input tests and trace signals is shown in Figure 8-1.

Signal Selection Aware
   Test Generation

Test Generation Aware
Signal Selection

Circuit

Fault List
    +

Figure 8-1. Outline of proposed technique
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Our proposed approach takes as input the circuit and the trace buffer width. If the

trace buffer width is n, our goal would be to select n best trace signals and determine

their corresponding test cases, so that error detection is maximized. As an input,

we also consider the probable erroneous locations in the circuit. This information is

provided by the pre-silicon engineer. In the first step, we run the ATPG tool considering

the primary outputs as observation points to obtain a set of directed tests for error

detection. Next, we use these tests to determine the profitable trace signals.

The ATPG tool is used to generate tests using the new trace signals as observation

points and obtain the fault coverage. This process is repeated, that is, the tests

generated are re-used to determine a new set of observation points (trace signals).

The ATPG tool is used to determine the fault coverage and produce new set of tests.

If the fault coverage does not improve, the old set of observation points are selected

for tracing and the corresponding tests as input tests. On the other hand, if the

improvement is significant, the entire process is repeated. This process continues

until the fault-coverage reaches 100% or does not improve in subsequent runs. The

framework of our proposed approach is shown in Figure 8-2.

Run ATPG tool
to generate tests

Select Trace Signals
Compute Fault Coverage

Fault
Coverage
Improved

?

Trace
Signals

Circuit
Trace Buffer

Error Locations

YN

Figure 8-2. Observability-aware test generation flow
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In this chapter, we consider test generation in the presence of electrical errors for

both soft errors and crosstalk fault. Section 8.1 describes our test-aware signal selection

technique. Section 8.2 presents our trace signal aware test generation approach.

8.1 Test-aware Signal Selection

Once the tests are determined using ATPG tool, the next set of trace signals

need to be determined to improve the error detection performance. In general, during

selection of trace signals, the input tests are assumed to be random. We would like

to look at a special case when the input test sets are known prior to signal selection.

Knowledge of input tests can be used to determine the signals very efficiently, specially,

when the main focus is error detection. Our signal selection procedure is presented in

Algorithm 12. The remainder of this section describes the three important steps of the

signal selection algorithm in detail.

Algorithm 12: Test aware signal selection
Input: Circuit, Trace Buffer Width, Test Set T
Output: Trace Signals
for Each Test Vector do

1: Simulate each fault in the circuit.
2: For each signal in the circuit, determine whether it can detect the fault.

end
3: Compute the error detection ability of each signal.
while Trace buffer width is not reached do

4: Find the signal with the highest Error Detection Ability and select it.
5: Remove overlap.

end
Return Selected trace signals.

8.1.1 Fault Simulation

The best way to know whether a fault can be detected using a particular observation

point and a test vector is to simulate the fault and notice the state of the observation

point. Since we already have the set of test vectors, the fault simulation is straightforward.

For each test vector, we first do a simulation without any error and observe the correct

states of the various signals. Now, we perform simulation for every fault with the same
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test vector. For each fault, the signal states of the circuits are observed. If they are

different from the ideal simulation, it is obvious that the fault is propagated to that signal.

This process is repeated for each test case and each fault. For example, if there are m

test vectors and n faults, there will be a total of m× n simulations. For each signal, we

note the faults that it can detect. This is recorded as a binary variable EPP. For example,

if in Figure 8-3, c can detect an error in a using any of the test vectors, EPPc,a = 1. On

the other hand, since d can never detect any error in a, EPPd ,a = 0.

a
b

c

d e

Figure 8-3. Example circuit

8.1.2 Error Detection Ability Computation

Error Detection Ability (EDA) of a node (signal) is a measure of the errors that a

particular node can detect. A node can only detect errors in its fan-in cone. For example,

if we consider Figure 8-3, any error in c can only propagate to e and not to a, b or d .

Therefore, the only nodes whose errors c can detect are a and b. EDA of a node is the

sum of all the errors that are detected using fault simulation.

EDAc = EPPc,a+EPPc,b (8–1)

It should be noted that a node can detect an error using multiple test cases, however,

it should be counted only once. We enforce this by ensuring that EPP is a Boolean

number. For example, if by simulating 2 test cases, c can detect a and b in both cases,

EDAc would be 2 and not 4. Once EDA value for each node is computed, the node with

the highest EDA value is selected for tracing. The next section describes how to remove

the overlap of already selected signals before determining the next profitable signal.
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8.1.3 Overlap Removal

This part of the signal selection algorithm is used to remove effects of already

selected signals and thus, select appropriate signals for improved error detection. In

order to explain this, let us again get back to Figure 8-3. Let us consider node c , which

is the first node to be selected for tracing. If EPPc,a = 1 and EPPc,b = 1, that is, the errors

in a and b can propagate to c , contributions of EPPe,a and EPPe,b should not be included

while computing EDAe . In this case,

EDAe = EPPe,c +EPPe,d (8–2)

Thus, overlapping nodes, whose contributions have already been accounted for, should

not be taken into account when computing the EDA value of a node. The process of

overlap removal and signal selection continues until the trace buffer is full.

8.2 Trace Signal Aware Test Generation

Once the set of selected signals are known, the next step would be to generate

another set of tests based on these signals that can maximize the error detection

ability. The ATPG tool is used for this purpose. We used ATALANTA as an ATPG tool

that generates tests depending on the fault list and considering the output nodes as

observation points. In order to generate tests based on the selected trace signals, we

modify the netlist to replace the trace signals as observation points. The ATPG engine

will generate the tests assuming the trace signals as the observation points. The fault

coverage using these new set of tests is computed. If they do not improve, the set of

selected signals are reported as trace signals. The tests generated using the ATPG tool

are used as directed input tests. Otherwise, the process in Section 8.1 is repeated.

8.2.1 Soft Errors and Faults

Soft errors are caused due to ionizing radiations from radioactive impurities present

in a chip during manufacture. These may result in ionizing radiations like alpha-particles.

When these alpha particles come in contact with a semiconductor, their kinetic energy
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gets converted to electrical energy [56], which results in creation of a large number

of free electrons and holes. This leads to a creation of an inversion layer as well as a

voltage glitch on the affected transistor. If the glitch is of sufficient magnitude, a faulty

logic value is introduced temporarily on a node in the circuit. This is known as Single

Event Transient (SET). If the faulty value is propagated to a primary output, the event is

known as Single Event Upset (SEU). We try to generate directed tests to detect all SETs

resulting in possible SEUs.

Traditionally, soft errors are assumed to affect memory elements since they contain

the maximum density of bits susceptible to soft errors. Various mechanisms have

been developed to protect the memory elements using Error Correcting Codes (ECC).

However, with decrease in feature size and increase in design complexity, combinational

circuits are equally vulnerable to soft-errors [31]. Protection of combinational elements

is more expensive in terms of chip area, power and performance issues compared to

memory elements. Hence, it is important that faults in combinational circuits due to soft

errors are detected early. A soft-error may be masked inherently (that is, not propagated

along the circuit) due to the following factors.

• Logical Masking. This occurs when a particle hits an input of a gate, and one
of the other inputs have a controlling value. In this case, the controlling input will
dominate the propagated value and hence, the erroneous value introduced by the
soft-error will never be propagated. Let us consider the example circuit in Figure
8-3. Let a soft-error affect the node a of the circuit. Here, a is an input to an AND
gate whose other input is b and output is c . Now, when the error is introduced at a,
if the value of b is 0, that is, if b is the controlling input of the AND gate, the error
value will never get propagated to the output c . Thus, the error will be masked.

• Electrical Masking. If the error introduced due to a particle strike is suppressed
by electrical properties of subsequent logic gates, it will never reach an output and
hence is masked.

• Latching-Window Masking. If the error reaches a latch at a cycle when the latch
is not accepting its input value, it will never propagate through the latch and hence
will be masked.
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These masking effects result in lower soft-error rates in combinational circuits compared

to memory elements. However, with decrease in feature size, transistors become faster

and hence, electrical masking is reduced. Also with deeper pipeline, processor clock

rates increase, with a subsequent increase in sampling rate of latches. As a result,

effect of Latching-Window masking also decreases. Therefore, effect of soft-errors on

combinational circuits have become more prominent these days.

The error model that is used for modeling soft-errors is a simple stuck-at fault

model. The nodes affected by radiations get stuck at certain fixed values depending on

the amount of free electrons or holes created. The effect of soft errors on a node value

depends on the following factors:

• Output Capacitance. A weaker node capacitance allows it to store less charge
and hence faster discharge. Therefore, the node is more susceptible to soft errors.

• Pull-up network. If a node has weak pull-up network, its logic 1 value can be
easily changed to logic 0 by SET , thus leading to a stuck-at-0 fault.

• Pull-down network. If a node has a weak pull-down network, its logic 0 value can
be flipped to logic 1 by SET , thus, leading to a stuck-at-1 fault.

Detection of soft errors require generation of test cases that would activate the

particular errors and propagate them to the primary outputs of the circuit. As discussed

before, during post-silicon validation, not all the primary outputs of a block may be visible

since only some of the internal signals of the chip are traced. Therefore, in order to

properly detect the faults, the erroneous values should propagate towards the traced

signals and not to the primary outputs. The test generation problem should focus on

generating a set of test cases that would activate and propagate a maximal number of

soft errors (if possible, all of them) to the observation points, that is, the trace signals.
Let us consider the example in Figure 8-4 to explain the test generation problem for

soft errors. The two error points are P and Q, where the errors can be represented as

s − a− 0 and s − a− 1, respectively. We would like to generate tests that would activate

them as well as propagate them to the primary outputs. The 5 input signals are named
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a

b

c

d

e

s−a−0

P

s−a−1
Q

Figure 8-4. Example circuit illustrating test generation for soft errors

a,b,c ,d and e. To detect the s−a−0 fault at P, the input tests should be < 1,1,1,1,X >

whereas the test required to detect the s − a− 1 fault at Q, the input tests should be

< 1,1,1,1,0 >. Therefore, the test that can detect both faults is < 1,1,1,1,0 >. ATPG

algorithms can be designed to generate tests that would detect these faults.

Algorithm 13 describes our test generation procedure for soft-errors. In the first

step, we identify all the internal signals (gate signals and fan-out branches) in the zone.

For each of these signals, we perform test generation for s − a− 0 and s − a− 1 faults

using ATPG.

Algorithm 13: Test generation for soft error detection
Input: Circuit, Trace signals, Soft-error affected zone Z
Output: Test set to detect the faults
1: Find the signals corresponding to Z .
Signals corresponding to nodes as well as fan-out signals.
2: Create a fault list with stuck-at-0 and stuck-at-1 at each node.
3: Use ATPG to generate tests for these faults.
Use the trace signals as observation points.
Return the set of tests.

We developed a simulator to check whether the tests developed could actually

excite and propagate the errors. As an ATPG tool, we use ATALANTA, which was

developed at the CAD lab at Virginia Tech. ATALANTA takes as input the circuit as a
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netlist and the fault list, and generates test sets that would help detect the errors. It also

gives an estimate of the percentage of faults that are covered. If the signals to be traced

are already known and we want to detect the faults at only those points and not at the

primary outputs, we would have to modify the netlist. ATALANTA will always force the

errors to propagate towards the primary outputs. Hence, it is necessary to replace the

primary outputs in the netlist with the trace signals. ATALANTA would now be able to

generate tests that propagate the errors towards the trace signals.

8.2.2 Crosstalk Faults

Crosstalk faults are caused by parasitic coupling capacitances between adjacent

lines in a chip [40]. With decrease in feature size, effect of coupling capacitances and

hence, crosstalk faults become more prominent, thus leading to signal integrity problems

[43]. Crosstalk faults are caused when the coupling capacitance between two lines

exceed a certain threshold. In such a case, if there are transitions on either or both the

lines, the transition on one will influence the other and hence, the voltage levels change

causing either a delay or a glitch. The line whose voltage level changes is known as

victim, while the line which changes the voltage level is called aggressor. We will explain

crosstalk glitches and delays using the example circuit in Figure 8-5 which has 5 lines

(signals), namely a,b,c ,d and e. Let us assume the coupling capacitances between

lines c and d exceed the threshold so that they can act as probable aggressor-victim

pairs.

e

a

b d
c

Figure 8-5. Example circuit illustrating crosstalk faults

During crosstalk glitch, the victim line stays at a static state, while the aggressor

undergoes a transition. If the transition effect is opposite to the state of the victim, a
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glitch is created. For example, if the victim is at a state of 0, while the aggressor has a

positive transition, a positive glitch is formed on the victim line. Similarly, if the victim line

is in a state of 1 and a negative transition is formed on the aggressor line, a negative

glitch is created. Figure 8-5 has been redrawn in Figure 8-6A to show that when line c

is in a steady state and line d transits, a positive glitch on line c is formed as shown in

Figure 8-6B.

a

b

c
d e

A – Source of crosstalk glitch

a

b

c
d e

B – Crosstalk glitch

Figure 8-6. Positive glitch on c

On the other hand, delays are created when both aggressor and the victim undergo

transition. If the transitions are in the same direction, the overall delay is reduced. If the

transitions are in opposite direction, the signal propagation delay is increased. Figure

8-7B shows a positive delay on line c due to transitions on both lines c and d ( Figure

8-7A).

It should be noted that both the transitions need to be simultaneous in order for

the delay to take effect. As can be seen in Figure 8-8, if the two transitions are not

simultaneous, there will not be any delay.

The effect of crosstalk fault, that is, delay or glitch will be propagated to fan-out

gates. In case of sequential circuits, if the glitch duration or delay is less than the clock
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A Source of crosstalk delay
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d e

B Crosstalk delay

Figure 8-7. Positive delay on c

a

b

c
d e

Figure 8-8. Non-simultaneous transitions

frequency, it gets suppressed. However, for combinational circuits, the effects get

propagated to the outputs.

The test generation algorithm for crosstalk faults is shown in Algorithm 14. The

first step of the algorithm is to find all the aggressor-victim pairs by observing their

coupling capacitances. In this case, we consider single aggressor-single victim pairs

only. However, the algorithm can be extended to multiple aggressors as well. Information

on coupling capacitances is obtained from the layout information of the chip. Once we
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have identified all the pairs, the next step would be to generate tests that would provide

transitions on either or both the lines depending on the desired type of crosstalk effect.

Algorithm 14: Test generation for crosstalk fault detection
Input: Circuit, list of coupling capacitances, threshold
Output: Test set to detect the faults
1: Find all the pair of lines that contribute to crosstalk faults.
2: Duplicate the circuit.
3: Use ATPG to generate tests for these faults.
Return Test set.

We now explain our algorithm using crosstalk delay, that is, transitions should be

present on both lines. Crosstalk glitches can be explained in a similar way. Duplication

of circuit is needed to create transitions on both aggressor and victim. For a combinational

circuit, which does not have a clock signal, in order to emulate a transition, we need to

make sure that the signals on a particular line change in two adjacent time units.

Let us consider the example circuit in Figure 8-5. Suppose, lines c and d have been

identified as crosstalk pairs. We would like to generate two sets of tests, such that they

fire transitions on both these lines. If we want to observe the effect of crosstalk glitch,

transition should be enabled on only one line. In order to generate the transitions, we

have duplicated the circuit in Figure 8-9. Corresponding to each signal in Figure 8-5,

there is a corresponding signal in Figure 8-9. For example, signal a in Figure 8-5 will

be duplicated as a′ in Figure 8-9. Thus all the inputs are duplicated as well. The ATPG

is used to generate the tests for this duplicated circuit; hence, it generates 2 tests for

the original circuit, one corresponding to each set of inputs. In this example, the inputs

to a,b,c will correspond to the test in the first time frame, while inputs to a′,b′,c ′ will

correspond to test in the second time frame. Thus, in order to generate a transition at

line c in Figure 8-5, the inputs to c and c ′ should be different in Figure 8-9. This can

be forced by connecting an exclusive-or gate, whose two inputs are c and c ′. Since

an exclusive-or gate will be 1 only when the two inputs are different, this ensures a

transition in line c in Figure 8-5. Similarly, d and d ′ in Figure 8-9 are input to another
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exclusive-or gate, thus, forcing a transition in d in Figure 8-5. We want to generate test

cases that would provide transitions on both lines. This is ensured by connecting an

AND gate at the output of the two XOR gates.

The ATPG is then used to generate tests so that the output o of the AND gate is 1.

This ensures transition on both lines. The ATPG tool can be run assuming the point o

is s − a− 0. In this case, the ATPG tool will generate test to force o to be 1, and hence

ensure a transition on both lines.

a’

c’

d’

o

a

c

d
e

b’

b

e’

Figure 8-9. Duplicated circuit

We want the delay at the victim to be propagated to the output. In order to ensure

that, o is connected to the fan-out branch of the victim and thus propagated to an

observation point, or primary output. For example, if d (or d ′) is the victim line in Figure

8-9, which incurs some delay, we add o to the fan-out cone of d ′, in order to ensure

that the delay in d in Figure 8-5 actually gets propagated to a primary output e (e′ in

this case). The modified circuit is shown in Figure 8-10. If we have trace signals, the

observation points (trace signals) are enabled such that the ATPG generates tests which

propagate the delay to these trace signals. Similar test-generation procedure can be

applied for crosstalk glitches, in which case, the transition should be only along the

aggressors.
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Figure 8-10. Modified circuit

8.3 Experiments

We have applied our proposed approach on the ISCAS ’85 combinational

benchmarks. For the first set of experiments, soft errors are the only electrical errors

considered present in the circuits. For each experiment, we applied 250 errors for each

circuit. Random nodes are selected as error points. The ATPG tool, ATALANTA is used

to generate directed tests in order to detect those faults.

An analysis of the memory requirement for our test generation algorithm described

in Section 8.2 is shown in Table 8-1. The first column gives the name of the benchmarks

while the second column provides the memory requirement to generate the directed

tests in Kbyte. The third column indicates the size of each benchmark in KByte. The last

column presents the number of reduced test sets.

Table 8-1. Memory requirement for test

Circuit Memory Size Reduced
Requirement (KB) (KB) Tests

c7552 27136 81317 29
c6288 18640 55155 10
c5315 15894 55298 26
c3540 23683 36632 45
c2670 33947 29601 33

We compare the performance of our test-aware signal selection algorithm with the

standard profile based signal selection algorithm, where the inputs are all assumed
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to be random. A set of 250 points are selected in each circuit as potential erroneous

regions. A simulation of 1000 cycles is run assuming no error is present. The input

to the circuit is fed with the test sets generated by ATALANTA. Then, for each error,

another set of 1000 simulations are performed assuming the error is present in the

circuit. If any of the traced signal states during this simulation is different from the perfect

simulation, an error is said to be detected. The Error Detection Ratio (EDR1 ), is chosen

for comparing error detection performance. The comparison of EDR for 5 of the largest

ISCAS ’85 benchmarks is shown in Figure 8-11. The proposed method column refers

to our proposed test-aware signal selection algorithm. On the other hand, the profile

based column refers to standard profile-based trace signal selection algorithm. It should

be noted that to make a fair comparison, we have used the same set of tests in both

scenarios. In profile-based case, the primary outputs are used as observation points.

As can be seen in Figure 8-11, our proposed method performs consistently better

than the profile-based signal selection algorithm, with maximum improvement being 57%

for c5315. This is as expected, since our algorithm uses tests as inputs to select signals,

which gives a better insight during error propagation probability computation, and hence,

subsequent selection of trace signals to detect errors.
We would like to observe the variation of EDR with trace buffer width for soft

error detection. The trace buffer width has been increased in steps of 16, 32 and 64,

respectively. The results are shown in Figure 8-12. For most cases, except c5315, 100%

EDR is reached when trace buffer width is 32.

Next, we investigate how our proposed approach described in Figure 8-2 converges

for the 5 benchmarks. The results are presented in Table 8-2. For each of the benchmark,

we choose a trace buffer of size 32. The error set remains the same (250 soft errors that

we considered in this section). The first column gives the circuit name. The second

1 Defined earlier in Equation 5–4.
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Figure 8-11. Comparison of signal selection methods for soft errors

column presents the number of runs needed to converge, that is the number of times

the signal selection and test generation procedures are executed in Figure 8-1. The

last column refers to the final coverage obtained using directed tests. It can be seen

that for most benchmarks, two runs are sufficient to reach a steady state for both tests

and selected signals. This proves the efficiency of our test aware signal selection

algorithm, which selects the trace signals wisely so that the fault coverage reaches

100% within two iterations. The ATPG tool generated directed tests that enable the

errors to propagate towards the trace signals. On the other hand, existing trace signal

selection algorithms rely on random inputs as test. Hence, they provide significantly

lower fault coverage as shown in Figure 8-11.

Now, we would like to observe the performance of our test-generation algorithm

for crosstalk faults described in Section 8.2.2. Similar to Figure 8-11, we have used

the 5 largest ISCAS ’85 benchmarks. The test generation algorithm for crosstalk

faults described in Algorithm 14 is extremely time consuming as it requires manual

modification of the circuit in order to insert the additional AND and XOR gates
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Figure 8-12. Variation of EDR with trace buffer width for soft error detection

Table 8-2. Fault coverage in case of soft errors

Circuit Number of Runs Final Coverage
c7552 2 100%
c6288 2 100%
c5315 3 99.2%
c3540 2 100%
c2670 2 100%

described in Figure 8-10. Hence, we reduced the number of faults from 250 to 10.

Similarly, the trace buffer width is also reduced to 4 instead of 32, that is, in this case,

4 signals will be stored every cycle. In order to make fair comparison, the same

experiment is repeated for profile-based signal selection technique using the same

set of parameters. The results are shown in Figure 8-13. As can be seen, our proposed

method provides significant improvement over the profile-based technique, with the

maximum improvement being 100% for c3540. The performance of the profile-based

method is seen to be degraded compared to soft errors as seen in Figure 8-11. The

reason behind this is the limited number of errors chosen (10). These comprise of less

than 1% of the total number of signals in the design. Hence, using the profile-based
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method with limited number of trace signals (4), it will be extremely difficult to capture

the faults.
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Figure 8-13. Comparison of signal selection methods for crosstalk faults

Similar to Table 8-2 for soft errors, we want to see how fast the loop in Figure

8-2 can converge in case of crosstalk faults. The parameters remain the same as in

Figure 8-13, that is, 10 error points with trace buffer of width 4. The results are shown in

Table 8-3. Similar to soft errors, it can be seen that 2-3 runs are sufficient for obtaining

the maximum coverage possible. This proves the efficiency of our test generation

techniques and test-aware signal selection algorithms for crosstalk faults.

Table 8-3. Coverage of crosstalk faults

Circuit Number of Runs Final Coverage
c7552 2 60%
c6288 3 100%
c5315 2 60%
c3540 2 100%
c2670 3 90%
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8.4 Summary

Limited observability is a major bottleneck in detecting errors during post-silicon

validation and debug. In this chapter, we have proposed an efficient observability-aware

directed test generation technique that selects efficient observation points and

generates corresponding test sets to improve detection of electrical errors. We have

implemented our approach using ATLANTA ATPG tool and applied on ISCAS ’85

benchmarks. Up to two times improvement in error detection has been observed

compared to the existing signal selection approaches.

140



CHAPTER 9
CONCLUSIONS AND FUTURE WORK

Post-silicon validation is an important component of modern chip design methodology.

Limited observability is a major concern during post-silicon debug. This dissertation

proposed efficient techniques to enhance the observability during post-silicon debug

to reduce overall validation effort. This chapter concludes this dissertation and outlines

future research directions.

9.1 Conclusions

Due to dramatic increase in design complexity and decrease in time-to-market

window, a lot of bugs escape the pre-silicon verification phase and get manifested

during the normal operation of the chip. Post-silicon validation is used to detect these

bugs before a chip is delivered to the customer. A major challenge during post-silicon

validation is the limited observability of on-chip signals. Some recent techniques help

to trace some of the internal signal states and store them in an on-chip trace buffer for

future debug. The size of the trace-buffer determines the signal states that can be stored

and hence, provides a constraint on signal observability. To improve observability, this

dissertation made several important contributions as summarized below.

In Chapter 3, we developed efficient techniques to select trace signals in order

to improve the restoration of the untraced signals. Existing approaches use a partial

restorability based signal selection techniques, that are inferior both in terms of

restoration ratio and signal selection time. We have proposed a total restorability based

signal selection algorithm that provides up to 3 times better restoration performance

while reducing the signal selection time by an order-of-magnitude. We have further

proposed an RTL-level signal selection algorithm that reduces the memory and time

overhead considerably with minor impact on the restoration performance.

In Chapter 4, we proposed a combined trace and scan based approach to

improve signal restoration. Scan based debug mechanisms have been used in
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manufacturing-testing domain for a long time. While trace signals provide a good

temporal visibility, scan signals can improve the spatial observability. We have provided

an efficient combination of both in order to improve the overall observability along both

directions. Our proposed technique provides up to 17% better restoration compared to

existing trace-scan combined approaches.

The existing signal selection techniques focus on improving the overall signal

restoration in the circuit. However, restoration may not be directly related to detection

of errors in the circuit; since errors move only along the fan-out cone of a signal, while

restoration can proceed in both directions. In Chapter 5, we have proposed a signal

selection technique that helps in detecting errors across the circuit. While previous

approaches primarily rely on statically selected signals, Chapter 6 presents a dynamic

signal selection technique that would be beneficial in a wide variety of scenarios

including when only a set of regions in a design is important from debug perspective.

Our proposed technique selects signals dynamically depending on the currently active

regions in the circuit as well as the probable error locations. Experimental results

demonstrate that our proposed method can detect up to 3 times more errors compared

to static signal selection approaches.

The trace buffer size constraints the number of signals that can be stored during

post-silicon debug. If the trace data are compressed before storing in the trace buffer,

larger number of signal states can be stored using the same trace buffer size. Existing

trace signal compression algorithms relied on dynamic dictionary generation which

may not select the best dictionary entries, and hence, may provide a poor compression

performance. In Chapter 7, we have proposed a dynamic compression algorithm based

on static dictionary, which improves the restoration performance and reduces the

hardware overhead associated with it. Our proposed technique can provide up to 60%

improvement in restoration performance, while reducing the hardware overhead by 84%

compared to existing techniques.
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In Chapter 8, we have proposed an efficient observability-aware test generation

framework to improve both the controllability and observability during post-silicon

validation. We have developed a test generation technique based on the observation

points (trace signals). Based on the generated tests, we refine our selected set of

observation points in order to enhance the overall error detection capability. We made

two important contributions: i) trace signal selection based on input tests, and ii) test

generation based on the selected signals. Our proposed method is found to provide

significant improvement in error detection performance.

9.2 Future Research Directions

Post-silicon validation has emerged as an important concern in any chip design

methodology. It is expected that various aspects of post-silicon validation and debug will

continue to be challenging research problems in the development of future SoC designs.

The research proposed in this dissertation can be extended in the following directions:

The proposed signal selection approaches considered designs with single clock

domain and no gated clocks. However, actual circuits may have mutiple clock domains,

with some of the clocks being derived from the signals in the circuit. The signal selection

algorithms presented in this dissertation can be extended to accomodate these factors.

Specifically, in case of circuits with gated clocks, some signals should be selected in

order to reconstruct the derived clocks. Another underlying assumption of the proposed

approaches is that there are only flip-flops and no latches. Flip-flops change their states

only when transitions occur, while latches can change whenever a particular condition

is reached. In other words, flip-flops are edge-trigerred while latches are level-trigerred.

Proposed approaches can be extended to include the effect of latches and hence select

the signals appropriately.

We have seen that signal selection at RTL-level reduces the time and memory

overhead compared to gate-level signal selection. The overhead can possibly be

further reduced by performing the signal selection at higher abstraction level, for
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example, at TLM (Transaction Level Model) level [57]. However, signal selection at

higher abstraction level comes with the additional penalty of possible degradation in

restoration performance. The signal selection algorithms should be modified in order to

incur minimum penalty in overall restoration.

The signal selection algorithms presented in this dissertation, whether for

restoration or error detection, assumed an empty trace buffer; that is, even the first

signal to be traced has to be determined. It may be possible that the design engineer

provides the validation engineer a set of signals that needs to be traced every cycle.

These can be some important control signals, or signals which are highly prone to

errors. The signal selection algorithms need to be modified to utilize the information

about the signals already provided in order to select the subsequent signals for the trace

buffer.

The observation-aware test generation method described in Chapter 8 deals with

electrical errors. However, logical errors are also equally important during post-silicon

validation. It is therefore necessary to develop similar test generation strategies for

logical and functional errors. The approach proposed in Chapter 8 can be modified

to include logical errors. A generic high-level test-generation framework needs to be

developed that can take into account different types of errors and faults described in

Section 1.1.

The trace data in Figure 1-2 is transferred from the logic to the trace buffer via a

set of interconnection fabrics. These fabrics are extremely expensive in nature. Since

they do not directly contribute to the functionality of the chip except validation, their

cost should be kept at minimum. Efficient signal selection algorithms can be used to

reduce the cost of these fabrics. Knowledge of the trace signals as well as the layout

information of the chip can help us develop efficient routing algorithms to minimize the

cost of data transfer to the trace buffer.
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