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Abstract—Growing reliance on reusable hardware Intellectual
Property (IP) blocks, severely affects the security and trust-
worthiness of System-on-Chips (SoCs) since untrusted third-
party vendors may deliberately insert malicious components
to incorporate undesired functionality. Malicious implants may
also work as hidden backdoor and leak protected information.
In this paper, we propose an automated approach to identify
untrustworthy IPs and localize malicious functional modifications
(if any). The technique is based on extracting polynomials
from gate-level implementation of the untrustworthy IP and
comparing them with specification polynomials. The proposed
approach is applicable when the specification is available. Our
approach is scalable due to manipulation of polynomials instead
of BDD-based analysis used in traditional equivalence checking
techniques. Experimental results using Trust-HUB benchmarks
demonstrate that our approach improves both localization and
test generation efficiency by several orders of magnitude com-
pared to the state-of-the-art Trojan detection techniques.

I. INTRODUCTION

Intellectual Property (IP) outsourcing is a widely used prac-
tice in System-on-Chip (SoC) design methodology to reduce
the time to market and overall cost. However, it raises major
security risks as the attacker can embed malicious components
in third-party IPs. Such malicious components, widely known
as hardware Trojans, may affect the correct behavior and
defeat the trustworthiness of the design by leaking protected
information such as secret keys. Hardware Trojans consist of
two parts: a trigger and a payload. The trigger is a set of
conditions such that their activation deviates the desired func-
tionality from the specification and their effects are propagated
through the payload. The adversary designs trigger conditions
such that they are satisfied in very rare situations and usually
after long hours of operation [1]. Conventional structural and
functional testing methods are not effective to activate trigger
conditions since there are many possible Trojans and it is not
feasible to construct a fault models for each of them. As a
result, existing EDA tools are incapable of detecting hardware
Trojans and differentiating between trustworthy third-party IPs
and untrustworthy ones.

There has been a lot of research on hardware Trojan
detection using logic testing and side channel analysis [1],
[2], [3]. Logic testing focuses on generating efficient tests to
activate a Trojan and check the primary output values of spec-
ification and circuit-under-test to detect Trojan. Side channel
analysis focuses on the difference of the side-channel signature
between the golden circuit and Trojan infected circuit. These
two types of methods answer the question of whether a circuit
is infected with Trojan, but they cannot identify the location of
the Trojan. Approaches based on structural/functional analysis
[4], [5], [6], [7] have been proposed to identify/localize the
malicious logic. Unused Circuit Identification (UCI) [4] finds
for unused portions in the circuit and flag them as malicious.
Sturton et al. show that many other types of malicious circuits
can evade the detection of the UCI algorithm [8]. The FANCI
approach [5] was proposed to flag suspicious nodes based on
the concept of control values. However, FANCI flags about

Fig. 1: The proposed hardware Trojan localization flow

1-8% of all nodes, which might be too many suspicious
candidates for experts to analyze for a large circuit. Moreover,
FANCI returns a set of suspicious nodes even when the circuit
is Trojan free. A recent work by Oya et al. [6] manually
crafted templates for Trojans and was successful in using these
templates to identify Trojans in TrustHUB benchmarks [9].
Unfortunately, this approach is applicable only for specific
types of Trojans, therefore, it is not suitable to detect other
types of Trojans that are not covered by their templates.

In order to address the above mentioned challenges, we
propose a design-time formal method to localize and activate
Trojans between two versions of a design. Suppose that we
have a golden model of a design (specification), and a modified
version (implementation) of it (after performing some non-
functional changes such as doing synthesis, adding clock trees,
scan chain insertion etc.). We would like to make sure that
there is no hardware Trojan inserted to the design during
the non-functional changes. In other words, our goal is to
make sure that two versions of a design are functionally
equivalent (nothing more, nothing less) and an adversary
cannot hide hard-to-detect malicious modifications during
design transformations. Our approach is scalable since it uses
polynomial based manipulation instead of Binary Decision
Diagrams (BDD [10]).

We propose a formal method based on symbolic algebra
to detect potentially malicious modifications in the imple-
mentation. Our method is based on extraction of functional
polynomial [11] from gate-level IPs. Figure 1 presents the
overview of our proposed methodology. We extract a set
of polynomials from the specification (S). We also derive a
set of polynomials (I) from the implementation. Finally, we
check the equivalency between two sets S and I based on
Gröbner Basis Reduction. Each of the polynomials from the
specification fspeci is reduced over a set of corresponding
polynomials I and a set of remainders R is generated. From



symbolic computer algebra, it is known that when ri = 0,
gates in Rg ((set of gates that contribute in reduction of
polynomial fspeci is called region Rg)) have successfully
implemented fspeci and it guarantees that all gates in Rg are
safe [12]. Any (ri 6= 0) ∈ R shows a suspicious functionality
in the corresponding region Rg and all of the gates in Rg
are suspicious candidates. The malicious nodes can be pruned
by removing the safe gates from the suspicious candidates.
When all of ri’s are equal to zero, the implementation is
Trojan free. The proposed method can recognize the Trojan-
free implementation from the Trojan-inserted one. Our method
reports a few gates to indicate the presence of a malicious
activity (change of functionality) in the implementation. Since
the number of malicious gates is very small, our approach
is amenable for an exhaustive test generation to activate the
Trojan. Our method is applied on Trust-HUB benchmarks [9]
and the experimental results show the effectiveness of our
approach compared to existing methods.

The remainder of the paper is organized as follows. We dis-
cuss related work in Section II. Section III gives an overview
of equivalence checking using polynomials. Section IV dis-
cusses our framework for hardware Trojan localization and
detection. Section V presents our experimental results. Finally,
Section VI concludes the paper.

II. RELATED WORK

To detect a Trojan with logic testing, the test should not only
be able to satisfy the trigger condition to activate the Trojan,
but it should also be able to propagate the Trojan payload to
primary (observable) outputs. Based on the fact that the trigger
condition usually has extremely low probability, the traditional
Automatic Test Pattern Generation (ATPG) based method for
functional testing cannot fulfill the task of Trojan activation
and detection. Bhunia et al. [1] proposed the multiple exci-
tation of rare occurrence (MERO) approach to generate more
effective tests to increase the probability to trigger the Trojan.
Recent work by Saha et al. [13] improved MERO to get higher
detection coverage by identifying possible payload nodes.
They used genetic algorithm to assist ATPG to generate high
quality tests which can propagate the possible payload values
to primary outputs. However, test generation does not have the
capability of localizing a Trojan to find malicious gates. Side
channel analysis focuses on the side channel signatures of the
circuit [2], [3], which avoids the limitations (low trigger prob-
ability and propagation of payload) of logic testing. However,
the abnormality in side channel signatures for Trojan circuit is
sensitive to measurement noise and process variation, which
makes side channel analysis not effective on large circuits.
Narasimhan et al. [15] proposed the temporal self-referencing
approach on large sequential circuits. Recently, Yuanwen et
al. [14] proposed the multiple excitation of rare switching
(MERS) approach to combine the advantages of logic testing
and side channel analysis.

Waksman et al. [5] proposed the FANCI approach to iden-
tify suspicious nodes using Boolean functional analysis. Their
approach will report about 1-8% of all nodes as suspicious
candidates, which still needs to be analyzed by experts to
further localize the Trojan. Moreover, this method is likely
to report a set of suspicious candidates for even trusted IP
blocks. In other words, this method cannot uniquely identify
whether a hardware Trojan is inserted. A score-based approach
[6] was recently proposed by Oya et al., which can identify
the Trojans in Trust-HUB benchmarks by using pre-defined
Trojan templates. However, an adversary can design so many

different Trojan circuits and this approach is likely to fail while
facing new Trojan designs. Banga et. al. [16] proposed a four-
step technique to localize suspicious components in third-party
IPs. However, this approach fails for large circuits due to the
complexity limitations of SAT solvers. Rajendran et al. [18]
proposed a formal method to detect unauthorized corruption
of critical data in the design such as secret keys. However, the
presented method requires to have the information about valid
ways to access critical data which is not trivial. Moreover,
it considers only one form of Trojan in a design, and cannot
consider a wide variety of Trojans that are possible in SoC IPs.
We propose a fully automated and efficient Trojan localization
method to address the above mentioned challenges.

III. BACKGROUND: EQUIVALENCE CHECKING USING
GRÖBNER BASIS REDUCTION

The equivalence checking problem can be efficiently
mapped to ideal membership testing for arithmetic circuits
[19], [20], [12]. To be able to apply Gröbner basis theory,
specification is modeled as polynomial fspec and implemen-
tation is converted to a set of polynomials I = {f1, f2, ..., fs}
and ideal I is constructed as I =< I >=< f1, f2, ..., fs >.
Set I is derived in a way that every pair (fi, fj) has relatively
prime leading monomials. Thus, set I is also Gröbner basis
(G) of ideal I (I = G). To check equivalence between
specification and implementation, fspec is reduced over set
G. If the remainder is zero, it shows that the implementation
has correctly implemented the specification. In other words,
the specification and implementation are equivalent.

The functionality of logic gates (such as AND, OR, XOR,
NOT and buffer) can be represented by polynomials such that
the inputs and output signals of gates act as variables of the
corresponding polynomial. Each variable xi which appears in
a circuit polynomial, belongs to Z2 where (xi

2 = xi). The
basic logic gates are described using polynomials shown in
Equation 1. Polynomial of complex gates can be derived by
combining the equations of basic gates.

n1 = NOT (x1)→ n1 = (1− x1),

n2 = BUFF (x1)→ n2 = x2,

n3 = AND(x1, x2)→ n3 = x1.x2,

n4 = OR(x1, x2)→ n4 = x1 + x2 − x1.x2,

n5 = XOR(x1, x2)→ n5 = x1 + x2 − 2.x1.x2

(1)

Specification of an arithmetic circuit (like multipliers,
adders and their combinations) can be represented as one
polynomial fspec. Polynomial fspec represents the word-level
abstraction of arithmetic circuits functionality using primary
inputs and primary outputs as variables. For example, the
specification of a n-bit adder with primary inputs A =
{a0, a1, ..., an−1} and B = {b0, b1, ..., bn−1} and primary
output Z = {z0, z1, ...zn} can be formulated as (2n.zn+ ...+
2.z1 + z0)− ((2n−1.an−1 + ...+ 2.a1 + a0) + (2n−1.bn−1 +
...+ 2.b1 + b0)) = 0 where {ai, bi, zi} ⊂ {0, 1}.

Suppose that we want to make sure an arithmetic circuit
implements correctly its specification. In other words, we want
to verify that there are no functional errors in the arithmetic
circuit. To test it, the specification polynomial fspec is reduced
over implementation polynomials I by considering an order.
Then, the result of the reduction is considered. The non-
zero result demonstrates the possibility of a threat. Example
1 shows the procedure to verify functionality of a full-adder.



Example 1: Suppose that we want to verify the functional
correctness of a full-adder implementation shown in Figure 2.
The specification can be formulated as: (2.Cout+S−(A+B+
Cin)) and each gate in the implementation can be modeled as
a polynomial based on Equation 1. The topological order of
the circuit (since the circuit is acyclic) is chosen for reduction
as Cout > {S, n3} > {n2, n1} > {A,B,Cin}. The reduction
starts from the most significant primary output and ends at
primary inputs. Variables in the curvy brackets have the same
order and they can be reduced in one iteration. Equation 2
shows the reduction process. It can be seen that the final result
(remainder) is a non-zero polynomial and we can conclude that
the implementation is incorrect. If we use method presented in
[21] and change the NAND gate with an AND gate (correct the
bug) and redo the procedure, it will lead to a zero remainder.
step0 : 2.Cout + S −A−B − Cin

step1 : S − 2.n3.n2 + 2.n3 + 2.n2 −A−B − Cin

step2 : 2.n2.n1.Cin − 4.n1.Cin + n1 −A−B + 2

step3(remiander) : 8.A.B.Cin − 4.A.Cin − 4.B.Cin − 2.A.B + 2
(2)

Fig. 2: Faulty gate-level netlist of a full-adder

IV. TROJAN DETECTION AND LOCALIZATION

In order to trust an IP block, we have to make sure that
the IP is performing exactly the expected functionality. The
approach presented in Section III can be extended to find
whether a hardware Trojan, which changes the functionality,
has been inserted in a combinational arithmetic circuit. How-
ever, applying the same approach on general IPs is limited due
to several reasons. First, it is possible that the specification of a
general circuit cannot be described as one simple polynomial.
Second, the circuit may not be acyclic and loops may exist
due to their sequential nature. Third, unrolling may increase
the complexity of the problem so the reduction of fspec
over implementation polynomials will face polynomial terms
explosion. Finally, the Trojan activation may require extremely
large number of unrolling steps which may be practically
infeasible and also there is no specific information on after
how many cycles Trojan will be activated. In order to address
these challenges, we present a method to generate polynomials
in an efficient way and use them in our proposed algorithm
to localize and detect Trojans in third-party IPs. To the best
of our knowledge, our proposed approach is the first attempt
in utilizing scalable equivalence checking using polynomial
manipulation for localization of hardware Trojans. The re-
minder of this section describes the three important tasks in
our framework: polynomial generation, Trojan localization,
and test generation for Trojan detection.

A. Polynomial Generation
Suppose that we have two versions of a design, one is a

verified IP (specification) and the other is an untrusted third-
party IP (implementation) after performing non-functional
transformations. Our goal is to detect whether an adversary has
inserted hard-to-detect hardware Trojan during non-functional

changes and has made undesired functional changes. For
example, a design house may send their RTL design for
synthesis or adding low-power features to a third party ven-
dor. Once the third-party IP comes back (after synthesis or
other functionality-preserving transformations), it is crucial to
ensure the trustworthiness of these IPs.

In the method presented in Section III, specification is
modeled as one polynomial; however, here we generate a
set of polynomials S representing the functionality of the
golden IP to be able to apply Gröbner basis theory for
hardware Trojan localization problem. The specification is
partitioned into several regions and each region is converted
to a polynomial. The output of each region is either inputs
of a flip-flop (clock, enable, reset and etc.) or one of the
primary outputs. The inputs of a region are either from primary
inputs or inputs/outputs of flip-flops. In other words, we
generate polynomials for regions which are limited to flip-
flops’ boundaries. Then, corresponding equations (based on
Equation 1) of gates inside a region are combined together to
construct one polynomial representing the functionality of the
region.

Algorithm 1 Polynomial generation algorithm

1: procedure POLYNOMIAL-GENERATION
2: Input: Circuit Graph Gr, Lout and Lin

3: Output: Polynomials S
4: Region = {}
5: for each gate gi ∈ Gr where its output ∈ Lout do
6: Region.add(gi)
7: for all inputs gj of gi do
8: if !(gj ∈ Lin) then
9: Region.add(gj)

10: Call recursively for inputs of gj over Gr

11: fi = convertToPolynomial(Region)
12: S = S ∪ fi
13: Region = {}
14: return S

Algorithm 1 shows how we extract set S. The specification
is converted to a graph where each vertex is a gate (gi). The
algorithm takes the circuit graph Gr, list (Lout) of allowed
output variables (flip-flops’ inputs and primary outputs) and
list (Lin) of allowed input variables of a region as inputs and
returns a set of polynomials S as its output. The algorithm
chooses a gate for which output belongs to Lout and goes
backward recursively until it reaches the gate gj , whose input
comes from one of the variables from Lin (line 5-10). The
algorithm marks all the visited gates as a “Region”. The
selected region may contain all of the basic gates except flip-
flops. Then, the Region is converted to a polynomial fi by
combining corresponding polynomials of the gates residing in
Region, fi is added to set S (line 11-12).

Example 2: Suppose that the circuit shown in Figure 3 is
a part of a verified IP block and we want to use it as our
specification. Algorithm 1 is applied on it and the polynomials
are shown as: S = {fspec1 : n1−(−2.A.n2+n2+A), fspec2 :
Z− (1−n1.B)}. Since the circuit shown in Figure 3 contains
one primary output and one flip-flop, the Algorithm 1 extracts
two specification polynomials for this circuit.

Similarly, the implementation polynomials I are driven
by modeling every gate except flip-flops from the untrusted
design as a polynomial based on Equation 1 and Algorithm 1.



Fig. 3: A part of a sequential circuit

In order to reduce the number of generated implementation
polynomials, we partition implementation to fanout-free cones
(set of gates that are directly connected together) and convert
each fanout-free region as one polynomial. In other words, I
contains a set of polynomials where each polynomial repre-
sents a fanout-free cone.

Example 3: The circuit shown in Figure 4 is the Trojan-
inserted implantation of the specification shown in Figure 3
(gate 6 is the Trojan trigger and gate 7 is the payload). Gates
in same pattern belong to a common fanout-free cone. As a
result, set I is computed by Algorithm 1. Each polynomials is
corresponding to one fanout-free cone.

I = {n1 − (n2.w4.A− n2.w4 + w4 − n2.A+ n2),

w4 − (A− n2.A),

Z − (n1.w4.C.B − n1.w4.C − n1.B + 1)}
(3)

Fig. 4: A Trojan-inserted implementation of circuit in Figure 3

B. Trojan Localization
We generate the set S and I as described in Section IV-A.

We assume that the name of flip-flops, primary inputs and
primary outputs are the same between implementation and
specification or the name mapping can be done. We also
assume that no re-timing has been performed. These are
valid assumptions in many scenarios involving third-party IPs.
The equivalence of two sets S and I is checked to find any
suspicious functionality which may serve as a Trojan.

To detect a Trojan, we need to reduce each polynomial
fspeci from set S over a subset of polynomials from set I
to check membership of every polynomial fspeci in Ideal I
constructed from polynomials from set I (I =< I >). To
perform that, all of the polynomials from I are hashed based
on their leading terms (which contains a single variable and
this variable represents the output of the corresponding gate).
Every variable from fspeci ∈ S is replaced with the corre-
sponding functionality of that variable from I polynomials.
The process continues until fspeci is reduced either to zero
polynomial or a remainder polynomial which contains primary
inputs as well as flip-flop’s inputs/outputs. The non-zero
remainder indicates that implementation does not correctly
implement the functionality of fspeci and that part of the
implementation is suspicious. Note that, based on Gröbner
basis theory, when the remainder is zero for a specific region,

we can be certain that the region is safe. In other words, it is
not possible for a smart attacker to insert malicious gates in
a way that the remainder becomes zero.
Example 4: Consider we want to measure the trust in
the circuit shown in Figure 4, which is the untrustworthy
implementation of design shown in Figure 3. Specification
Polynomials shown in Example 2 are reduced over imple-
mentation polynomials as shown in Equation 3. The result
of the reduction is stored in set R. Each fspeci produces one
remainder ri that can be either zero or a non-zero polynomial.
Gates {1, 2, 3, 4, 5} implement functionality of an XOR gate
(these gates are equivalent to XOR gate shown in Figure 3).
Thus, the remainder r1 is zero and it means that the region
containing gates {1, 2, 3, 4, 5} implements the fspec1 correctly.
However, the non-zero remainder r2 presents the fact that there
are malicious components in implementation of fspec2 and the
region containing gates {2, 4, 6, 7, 8} is suspicious.
fspec1 : n1 + 2.A.n2 − n2 −A

step11 : n2.w4.A− n2.w4 + w4 + n2.A−A

step12(r1) : 0

fspec2 : Z + n1.B − 1

step21 : n1.w4.C.B − n1.w4.C

step22(r2) : −1.n1.A.C + n1.n2.A.C +A.B.C.n1 −A.B.C.n1.n2
(4)

By using the proposed approach, a set of malicious regions
are identified. Suppose the adversary inserts some extra flip-
flops as part of Trojans. These buggy flip-flops does not
have any correspondence in the specification. In other words,
there is no fspeci which describes their inputs’ functionality.
Therefore, the corresponding region in the implementation is
also considered as a suspicious region. However, scan-chain
flip-flops can easily be detected and removed from suspicious
candidates because of their structures.

The proposed method formally identifies the regions (be-
tween flip-flops boundaries) of the implementation that are
safe and the regions that have suspicious functionality. The
adversary usually insert the Trojan in deep levels of the circuit.
Therefore, the regions that actually contain the Trojan can be
very large and may include many gates (order of hundreds
or thousands of gates). In order to improve our approach
further, we propose an algorithm to identify the gates that most
likely are responsible for the malicious activity. Since we know
which regions are Trojan-free (based on remainder as zero),
we remove the gates which are contributing in construction
of these regions from suspicious regions. In other words, we
have formally proved that some of the regions are trustworthy
so the gates that construct these regions are essential for the
correct functionality. The safe gates may be inputs of Trigger
or payload gates. However, they do not belong to the set of
malicious gates. Using this approach, we are able to prune
the suspicious regions to contain very small number of gates.
This approach guarantees that all of the Trojan trigger and
payload’s gates are inside the suspicious region. Algorithm 2
shows the proposed procedure.

The algorithm takes the gate-level implementation graph
Gr as well as specification and implementation polynomials
as inputs, and in case the implementation contains malicious
components, it returns a set of suspicious gates as output.
The algorithm takes each of specification polynomials and
reduces them one by one over corresponding polynomials
from set I. Each fspeci may be reduced using several gates
gj and the result of the reduction is stored in ri (line 4-5).
The used gates are marked to keep track of the gates that



Algorithm 2 Hardware Trojan localization algorithm

1: procedure TROJAN–LOCALIZATION
2: Input: Circuit implementation Gr, I and S
3: Output: Suspicious gates Gt

4: for each fspeci ∈ S do
5: ri = reduction of fspeci over fjs ∈ I
6: Ri = Ri ∪ all gjs where fj = func(gj)
7: mark all gis as used
8: if (ri! = 0) then
9: RTrjIn = RTrjIn ∪Ri

10: else
11: RTrjFree = RTrjFree ∪Ri

12: for each gate g ∈ RTrjfree do
13: remove g from RTrjIn

14: return Gt = remaining in RTrjIn ∪ unused gates

are utilized to implement the circuit (line 6). If ri is equal
to zero, it means that all of the gis are safe and they are
stored as safe gates (RTrjFree), otherwise, all gis are stored
as suspicious candidates (line 7-11). Every ri = 0 shows
that all of the gates used in construction of functionality
of the corresponding fspeci are safe. Therefore, to narrow
down the potential suspicious gates, the gates of Gr which
appeared in RTrjFree are removed from RTrjIn (line 12-
13). Note that, gates in both of RTrjFree and RTrjIn belong
to the implementation Gr. All of unused gates should also
be considered as malicious candidates, so the union of the
remaining gates in the RTrjIn and unused gates are returned
as likely malicious gates (Gt). If all of the ris are zero,
the implementation is safe and there is no Trojan inside the
implementation.

Algorithm 2 identifies the trust level of a third-party IP
and in case of existence of hardware Trojan, it returns a very
small number of gates as suspicious candidates. This algorithm
guarantees that all of the actual Trojan trigger and payload
gates are inside the set Gt.

Example 5: Applying Algorithm 2 on the circuit shown
in Figure 4 will result in non-zero remainder for region
containing gates {2, 4, 6, 7, 8}. However, the zero remainder
of fspec1 shows that gates {1, 2, 3, 4, 5} are safe and they are
vital to construct the functionality of signal n1. Therefore,
we remove gates {2, 4} from potential candidates and gates
{6, 7, 8} remain as suspicious.

C. Trojan Activation
As shown in Example 5, the small suspicious region still

contains some safe gates which are dedicated to the correct
functionality in the absence of the Trojan (in Example 5, gate 8
is benign but it is reported as suspicious node). In other words,
these safe gates are only used to construct the functionality
of one specific primary output or Flip-Flop’s input. Thus,
they won’t be removed in the process of pruning safe gates
from suspicious regions since they are not contributing in
functionality of other primary outputs or flip-flop’s inputs.
To be able to detect the exact gates which are responsible
for trigger and payload parts of Trojan, we generate tests to
activate the Trojan. Since the number of suspicious gates are
small enough, we try to activate each node in the suspicious
gates and check whether the generated test activates the
Trojan. We use an ATPG to generate the directed tests. If none
of the tests detects the Trojan, we generate test to activate two

of the nodes at the same time. We continue the process until
one of the tests activates the Trojan. This approach is feasible
due to the fact that the number of suspicious nodes that are
reported using our proposed approach is very small.

Example 6: We are trying to activate the Trojan shown in
Figure 4. From Example 5, we know that gates {6, 7, 8} are
suspicious. As shown in Figure 4, Trojan will be triggered
when output of gate 6 (w5) becomes true and B is zero at
the same time. In other words, gate 8 of the implementation
receives one as its second input (w6) while in the specifi-
cation, the second input of the NAND gate receives zero.
These conditions cause difference between specification and
implementation. To propagate the effect of Trojan’s condition
activation, n1 should be one since n1 = 0 makes output
Z = 1 independent of second input’s value and it will mask
the Trojan effect. The test vectors that activate Trojan are as
follows (we assume the initial value of n2 is equal to 0):
A = 1, B = 0, C = 1.

V. EXPERIMENTS

A. Experimental Setup

The Trojan localization algorithm was implemented in a
Java program and experiments were conducted on PC with
Intel Processor E5-1620 v3 and 16 GB memory. We have
tested our approach using widely used trust-HUB benchmarks
[9] consisting of combinational and sequential Trojan triggers
and payloads that change the functionality of the design. The
Trojan-Free designs are considered as specification. To show
that our methodology is orthogonal to design structures and
library format, we synthesized Trojan-inserted benchmarks
with Xilinx synthesis tool and used them as implementation
(we just map flip-flops’ inputs/output names). Specification is
partitioned into several regions and each region is represented
using one polynomial. These polynomials can be reduced
over implementation polynomials independently. Therefore,
we used a parallel version of Algorithm 2 to implement
our method. We also used logic reduction based rewriting
schemes presented in [23] to improve the equivalence checking
time. We compared our results with most relevant Trojan
localization work [5]. Since our approach essentially performs
equivalence checking, we also compared with an equivalence
checking tool “Formality” [22] which has been designed to
check the equivalence between two versions of a design to
demonstrate the efficiency of our work. Formality is an com-
mercial tool that tries to detect potential functional changes
between two versions of a design when the designers making
non-functional changes.

Formality compares the points between two designs and
tries to match them using different algorithms including name-
based matching and non-name based matching algorithms.
Based on formality’s user guide [24], it first compares the
points based on their exact names. Then, it tries to perform
case-insensitive name mapping or filtering out some char-
acters. Name matching can also be done through mapping
driven/driving nets (name of nets) of points. In the second
phase, it attempts to match the remaining unmatched points
using topological analysis of the unmatched cones. In other
words, it matches two points with different names if they
have equivalent structures. The final step is signature analysis
which is based on generating functional and topological sig-
natures. Functional signatures use random patterns simulation
to generate primary outputs’ data or register’s output data to



TABLE I: Trojan Localization using Trust-HUB benchmarks.
Benchmark FANCI [5] Formality [22] Our Approach False Positive% Improvement

Type #Gates #TrojanGates #SuspGates #SuspGates #SuspGates #Spolys #Ipolys CPU time(s) our [5] [22] [5] [22]
RS232-T1000 311 13 37 214 13 62 186 0.67 0 24 201 * *
RS232-T1100 310 12 36 213 14 61 189 0.86 2 24 201 12x 100.5x
S15850-T100 2456 27 76 710 27 592 1888 1.13 0 49 683 * *
S38417-T200 5823 15 73 2653 26 1667 5004 3.12 11 58 2638 5.27x 239.8x
S35932-T200 5445 16 70 138 22 1778 4441 3.18 6 54 122 9x 20.33x
S38584-T200 7580 9 85 47 11 840 3905 4.74 2 76 38 38x 19x
Vga-lcd-T100 70162 5 706 ** 22 2426 7572 38.97 17 701 ** 41.23x **

“*” indicates our approach does not produce any false positive gates (infinite improvement).
“**” shows the cases that Formality could not detect the Trojans.

Fig. 5: (a) Number of suspicious nodes, (b) Number of tests needed to activate Trojans

match different points. However, if an adversary inserts a hard-
to-detect hardware Trojan, signature analysis may incorrectly
match points since their simulation result are same. As a
result, Formality may not be able to detect inserted Trojans
(as indicated in Table I). Our proposed method is based on
polynomial manipulation of different regions of the circuit
and it is not dependent on the simulation or pattern generation.
Thus, our method outperforms Formality when there are hard-
to-activate Trojan in the implementation.

B. Trojan Localization
Table I presents results for hardware Trojan localization.

The first three columns show the type of benchmarks, num-
ber of gates in the circuit, and number of malicious gates
(consisting of Trojan trigger and payload), respectively. The
fourth column shows the number of suspicious gates reported
by “FANCI” [5] approach. FANCI reports 1% to 8% of circuit
nodes as false positive nodes on average (we have reported
suspicious nodes as false positive nodes plus actual Trojan
gates). The fifth columns shows the number of suspected gates
that can be found using Formality. It reports some faulty flip-
flops or primary outputs which may have different values
because of change in the functionality. However, there are so
many gates in the cone corresponding to the faulty primary
outputs or flip-flops and all of these gates are suspicious.
In case Vga-lcd-T100, the Trojan effects are masked due
to observability issues and nature of the above-mentioned
signature analysis, and Formality returns no suspicious nodes.
The sixth column shows the number of suspicious gates that
our method finds. Our method detects all of the Trojan circuit
gates (no false negative gates) plus very small number of false
positive nodes (benign gates). The seventh column shows the
number of specification polynomials which is equal to number
of flip-flops in the design plus number of primary outputs.
The eighth column presents the number of implementation
polynomials which is equal to number of fanout-free cones
existing in the implementation. The CPU time (in seconds) to
localize the Trojan is reported for each benchmark in ninth
column. The time complexity of our method is linear with
respect to the number of gates. The tenth, eleventh and twelve
columns show the number of false positive gates that our

approach, FACNI [5] and Formality [22] report, respectively.
Clearly, our approach returns only few false positive gates.
We are aware of the fact that comparison with FANCI is
not fair since it does not requires golden model. However,
FANCI returns a lot of suspicious gates that it may not include
all of the Trojan gates. For example, FANCI has reported
top twenty suspicious gates for S35932-T200, none of them
are from Trojan gates. Moreover, FANCI returns a set of
suspicious gates even when the circuit is Trojan free. The next
columns show our improvement in comparison with FANCI
and Formality based on number of false positive gates. Our
approach has a significant improvement compared to existing
approaches - our approach reports orders-of-magnitude less
false positive gates compared to [5] and [22].

C. Test Generation

For test generation, we used Tetramax [25], the ATPG tool
from Synopsys to generate tests exhaustively to activate the
reported suspicious nodes. Since our suspicious candidates
are few, we can exhaustively check several combinations to
activate the Trojan. However, without using our localization
method or using heuristic methods such as [5], exhaustive
method will not work due to large number of suspicious
gates. Table II shows the number of tests needed for activation
and detection of Trojans with/without using our localization
method. First column shows the type of benchmark (same
as Table I). The next two columns present the number of
required tests to activate trigger conditions one at a time
without and with using our localization method, respectively.
The next column shows our improvement compared to without
using localization. Our proposed approach improves number
of required test vectors significantly. The next columns show
the number of required tests to activate trigger conditions
of two and four nodes at a time without and with using
our localization method and the associated improvements,
respectively. As it can be seen from Table II, it is impractical
to generate tests to activate four-node triggers even for these
small benchmarks without our localization approach. If our
localization is utilized, the number of required tests are
reasonable and would be less by several orders of magnitude.



TABLE II: The required tests to activate the Trojan

Benchmark N=1 N=2 N=4
W/O Localization With Localization Improvement W/O Localization With Localization Improvement W/O Localization With Localization Improvement

RS232-T1000 311 13 23.9x 48205 78 618.0x 4E+8 715 5E+5x
RS232-T1100 310 14 22.1x 47895 91 526.3x 4E+8 1001 4E+5x
S15850-T100 2456 27 91.0x 3E+6 351 8.6E+3x 2E+12 17550 9E+7x
S38417-T200 5823 26 224.0x 2E+7 325 5.2E+4x 5E+13 14950 3E+9x
S35932-T200 5445 22 247.5x 1E+7 231 6.4E+4x 4E+13 7315 5E+9x
S38584-T100 7580 11 689.1x 3E+7 55 5.2E+5x 1E+14 330 4E+11x
Vga-lcd-T100 70162 22 3189.2x 2E+9 231 1.1E+7x 1E+18 7315 1E+14x

Average 13155.28 19.85 640.97x 2.9E+08 194.57 1.6E+6x 1.4E+17 7025.14 1.4E+13x

We also compared with MERO [1] for benchmarks S15850-
T100 and S95932-T200. We did not compare using the
remaining benchmarks because [1] did not report data for
those benchmarks. Figure 5(a) shows the number of suspicious
gates reported by our approach compared to MERO. Clearly,
our approach provides up to 44 times (40 times on average)
reduction in suspicious gates compared to MERO. Figure 5(b)
compares the number of tests required to activate the Trojan.
As shown in the figure, our approach requires up to two orders
of magnitude (60 times on average) less test vectors compare
to MERO.

The experimental results demonstrate four important aspects
of our approach. First, the number of false positive gates are
very small and in some cases there are no false positives. In
these cases, our method is able to detect the whole Trojan
circuit. Next, all of the Trojan payload and trigger gates
are inside the list of suspicious gates. In other words, our
approach does not produce any false negative result. Our
approach detects both sequential and combinational Trojan
circuits. Finally, our approach generates very few suspicious
nodes (less than 0.2% of original design, less than 0.03% in
most cases) that enables us to exhaustively generate tests to
activate various trigger conditions to detect the Trojan circuit.

VI. CONCLUSION

In this paper, we presented an automated approach to local-
ize functional Trojans in third-party IPs. First, we identified
whether a third-party IP contains malicious functionality or it
is trustworthy. Next, we presented an algorithm to localize the
suspicious area of the Trojan-inserted IP to a region which
contains very few (less than 0.03% of the original design
in most cases) gates. Our approach does not require any
unrolling or simulation of the design and it formally identifies
the parts of the circuit that is Trojan free as well as the
remaining suspicious gates. In order to further aid in Trojan
detection, we proposed a greedy test generation method to
activate the Trojan. Our experimental results demonstrated
the effectiveness of the proposed methodology on trust-HUB
benchmarks. Our localization approach reduces the overall
Trojan detection effort (number of tests) by several orders of
magnitude compared to the existing state-of-the art techniques.
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