Errata: Subdivision Surfaces

Found by Zhangjin Huang, if not mentioned otherwise. Italics means: not yet fully verified. Thank you all!

- Page 21, line +9: $W\Sigma Dx$ should be $K\Sigma Dx$.
- Page 30, line -5: $[0, 2\sqrt{u}, 0]$ should be $[0, 2\sqrt{u}, u]$.
- Page 31, line 3: $\frac{1}{2}$ is missed in the last term.
- Page 53, line -6: in the proof, $\xi_* \circ \pi$ should be $\xi_* \circ \pi^{-1}$.
- Page 60, line +4: ... the ring \mathbf{x}^0 and ...
- Page 62, line +4: ... the first ring \mathbf{x}^0 ...
- Page 62, line +5: ... the mth ring \mathbf{x}^{m-1} ...
- Page 70: in Fig. 4.7, the tickmarks on the x-axis should be [0, 1, 2].
- Page 73, display above (4.22), rightmost λ s, 3 rows, (by Q Chen) λ should be $\tilde{\lambda}$
- Page 73, line -9 (Q Chen), subscript should be r: $Av_r^0 = \lambda_r v_r^0$
- Page 80, last sentence of Theorem 4.28: (A Myles), fist \rightarrow first
- Page 80, line +14: in Def. 4.27, $A \in \mathbb{R}^{\bar{l} \times \bar{l}}$ should be $A \in \mathbb{R}^{(\bar{l}+1) \times (\bar{l}+1)}$.
- Page 85, Definition 5.4: (A Myles), $\psi := [f_1, f_2] = F[v_1, v_2]$ should be $\psi := [f_1, f_2] = G[v_1, v_2]$.
- Page 88, line +8: $(2n(u_{j+1}-u), 2, j)$ should be $(2n(u_{j+1}-u), 1, j)$.
- Page 92: in Case 3, \mathcal{A}_3^2 and \mathcal{A}_3^1 should be exchanged.
- Page 99, line +9: $\hat{A} = \hat{V}J\hat{V}^{-1}$ should be $\hat{A} = \hat{V}\hat{J}\hat{V}^{-1}$.
- Page 99, line +12: J should be \hat{J}
- Page 100, line +12: $\hat{J}_i = \overline{\hat{J}_i}$ should be $\hat{J}_{n-i} = \overline{\hat{J}_i}$.

- Page 106, line +7: $^{\times}Df_0(s,t) = {^{\times}D}f_0(t,s)$ should be $^{\times}Df_0(s,t) = {^{\times}D}f_0(t,s)$.
- Page 106, line +8: ${}^{\times}Df_j(s,t) = {}^{\times}Df_0(s,t)$ should be ${}^{\times}Df_j(s,t) = w_n^{2j} \times {}^{\times}Df_0(s,t)$.
- Page 114, line +2: in the 3×3 matrix, the (3,3) element \hat{v}^{13} should be \hat{v}^{11} .
- Page 117, line +2: in Eq. (6.17), $\hat{\alpha}_i$ should be \hat{a}_i .
- Page 128, line -10: in Def 7.2, $\bar{\mathbf{p}}_q^0 := [0, 0, \mathbf{p}_q \cdot \mathbf{n}^c].$
- Page 130, line +13: ${}^{\times}D\bar{\mathbf{x}}_{j}$ should be $D\bar{\mathbf{x}}_{j}$.
- Page 134, line +3: $\mu < l$ should be $\mu < \lambda$.
- Page 139, line +9: for r^j , the matrix should be $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. r^j should be r_j .
- Page 144, line -10: in the first term of T[p], $c_i s^i t^{d-l}$ should be $c_i s^i t^{d-i}$.
- Page 148, line +10: k/2 should be q/2.
- Page 152, line -8: $m_{\nu,\mu}$ should be $f_{\nu,\mu}$.
- Page 152, line -1: $D_1^l \mathbf{x}^m (1/2,.,j), D_2^l \mathbf{x}^m (.,1/2,j), D_1^l \mathbf{x}^{m+1} (1,.,j), D_2^l \mathbf{x}^{m+1} (.,1,j).$
- Page 153, line -3: $C_{r,2}^{2,7}$ should be $C_{2,r}^{2,7}$.
- Page 160, line -9: $\check{\mathbf{x}}_k = \check{E}_k \mathbf{P}$.
- Page 163, line +4: $\delta_k^m = (B^m \check{B}_k^m) \mathbf{Q}' = (B^0 \check{B}_{k-m}^0) A^m \mathbf{Q}' = \lambda^m (G \check{G}_{k-m}) \mathbf{Q}' = \lambda^m (\psi \check{\psi}_{k-m}).$
- Page 163, line +12: $||\delta_k||$ should be $||\delta_k^k||$.
- Page 163, line -7: $\bar{\mathbf{x}}$ should be $\bar{\mathbf{x}}_k$.
- Page 164, line +3: $\mathcal{X} = B[v_1, v_2]$.
- Page 167, line +10: $||J^m \mathbf{P}||_{\infty}$ should be $||J^m \mathbf{P}||_1$.
- Page 168, line +2: $c_F c_I^3$ should be $\bar{c}_F c_I^3$.
- Page 168, line -9: $\lambda_0 = 1$.