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Abstract

The maximal distance between a Bézier segment and its control poly-
gon is bounded in terms of the differences of the control point sequence
and a constant that depends only on the degree of the polynomial. The
constants derived here for various norms and orders of differences are the
smallest possible.

In particular, the bound in terms of the maximal absolute second dif-
ference of the control points is a sharp upper bound for the Hausdorff
distance between the control polygon and the curve segment. It pro-
vides a straightforward proof of quadratic convergence of the sequence of
control polygons to the Bézier segment under subdivision or degree-fold
degree-raising, establishes the explicit convergence constants, and allows
analyzing the optimal choice of the subdivision parameter for adaptive
refinement of quadratic and cubic segments and yields efficient bounding
regions.

1 Curved geometry and control polygons

A widely used, efficient and intuitive way to specify, represent and reason about
curved, nonlinear geometry for design and modeling is the control point or con-
trol polygon paradigm: for popular representations like the B-spline and the
Bernstein-Bézier representation the curve shape is outlined by the broken line
connecting the control points. For many applications, e.g. rendering, intersec-
tion testing or design, this raises the question just how well the control line
approximates the exact curved geometry.

This paper gives several simple quantitative and exact answers to this ques-
tion in terms of differences of the Bézier control points and constants that de-
pend only on the degree of the polynomial. The bounds are sharp, i.e. there
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Figure 1: Improved bounds for intersection testing (left) and creating tolerance

envelopes (right). Shaded region corresponds to convex hull, darker portion to
new bound derived from the results in this paper.

exist in each case commonly used curves such that the bound is taken on and
any reduction of the constant would not yield a bound. In particular the bound
in terms of the maximal absolute second difference remains sharp under degree-
raising and subdivision, i.e. refinement of the piecewise linear control structure
to better approximate the curved geometry. This yields for example a sharp
a priori bound on the number of subdivision steps needed to bring curve and
control polygon within a prescribed Hausdorff distance of one another.

While the focus of this paper is on capturing the essence of the bound and
its implications for the general toolkit of computer aided geometric design, the
two example scenarios sketched in Figure 1 illustrate the potential use of the
new result for a wide range of applications. Combined with the standard min-
max bound and an improved bound at the ends of a curve segment, the result
confines the curve segment to a region bounded by at most 2d + 2 line segments
where d is the degree of the component functions of the curve. Localization of
the curve to the convex hull, here depicted as the union of shaded regions gives
more conservative estimates than localization to the darker shaded region im-
plied by the new bound of this paper. In Figure 1 (left) non-intersection follows
immediately from the new bounds, while the convex hull estimate requires sev-
eral refinements to separate the bounding regions. On the right, the curve and
its translate can be chosen closer together while still guaranteeing the inclusion
of the given point set.

The new tight bounds reveal the constants that scale the quadratic rate of
convergence of the sequence of control polygons to the curve under subdivision
and under degree-fold degree-raising. This clearly shows uniform approxima-
tion by subdivision to be more efficient than via degree-raising and allows, for
segments of low degree, to determine the optimal point of subdivision.

After reviewing prior work, Section 3 represents the technical heart of the
paper, a bound for functions in Bernstein-Bézier form. Section 4 shows alterna-
tive bounds by varying the choice of norm on the second differences and order of
differences. For the remainder, the paper concentrates on the bound in terms of
the maximal absolute second difference of the control points. Section 5 extends



the max-norm bound to the Hausdorff distance between control polygon and
curve segment. Section 6 discusses the bound under subdivision and Section
7 the bound under degree-raising. Section 8 improves the bound at the ends
of the segment, Section 9 illustrates the bounds by a gallery of examples and
Section 10 draws a few conclusions.

2 Prior Bounds

Two properties lie at the heart of control point representations of curves: the
variation diminishing property and the subdivision property. The variation
diminishing property, that any line crosses the control polygon at least as often
as it does the curve, makes precise the notion that the features of the curve
are exaggerated by the control polygon. Variation diminuition also implies the
convex hull property, which states that all points on the curve segment are
convex combinations of the control points. Thus the convex hull yields a bound
on the distance between curve segment and control polygon.

The subdivision property gives a stable way of approximating the curve
through a sequence of refinements of the control polygon using fixed-weight,
finite averaging. Approximation rates for this process have been established in
[1, 2] and by the careful analysis in [14]. Either result yields qualitative assurance
that the approximation will improve under subdivision, but the corresponding
quantitative estimates are too coarse for practical use. For example, the estimate
in [14] exceeds the bound implied by the convex hull property. In [8], Filip,
Magedson and Markot derive bounds for the distance between a curve and the
linear interpolant to the end points and Schaback [15] extends and generalizes
this approach to more general Hermite interpolants. For a Bézier curve of degree
d the bound derived from linear approximation is d — 1 times the bound derived
in this paper. In [16], Sederberg, White and Zundel subtract a circular arc
rather than a Hermite interpolant from the curve segment prior to generating
a min-max bounding box. The arc offset by the bounding box is called a ‘fat
arc’.

In [10] upper and lower bounds for the modulus of continuity of polynomial
and rational curves in Bézier form are derived. In [7] Farin points out that
for rational curves, the convex hull can be tightened to include only rational
weight points and end points. A similar projection argument applies to the
joint intersection of convex hull and the new tight bound.
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Figure 2: A cubic segment and its control polygon with coefficient sequence
(bo,bl,bg,bg) = (0,1,1,0) and corresponding ||A2b||oo = |A2b1| = |A2b2| = 1.
The bound is taken on at ¢ = 1/3 where ||p(1/3) — £(1/3)|] = 1/3 =
Noo (3)[|A2b]loo-

3 Bounding functions

This section contains the central estimate for localizing the graph of a function
in Bernstein-Bézier form with respect to the control polygon. The estimate is
easily computed in terms of a constant N, (d) that depends only on the degree d
and the maximum second difference of the coefficient sequence. Some definitions
are in order (c.f. [6], [3]).

A univariate, scalar-valued polynomial p of degree d is in Bernstein-Bézier
form if

d
p(t) == b:;Bi(t)
=0

where BY(t) := (%) (1 — t)4-it.
The control polygon £ of p is a broken line connecting the points (tx, by) where
the first components t; := ¥ are the Greville abscissae. Its kth segment £[;, 4, . ,]

on the interval [t,tr11], is defined by

thy1 — ¢ b t— 1t
k-+1 .
tgr1 — T tgr1 — Tk

Uy trpn] () 2= by

The ith centered second difference of the coefficient sequence b;,i = 0,... ,d is
abbreviated

Asb; :=bj—1 —2b; + b;y1  and ||A2b||oo = max |A2b,|
o<i<d

Finally, the maximum absolute difference between p and £ on the interval [s, ]
is abbreviated as

I — 2l co,(s,1] := Joax, [p(u) — £(u)|.

With these definitions the main result reads as follows.



Theorem 3.1 The distance from the univariate, scalar-valued, degree d poly-
nomial p to its control polygon £ is bounded as

llp = £lloo,0,1] < Noo(d)|| A2bl|eo

where

2

Neo(d) := 54

For example, [No(0),... ,Noo(8)] = [0, 0, %, %, %, %, %, %,1].

Proof On the interval [ty, tg+1], p(t) — £(t) = >, ai(t)bs, where

k+1—dt ifi=k
api(t) == ad(t) :== Bd(t) = < dt — k ifi=k+1
0 else

since tk+1 —tr, =t —tg—1 = 1/d. The formula for conversion to power form,
zz & ( )Bd( )= (,‘:) t*, implies linear precision

d d
Zaki =0 and Ziaki =0.
i=0 =0
It follows that Z;ZO (i=Jar; = Z?:i(j — 4)ag;, and hence for 0 < i < d and

all k . '
0 i oi—j)B for0<i<k
ﬂkw:Z(l‘”%:{ ] .
=0 =G —9Bj ford>i>k+1.

The fBi; (cf. Figure 3) are nonnegative second antidifferences of the ay; on
[tk,te+1]- That is, Bri(t) > 0 for 0 < i < d and

A2Bri = Bryit1 — 2Bk, + Bryi—1 =g,y for 1 <i<d—1.

Furthermore, for k € {0,...,d — 1},

d—1 d—1 i d d-1 d d—1—j
S Bui(t) = S50 - st Z (i = Dars® =D ( 3 i)aws(®)
i=1 =0 =0 =0 i=j 7j=0 =0
d d . d
-y (d;J)ak](t) = (;)akj(t) = @ BY(t) + = (k + 1 — 2dt)
j=0 =0 =2

_ (D2 k
—(2>t +§(k+1—2dt).
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Figure 3: The second antidifferences f;(t) := Bri(t) on t € [t,thy1] =
[k,k +1]/d, for d = 6 and ¢ = 1,...,5 (solid except B4 dotted), and their
piecewise quadratic sum (dash-dotted). The ith peak separates the monotoni-
cally increasing part of 8; on [0, ¢;] from the decreasing part on [t;, 1].

On its interval [tg,tgr1], Z;i:o Bri(t) is a positive quadratic polynomial with
positive leading coefficient and therefore takes on its maximum either at tj or
tk+1 implying

d ;. d .
i
0<k<dtk<t<tk+1zﬂ’“ = Ofélgi(dmax{i; ( )akz (173 ;; ( )akz tev1)}
d\ k? k k
= 0<k<d (2) @2 (2) 0Shd 2d(d k)
_ Ld/217d/2]
2d |
Abbreviating
|| ) ||k = ” : ||OO,[tk,tk+1];



and assuming without loss of generality that by = by = 0, the bound follows
from

[P = £lloo,j0,1 = max [|p — ]|

d

max || > anabillk
=0
d—1

mI?XH D AoBrabille
i=1

d—1

m?X||;5kz’A2bz’||k

d—1

|A2b]| 0 mI?X“ ;ﬁki“k

_ 1d/2][d/2]
= T“AQb“oo-

IA

The fourth equation could have been arrived at without setting by = by =0
since Brq = Bro = 0. However, this would require defining Asf8yo and hence
Br,—1- A key step in the estimate is the inequality which uses the fact that
|Bkil = Bri- We will discuss this and alternative inequalities in more detail in
the following section.

The constant Noo(d) is not just a better estimate, i.e. d — 1 times smaller
than the previous best estimate in [8], but it is optimal i.e. the single inequality
in the proof is sharp for a large class of functions.

Corollary 3.1 The bound in Theorem 3 is sharp for all degrees.

Proof If pis the degree-raised representation of a quadratic polynomial then
all second differences of the degree-raised representation of p are equal, i.e.
for each i, |A2b;| = ||A2b|| since differencing and degree-raising commute.
Since the (; are nonnegative, we have equality throughout the proof. Small
perturbations of the coefficients of the degree-raised quadratics yield, for any
given degree d, polynomials that asymptotically match the bound. In other
words, for any € there are polynomials of degree d that match the bound within e.

D

The inequality is not sharp if the sequence of second differences has sign
changes, e.g. when the function has inflection points. Examples 1, 2 and 4
of the fourth column of Figure 8 illustrates sharpness, almost sharpness and
alternation.



4 Bound alternatives

The estimate in the proof of Theorem 3 is an application of Hélder’s inequality

d—1
3 Brildabi < lIBrillollAoblly, ¢t +p7" =1,

i=1

for fixed argument ¢, ¢ = oo and p = 1. Other choices of p and ¢ lead to
alternative estimates of which the case p = oo and ¢ = 1 deserves special
attention.

Theorem 4.1 The distance from the univariate, scalar-valued, degree d poly-
nomial p to its control polygon £ is bounded by

lp(t) = £@t)lloo 0,17 < N1(d)[|A2d]|1
d
where t* ;= [E]/d and

M) =8 g g () = WauBly ().
1 i

d
If d is even, Ny (d) simplifies to (l_ g.l) 54, an expression that is also an upper
2
bound for odd d. Ny (d) is a slowly growing function with
N1 (2), ....N; (10)] = [0.2500, 0.2963, 0.3750, 0.4147,
0.4688, 0.5036, 0.5469,0.5782,0.6152].

Proof Fix k. Then for j <i < k, Bii > B since B — Brim1 = 25— BI >0
and similarly for j > ¢ > k, By > Brj. Moreover By is a monotonically
decreasing function on [tx, tg+1]. Hence

k
sup ||maxBi(t)|| = sup Bk = Brr(te) = E (k — §)B{(t)
te [t tot1] ? tE[Er,trt1] j=0
d—K)k K
= ——B%(-).

We show that the maximum is attained for k = (;1 and hence

max || max S| = N1(d)



d
as claimed. By symmetry it suffices to show that for k < L§J, ie.d—k>k =

k+1

d—Kk 4k (d—k)K '

afy - dfy
2 B) < S B
With d — k =k + 1+ a, a > 0 the inequality is equivalent to
kE+1+a\ktita k4 1\k+t
f(a)'_( k+a) S(k) '

For a = 0, we have equality, and f is a decreasing function in a as can be seen
from the derivative

1
k+a

f'(a) .= K[In(1 + L) -

K
k+a LK >0

1
and the estimate 1 + klﬂ < ekta, D

The above estimate is sharp when the sequence of second differences has one
nonzero entry, exactly where max; Oy; attains its maximum. This is the case
when the control polygon has the shape of a hat (c.f. row 3 of Figures 8 and 9).

Corollary 4.1 The bound in Theorem 4.1 is sharp for all degrees.

Proof The polynomial

d
5] .
p:= B+ Y @[;1-1)B
Jj=0 d
J'=[-§-|+1
has Asb; = 0 for all i except for Agbl_ d] = —2. Therefore
2
) o ) ) ) o )
I51-ol= Y (51-)Bi+ 3 G-[5DB =23 (151-7)BL
Jj=0 J=0
=91

Hence at t* = [;—i]/d, (L=p)(t*) =28 4 4 ) =][A20[|1N1(d) as claimed.
35

>



The norms of the second difference vector in Theorem 3 and Theorem 4.1
can be viewed as measuring an approximation to maximal curvature and total
curvature, respectively. Sharpness is obtained in the first case when the curva-
ture is distributed most evenly, in the second case, when it is distributed most
unevenly.

Analogously, the average curvature is approximated by ||Asb||s yielding a
bound (c.f. Figure 8)

1P = loo,o,11 < No(d)[| Azb]l2.

We state without proof that
Ny (d) := max 11 Bri () l211x
and

[N2(2), ... N2(20)] = [0.2500, 0.2986, 0.3853,0.4331, 0.5015, 0.5480
0.6079,0.6530,0.7079,0.7517,0.8032, 0.8458, 0.8946
0.9361,0.9829, 1.0235, 1.0686, 1.1084, 1.1520).

Another family of bounds, more local to each segment, may be obtained by

replacing the maximum value Noo (d) of >, Br; over all intervals [tg,tx41] by the

maximum % over the particular segment.

Choosing nth differences of the control point vector for n > 2, e.g. third
differences, leads to bounds that include at least one second difference estimate
such as the term Noo (d)| A2bg—1|. In particular in view of the analysis of repeated
subdivision, this does not result in better or structurally different bounds to the
bounds for second differences. For n = 0, we have from the partition of unity

12 = £ll0o,0,1] £ IPlloo,j0,1] + [€]0,j0,1] £ sz?lx|bi|a

and 1 — Bgd at 1/2 shows asymptotic sharpness of the bound as d — co.
For completeness we state the result for first differences.

Theorem 4.2 The distance from the univariate, scalar-valued, degree d poly-
nomial p to its control polygon £ is bounded by

Ip(t) = £()lloo,j0,1) < Loo(d)[|Abllso

where Loo(d) == 2Ny (d) = 4Noo (d) B? ([%1 /d).
2

10



Figure 4: The first antidifferences v;(t) := yxi(t) on t € [tg, tp+1] = [k, k + 1]/d,
ford=6and i =0,...,5 (solid except 73 dotted), and their sum (dash-dotted).

Proof With by = by =0, Ab; := b;11 — b;, and (c.f. Figure 4)

i i 0 ifi<k
Wit) ;=Y agj =Y Bf—Sk+1—dt ifi=k
§=0 j=0 1 if i > k,

we have Avyg; = Yk — Yk,i—1 = ak; and hence

d d—1 d—1
1P = £lloo,f0,1] = max | > awibilly = max || > Avibille = max || > —iAbilk
i=0 =0 =0

< [[Ab][coLoo (d)

11



where Loo(d) := maxy || Z?:o |vki|l|k- To determine Loo(d) we observe that
Yri > 0 for ¢ < k and vx; < 0 for ¢ > k and hence

d k—1 k—1 14 d i
d d
Shu == 3 w- Y Y E- Y [1-3 5
2;2 =0 i=k+1 i=0 j=0 i=k+1 7=0
k—1 k—1k—1 d 7
= Z ZBd 2D B+ > > B
J
=0 j= i=k+1 j=i+1 7=0 i=3 J=k+2 i=k+2
k—1

=) (k-j)B+ Z (j =k —1)BY = Buk + Brps1-
J=0 j=k+2

The missing term, vk, changes sign on [tg, tg41]:

k d d
B;?—(k+1)+dt=23g—(k+1)ZBf+ZjB;

M;r

Vek =
Jj=0 j=0 j=0
k
:Z(J—k )B{ + Z j—k—1)B} = Brri1 — Brk-
7=0 j=k+1

Since the control polygon of y¢r = Z?:o ¢; B4 is monotonically increasing and
¢k = cp1 = 0, there is a unique zero z, in [tg, tx+1] and

Ed:|7k'|: 2Bkk t < 2
— ' 2Bk, k41 t > 2k

. d . . .
Since Y., |7kil is a convex, non-negative function

Loo(d) = 2max{Ber(tr), Br,k+1(tx + 1)} = 2N1(d).

We omit the similar derivation of L;(d) such that
Ip(t) — £(t)lloo,0,1) < La(d)[|Ab]l-

12



5 Bounding the Hausdorff distance

Introduced by Felix Hausdorff in 1914, the Hausdorff metric p measures the
distance of two point sets £ and P. It has been used e.g. in fractal approximation
[13] and non-smooth optimization [4], and is defined (c.f. [9], [5]) as

P, L) := max{sup inf ||L — P||2, sup inf ||L — P||a}.
u(P, L) mX{Llégplépll ll2 P‘é?,ﬁég” ll2}

The two point sets of interest here are the curve segment P parametrized by p
and its control polygon £ parametrized by £. The two numbers whose maximum
is the Hausdorff distance, measure respectively the maximum distance of a point
on the control polygon to the curve segment and the maximum distance of a
point on the curve segment to the control polygon. The Hausdorff distance is
independent of the parametrization and is bounded from above by all parametric
distance measures:

(P, L) <|lp = lloo,0,1]-

The bound derived earlier for functions is also a sharp bound on the Haus-
dorff distance between the two point sets.

Lemma 5.1 The bound
p(P, L) < Neo (d)[[A2]|oo

is sharp for the Hausdorff distance of a curve segment P to its Bézier control
polygon L.

Proof Set z(t) = y(t) = 4(1 — t)t. Then the Hausdorff distance 1 is taken
on as the distance of the control point b; to the curve segment (Figure 5 left).
and the sharpness proof and perturbation argument of the function case apply
directly. D

For an example where, at least in the limit, the maximum distance is taken on
as the distance of a point on the curve to the control polygon, consider z(t) = t,
y(t) = hq(t), where g(t) := 4(1 —t)¢t. The distance from the curve point (1/2, h)
to the nearest point on the control leg is h — 8h® + O(h®) approaching the
Hausdorff bound of h as h goes to zero (Figure 5 right).

13
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Figure 5: Sharpness of the Hausdorff distance estimate.

6 Bounding subdivision

Refinement, in particular adaptive refinement of the control point sequence to
the function or curve can be achieved by creating control polygons for subinter-
vals of the domain. Specifically, we consider

d
p(at) = ppoq(t) == > _ bIBH(t)
i=0

the restriction of p(t) := E?:o b;Bd(t) to the interval [0,z], 0 < z < 1. The
coeflicients of the restriction can be computed by de Casteljau’s algorithm

b9 :=b;,i =0..d
forj=1.d
bl =1 —a)bl " +abll], i=0.d—j.
The recurrence expands to
i

b =b = Bi@)) =Y Bi(a)b
k=0 k=0

fori =0,...,d — 2. Figure 6 illustrates the second equality,
Agb? ) = bF — 2674 + bY,, = 2 (b — 2b% + b))
= 2% (Agb}) = 2* [Y_ Bi(z)Asbj1a].
j=0

The bound on the restriction is therefore just a scaled version of the original
bound.

Lemma 6.1 The distance between po )(t), the restriction of p to the interval
[0,2], and lj 5)(t), the corresponding control polygon, is bounded by

1(0,2]) = £10,2] ()|l oo,[0,0] < T*Noo (d) || A2B||so

14



Figure 6: The coefficients b7 of the restriction of the polynomial p to [0, z]
are obtained as convex combinations of the coeflicients b} of the ith step of de
Casteljau’s algorithm.

where ||A2b||oo s the mazimum absolute second difference of the coefficient se-
quence of pio,1]-

Since the bound is sharp for any quadratic we have the following corollary.
Corollary 6.1 The constants Noo(d) are sharp under subdivision.

For example, subdividing ¢(t) := 4(1 —t)t at 0 < 2 < 1 into g ) and q[, 1],
we get o] = 2z - 2(1 — t)t + 4(1 — 2)xt?, and

ll910,01(1/2) = £10,01(1/2)]| = |(z + (1 — 2)z) — 22| = 2?
equals the bound
;[2(22:) — 41— 2)a].

The next lemma, establishes the quadratic rate of convergence of the control
polygon to the curve segment under subdivision.

Lemma 6.2 The distance between the polynomial and its control polygon after
m-fold subdivision at the local parameter x is bounded by

Moo (d) || A2d|| oo where x := max{z,1 — z}.

Proof By symmetry, the bound for the polynomial restricted to the interval
[x,1] is

12,11(8) = €211 () lloo 1] < (1 = 2)*Noo ()| A2b] oo
and hence the distance of the curve segment to the union of the control polygons
of pjo,z) and py, 17 is bounded by x*Neo (d) || A2b||sc- DI

15



With the identity Asb?, = z® [Yj_o Bi(2)Asbgi1] derived earlier, the

K3
problem of finding the optimal subdivision parameter x becomes

. T 17{17
o izlr,nn‘?‘fiil{lAQbi [ [A2b; [}
i i
= min mgx{wzl > Bi(z)Asbgial, (1)) Bi(1 — 2)Asbg 1k}
k=0 k=0

e For d = 2, after scaling by Asbg, the problem becomes
min max{z?, (1 — z)?}

and z = 1/2 is optimal.

e For d = 3, assuming the curve is not a straight line, the second difference
can be normalized by dividing by a nonzero Asb;, without loss of generality
Asby. We may therefore assume that Asby = 1+ § and Asby = 1. The
problem becomes

min max{z?[1 + 6|, (1 — )%, 2*|(1 + 8) — dz|, (1 — 2)?|1 + §(1 — 2)|}

The numeric solution to the problem is displayed in Figure 7. The limiting
2

optimal value T4 & 0.43, is the solution of (1 — z)® = x2.
A popular criterion for determining the subdivision parameter for adaptive sub-
division is the curvature of the Bézier segment. We see that neither for d = 2 nor
for d = 3 is the point of maximum curvature necessarily the distance minimizing
subdivision parameter.

16



optimal subdivision parameters for degree 3
0.7 T T T

0.65

optimal x for subdivision

<--0.43

035 | | | | |
~4 -3 -2 -1 o
delta := [p0-2b1+b2)/[b1-2b2+b3]-1

Figure 7: The optimal subdivision parameter z of a cubic as a function of §,
where Asbg = 1+ 6 and Agb; = 1.

7 Bounding degree-raising

Expressing a polynomial of degree d in Bernstein-Bézier form in the basis B;.H'l
by multiplying the polynomial by B} + B} = (1 —t) +t is called degree-raising.
Clearly, the number of coefficients increases by one and since the new coefficients
are obtained as convex combinations of the original coefficients, it is possible to
show convergence of the sequence of control polygons corresponding to repeated
degree-raising to the graph of the polynomial on [0, 1] (see e.g. the analysis in
[14]). The next lemma reveals the rate and constant of convergence.

Lemma 7.1 Let 2°? be the control polygon of the polynomial p of degree d
raised to the formal degree 2%d. Then

lp = 2 fo1) < K(d 25 Voo (D) Acblloo, K (d,25d) 27

where ||Az2b||oo is the mazimum absolute second difference of the original coeffi-
cient sequence.

For the parabola g(t) := 4(1 — t)t, K(2,2k2) = (2F2 — 1)L,

Proof Define the coefficients by by

d d+1
(1—t+1) > bBIt) =) b BI(1).
=0 1=0

17



Differentiating twice yields

d—2 d—1
d(d—1)Y  Agbd B2 = (d+1)d Y AxbdH B!
1=0 =0

Since degree-raising averages, ||A2b%t1 ||, attains a maximum when all second
differences Ayb¢ are equal, implying
d-1
1226 oy < 51 1806
The distance between the control polygon £¢+! of the degree-raised Bernstein
representation and p is therefore

1~ € oo o) < K (ds d+ )loo ()| A6 oc

where K(d,d+ 1) := %N}"ﬂg). Analogously,

_ k B e
K(d,2%d) = d(d—1) Ny (2"d) 1 1 {d 1 ifdis even.

T 2RA2Fd—1) Neo(d)  2Fd-1/2F | £ ifdis odd.

The effect of degree-raising on the bounds is illustrated in rows 5 and 6 of
Figures 8 and 9.

Both degree-raising and subdivision generate control polygon sequences that
converge to the graph of the function. However, doubling the degree by repeated

degree-raising from 2*d to 2*¥*1d requires (2k+12d+1) - (2k‘;+1) ~ 3(2k§+1) addi-
tions and multiplications while generating the same number of coefficients via
subdivision at midpoints costs only 2* (g) operations. Moreover, the (asymp-
totic) reduction by 1/2 implies slower guaranteed convergence than the reduc-

tion by 1/4 of subdivision at the midpoint.

8 Bound improvement at the end points

Since p interpolates, the bound of Theorem 3 can be improved at the end-point

p(0) = bp and, symmetrically, at p(1) = bgq. The first-order Taylor expansion of

pat 0, p(0)+p'(0)t, agrees with the first leg of the control polygon, parametrized

by (1 — dt)bg + dtb;. Hence, for ¢t € [0,1/d] and £(t) € (0,1),

p"(£(1)
2

Ip(t) — [(1 — dt)bo + dtb1]| = #2

<

dd—-1
=D asp). 02

d—1
<E11Asb
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In other words, on [0,1/d], p is confined to a triangle with vertices by and
by £ G| A2b]| -

9 Bound examples

The gallery of examples collected in Figures 8 and 9 illustrates (1) sharpness
for the N, bound, (2) approximate sharpness of the No, bound, (3) sharpness
of the N; bound, (4) effect of inflection points, (5) more inflection points, (6)
degree-raising. In particular, Figure 9 shows the benefits of combining bounds.

10 Conclusion

The explicit bounds on the distance of the control polygon to its Bézier seg-
ment presented in this paper facilitate a constructive, quantitative derivation
of the fundamental piecewise linear control and approximation properties of
the Bernstein-Bézier representation. The proof technique applies to uniform
(B-)splines [11], splines with arbitrary knot sequences, and extends to several
variables not just by tensoring. Applications of the bounds for splines over
arbitrary knot sequences are given in [12].
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T. Kunkle, V. J. Srinivasan, U. Reif and the referees.
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(from top to bottom:) (1) [0 1 1 0], (2) [0 1 3 6 10 14], (3)
0 12 3 2 1],4[0 1 -1 0],(5)[0 =7 2 =5 4], (6) the same
polynomial raised to degree 10. (from left to right:) bounds implied by (a) the
L bound, (b) the Ny bound, (c¢) the Ny bound, (d) the N, bound.
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Figure 9: The control polygon is dashed, the bounding region shaded. (from top
to bottom:) functions as in Figure 8. (from left to right:) bounds implied by
(a) the min-max bound (b) the N, bound clipped against the min-max bound,
(c) the Ny, bound clipped against the convex hull, (d) the convex hull,
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