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Abstract

Combining the advantages of a low-degree polynomial
surface representation with Gauss’ divergence theo-
rem allows efficient and exact calculation of the mo-
ments of objects enclosed by a free-form surface. Vol-
ume, center of mass and the inertia tensor can be
computed in seconds even for complex objects with
10% patches while changes due to local modification of
the surface geometry can be computed in real time as
feedback for animation or design. Speed and simplic-
ity of the approach allow solving the inverse problem
of modelling to match prescribed moments.

1 Introduction

Realistic animation and geometric design must both
pay close attention to the physics implied by the first
few moments, the volume, center of mass and inertia
frame, of the objects they manipulate. A jug whose
fill level is inconsistent with the amount of water filled
into it, or one that does not topple over when the pro-
jection of the center of mass moves outside the sup-
port, puzzles and distracts the viewer and can lead
to disaster when unobserved in engineering design.
While animators and designers often have an excellent
intuitive grasp of the approximate physics implied by
shape, the immediate and exact feedback from a tool
like the one developed below can save the user both
time and energy. Real time visual feedback and vi-
sualization of moments and the solution of simple in-
verse problems help identifying critical points in the
moment distribution.

The key to fast and exact computation of moments
of smooth free-form surfaces is to combine the advan-

tages of a low-degree polynomial surface representa-
tion with Gauss’ divergence theorem. In Section 2,
we show how Gauss’ divergence theorem reduces the
computation of the moments of a solid to the evalua-
tion of an integral over the surface that can be eval-
uated explicitly if the surface has a piecewise polyno-
mial parametrization. In Section 3, we select surface
splines [10] as the currently most appropriate repre-
sentation of smooth free-form surfaces for fast and
exact moment computation. In Section 4, we discuss
the details of the evaluation of the surface integrals as
simple averages and bound the computation effort. In
Section 5, we measure and visualize moments and in
Section 6 we model geometry to match moments. Sec-
tion 7 lists extensions and more applications ahead.

1.1 Prior work

The engineering literature is rich in applications of
moments and papers that compute the moments based
on cellular, piecewise constant, or polyhedral, piece-
wise linear, approximations to the object (see e.g. [8],
[9] and the massprop command in the ACIS solid
modeler). The direct and exact computation of the
moments of smooth (and non-smooth) free-form sur-
faces as explained in this paper while accessible to
anyone familiar with advanced calculus is new in the
context of free-form surfaces of arbitrary patch layout
and topological genus.
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2 The elegant divergence theo-
rem

Applied by Gauss in 1813, the divergence theorem
(see e.g. [12] 10.51), relates a volume integral to an
integral over the surface. Given a map f : R® —
R3, its divergence V -f = > % f; and its normal
component f - N =Y f;N;, the theorem states that

/V-de:/f-NdS
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i.e. that the integral of the divergence of f over the
volume V equals the integral of the normal component
over the surface S of V.

To apply the theorem to moment calculation de-
note the parametrization of the surface S by

z(u,v)
x(u) = [z,y, 2](u,v) = (ygu,v;) ,
and the domain of x by U, i.e. (u,v) € U. The surface
normal is the vector
ox 0x

where n= —
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The crucial observation is that by change of variable

/dS:/ |n| dudv.
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That is, the area element |n| is the inverse of the
normalization factor of the normal direction so that

/V-de:/f-n/|n| ds
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Now if both f and x are polynomial the integrand is
polynomial; and if U is a simple domain, say a tri-
angle or square, then it is clear, and made precise in
Section 4, that the integral can be determined effi-
ciently, explicitly and exactly. This remains true if
the parametrization x of S consists of patches x* and
U is the union of the patch domains U?:
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We now consider specific choices of f that allow us
to determine the first three moments of a solid with
uniform mass distribution. It is efficient to choose
f =1[0,0, f5] so that we need to compute only

ne = 020y _ 0z 0y
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The zeroth moment, Mo = [;, dV, measures the vol-
ume enclosed by S. With f3 = z,

Mo =fUz n3 dudv. I

The first moments M; = fV z;dV represent the com-
ponents of the center of mass. Choosing f3 as zz, yz
and 22/2 respectively yields

M1 =[xz n3 dudv
My = [,yz nz dudv
M3z = [, 2*/2 n3 dudv

The second moments yield the components of the in-
ertia tensor
f(zg—l—wg)dV f:nzde f:c1z3dV
1= fzzzldV f(z‘f-i—wg)dV fwgwng
fwswldV fzszde f(zf—i—zg)dV

We list ./\/l,'j = fV .’L','.Z'jdv.

My = fU$2z ng dudv
Mz = [ zyz n3 dudv
Mz = [, 22%/2 n3 dudv
Moy = [, 4?2

ns dudv

Moz = fU y22/2 n3 dudv
Mss = [,;2°/3 n3 dudv

The above formulas assume that the volume has ho-
mogeneous density. If this is not the case but the
anti-derivative of the moment-weighted mass distri-
bution p(z,y, 2) is known, f3 can be chosen so that
similar formulas hold.



3 Selecting an efficient represen-
tation

The previous section did not depend on a particular
representation of the surface S. However, it pointed
out that for efficient and exact computability of the
moments the following properties of the surface patches
are desirable.

1. polynomial patches
2. low degree patches
3. few patches

4. simple domains

These properties rule out several otherwise excellent
surface representations. For example, S-patches [3]
and the recent construction by Hughes and Grimm [7]
are rational and of high degree so that integrals are
best evaluated by numerical approximation. Simplex
splines [6] use a large number of pieces and generalized
subdivision surfaces, e.g. [4] [1] [13], lack a global an-
alytic definition for application of the divergence the-
orem. Standard tensor-product B-splines match the
requirements but fail at modeling smooth surfaces of
arbitrary patch layout or topological genus. Trimmed
NURBS patches on the other hand generically violate
the requirement of simple domains.

Surface splines [10] seem to best fit the bill. Sur-
face splines define a piecewise cubic manifold capa-
ble of modeling smooth and non-smooth surfaces of
arbitrary patch layout and topological genus. The
embedding of the smooth manifold into R? is locally
governed by so-called cut ratios. These numbers al-
low for local distribution of curvature and fine-tuning
of shape; where they are set to zero sharp edges and
vertices result so that also purely polyhedral objects
can be modeled in this frame work. Surface splines
come in three flavors, with an underlying representa-
tion of exclusively 4-sided, exclusively 3-sided and a
mixture of 3-and 4-sided patches, respectively. Exclu-
sively 4-sided patches have recently been used for re-
construction [5]. However, the exclusively 3-sided and
the mixed representation have better shape proper-
ties, satisfy the strong local convex hull property and

have lower algebraic and parametric degree. More-
over, they too can be represented as standard linearly-
trimmed NURBS quilts and hence stored, transmitted
and rendered in standard form [11]. A brief synopsis
of surface splines is collected in the Appendix.

4 Computing surface integrals

To determine the moments, integrals of type
/ ziyd 2¥ns dudv
U

are evaluated. For cubic surface splines, the inte-
grands of the gth moment are scalar-valued polyno-
mial pieces in Bernstein-Bézier form of total degree

d=3(g+1)+4

in two variables, i.e. degree 7, 10 and 13 for the first
three moments. These pieces are exactly integrated
by taking the average of the Bernstein coefficients (see
e.g. [2]); that is integration consists of summing the
k:=(d+2)(d+1)/2 coefficients and dividing by k.

To verify that the moment calculation fits into an
interactive environment, we compute a bound on the
number of operations. The polynomial n3 is a prod-
uct of derivatives. Algorithms for differentiation and
multiplication of polynomials in the Bernstein-Bézier
form are standard and can be found in most CAGD
text books and in the short article [2]. Differenti-
ation of a vector-valued polynomial of degree d re-
quires d(d — 1)/2 vector differences. Multiplication
of two scalar-valued polynomials of degree d; and ds
respectively, requires (di + 1)di(d2 + 1)d» /4 multipli-
cations and additions. Thus computing ngs requires
3:4-64+2-2-94 15 =123 additions and 2-2-9 = 36
multiplications. The additional work for each moment
is tabulated below.

moment | d + :

n3 4 | 123 36
volume | 7 28460 60
centroid | 10 | 55+ 56-3 56 -3
inertia 13 1 91+110-3 | 110-3

Hence, we can compute all components of the first
three moments of a patch in less than 6K operations.



On a 100 MHz processor this allows computing at
least 10 patches per millisecond, enough for interac-
tive feedback when updating the surface.

5 Measuring Moments

The principal inertia directions are axes of symmetry
with respect to mass distribution and are computed
as eigenvectors of the inertia tensor Z. The eigenval-
ues of the inertia tensor measure resistance to torque.
Both sets of information are displayed in the inertia
frame, a stencil attached to the center of mass whose
legs are aligned with the principal inertia directions
and stretched according to the corresponding eigen-
values. A smoothed brick shape as shown in Figure
1 is probably the simplest example illustrating the
inertia frame. Figure 2 shows three snapshots of a
real time design sequence that modifies the geometry
of the brick. More complicated objects are shown in
Figure 3. In Figure 3(a), the geometry of the object
is changed by moving one arm of the robot gripper,
the result of lifting the surface spline control net. In
Figure 3(b), the geometry of the object is changed by
smoothing, the result of changing the surface spline
cut ratios from zero to 0.5. The shadow is generated
as an identical object with all z-components collapsed
to zero.

6 Modeling to match moments

The ability to measure moments efficiently as demon-
strated in the previous section is the key to solving
the inverse problem of designing geometry to match a
prescribed (set of) moments. In general this problem
is underconstrained since the geometry offers many
degrees of freedom. The standard approach to regu-
larizing the problem is to add variational constraints.
Rather than grazing on this fertile field, we look at
some practically relevant problems where the geome-
try is restricted to change only in one parameter.

6.1 Volume matching

Consider filling water into a jug held in fixed posi-
tion. Here, until overflow, the geometry of the water

Figure 1: The inertia frame of a smoothed brick
shape. The inertia frame is formed by the principle
directions of the inertia tensor attached to the center
of mass.

Figure 2: Change of the inertia frame under distortion
of the transparently rendered brick.



Figure 3: Change of the inertia frame under deforma-
tion and smoothing.

is fixed by the geometry of the container; the only
degree of freedom is the height of the water level. A
well-posed problem is to ask for the fill height h of
the container x given a fixed water volume V. The
problem is non-trivial, since the top surface of the wa-
ter at rest is a plane that cuts the container patches in
algebraic curves resulting in challenging boundary in-
tegrals when an exact solution is sought. Rotating the
container if necessary so that the negative z-direction
agrees with the direction of gravity the problem can
be formally written as

find h,such that volume x(h,u) = Vj.

The problem has the nice property that & is a mono-
tone function of the volume so that bisection will not
only succeed if the volume fits into the container but
also yield a sequence of upper and lower bounds in the
process. Newton’s method guarantees no such bound
and has to cope with the fact that h is generally not
a differentiable function of Vj: consider the rate of
change at the branch point when filling an extruded
T-shape.

Each bisection step requires computing a volume
bounded by the intersection of a piecewise cubic free-
form surface and a half-space. To avoid the exact
intersection computation, we subdivide the patches
in the vicinity of the intersection such that we overes-
timate or underestimate the volume already enclosed.
The computation is fast enough to allow the real time
animation shown in Figure 4. Here the volume is kept
constant and the fill height is recomputed while the
containing shape is interactively deformed.

6.2 Mass matching

As a second example, we determine the point of insta-
bility of a gripper placed on a table top. Here the free
parameter is the opening angle « and the condition is
that the projection of the center of mass m(x) comes
to lie on the on the table edge E, i.e.

find a such that m(x((a,u)) C E.

Bisection with a call to the mass computing module
rather than the volume module solves the problem.
The sequence of computations is animated in Figure



Figure 4: Deformation of an object alters the fill
height for a fixed fill volume.

5. Note that as a varies the blend of the finger with
the body is affected. Therefore the standard engi-
neering approach of decomposing the gripper into a
fixed and a moving part and adding their respective
centers of mass to compute the center of mass of the
whole object yields a less accurate result.

6.3 Inertia matching

The inertia tensor 7 is a positive definite, symmetric
matrix. As pointed out in Section 5, its eigenvectors
and eigenvalues can be used, together with the center
of mass, to define a frame that is unique if the eigen-
values are distinct. We can use this inertia frame to
efficiently find an unknown rigid motion by which an
object is displaced with respect to a reference posi-
tion. For example, in object registration, a cloud of
measured points from a physical object and a sur-
face model of this object (Figure 6) are to be brought
in agreement by a rigid motion. This motion is effi-
ciently computed as an affine transformation relating
the inertia frames of the two entities. In practice,
this method works very well even when the sampled
points are not exactly on the given model and is vastly
faster than sampling the surface model and attempt-
ing a least-squares fit of the two point clouds.

7 A sketch of further applica-
tions

Moment-based tools will give animators and design-
ers a much better feel for the objects they are work-
ing with and undoubtedly inspire innovative uses. A
likely application, hinted at in Figure 6, is physics-
based animation. Mechanical engineers for their part
may appreciate exact moment information for com-
plex objects.

As mentioned in Section 6, automatic shape mod-
ification based on matching moments is an intriguing
though underconstrained challenge. For a low degree
representation like surface splines, it is actually pos-
sible to relate a change of the moments explicitly to
a change of the spline parameters, kindling the hope
that variational criteria more complex than generic



Figure 5: Determining the point of instability when
varying the opening angle.

Figure 6: Using the inertia frame to match an object
to a cloud of sample points.

least-squares minimization will be well-defined and
computationally tractable.
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Appendix: Surface spline synop-
sis

Surfacing with surface splines consists of two stages.
In the first, illustrated in Figure 7, an arbitrarily con-
nected input polyhedron is transformed into a planar-
cut polyhedron by (edge and) corner cutting (cf [10]

Figure 7: Input polyhedron and planar-cut polyhe-
dron.

pp 649-650). A planar-cut polyhedron is a polyhe-
dron with every interior vertex surrounded by four
facets. The first and third facet are four-sided, the
other two must be planar if they have more than
four edges. — Zero depth cuts, corresponding to a
non-smooth embedding of the C' manifold into R3,
are permitted so that also purely polyhedral approx-
imations can be modeled and measured in this frame
work. — In the second step, the Bézier coefficients
of the cubic patches are computed as simple convex
combinations of the planar-cut polyhedron (cf [10] p
652).



