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Unrestricted control polyhedra facilitate modeling free-form surfaces of arbitrary topology and
local patch-layout by allowing n-sided, possibly non-planar facets and m-valent vertices. By cut-
ting off edges and corners, the smoothing of an unrestricted control polyhedron can be reduced
to the smoothing of a planar-cut polyhedron. A planar-cut polyhedron is a generalization of the
well-known tensor-product control structure. The routine Pcp2Nurb in turn translates planar-
cut polyhedra to a collection of four-sided linearly-trimmed bicubic B-splines and untrimmed
biquadratic B-splines. The routine can thus serve as central building block for overcoming topo-
logical constraints in the mathematical modeling of smooth surfaces that are stored, transmitted
and rendered using only the standard representation in industry.

Specifically, on input of a nine-point subnet of a planar-cut polyhedron, the routine outputs
a trimmed bicubic NURBS patch. If the subnet does not have geometrically redundant edges,
this patch joins smoothly with patches from adjacent subnets as a four-sided piece of a regular
C?' surface. The patch integrates smoothly with untrimmed biquadratic tensor-product surfaces
derived from subnets with tensor-product structure. Sharp features can be retained in this rep-
resentation by using geometrically redundant edges in the planar-cut polyhedron. The resulting
surface follows the outlines of the planar-cut polyhedron in the manner traditional tensor-product
splines follow the outline of their rectilinear control polyhedron. In particular, it stays in the local
convex hull of the planar-cut polyhedron.

Categories and Subject Descriptors: 1.3.5 [Computatinonal Geometry and object Mod-
elling]: boundary representations, surface representations, splines; G.1.1 [Interpolation]: spline
and piecewise polynomial interpolation; G.1.2 [Approximation]: spline and piecewise polynomial
approximation

General Terms: Algorithms

Additional Key Words and Phrases: free-form surface, arbitrary surface topology, arbitrary patch
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Fig. 1. (top) input polyhedron; (middle) planar-cut polyhedron; (bottom) NURBS surface.

1. INTRODUCTION

Polyhedra can be smoothed into free-form surfaces using a variety of approaches
such as rational blends, generalized subdivision or simplex splines (see e.g. [3], [1],
[2]). A major criticism leveled at these techniques is that they are incompatible, i.e.
cannot be represented exactly or efficiently in the dominant patch representation,
tensor-product B-splines. Tensor-product B-splines serve under the pseudonym
NURBS as a standard for storage, transmission and high-level rendering. How-
ever, NURBS impose a rectilinear, checkerboard-like surface-layout unsuitable for
modeling arbitrarily laid out facets of general free-form surfaces.

The incompatibility criticism seems also to apply to surface splines proposed in
[6], because surface splines employ three-sided surface pieces rather than the four-
sided tensor-product pieces. The routine Pcp2Nurb described in this paper over-
comes this barrier by efficiently and exactly representing collections of surface-spline
pieces as linearly-trimmed, regularly parametrized NURBS patches. This yields a
representation that on one hand complies with the B-spline standard and on the
other yields a low-degree polynomial representation of tangent continuous free-form
surfaces with arbitrary patch-layout that comes with a developed mathematical the-
ory and provable shape properties. As a proof of compatibility, Pcp2Nurb outputs
Open Inventor NurbsSurface [8] structures on input of a polyhedron. The result-
ing NURBS surface can be inspected using a standard display tool, here ivview. It
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Fig. 2. Trimmed NURBS patch with trim lines displayed in the domain.

is clear that the surface can equally well be represented, say as an IGES structure
and a MATLAB renderer based on the spline toolbox can be found on the author’s
homepage.

The following software is useful when working with Pcp2Nurb and its two driver
routines.

(1) A tool (graphics library) that renders linearly-trimmed tensor-product B-splines,
such as ivview on a Silicon Graphics workstation. (Trimming is restricting
evaluation to a subdomain of a standard domain; c.f. Figure 2.)

(2) A simple modeling environment capable of representing polyhedra and applying
planar cuts.

2. BACKGROUND

The principle underlying the algorithm and code is discussed in [7]: “Smoothing
Polyhedra made Easy” where the coefficients of three-sided, cubic, C' connected
patches are expressed as simple averages of a planar-cut polyhedron(see Section 3.1
for the definition of planar-cut polyhedron.) As a special case, the surface splines
described in [6] always group together four three-sided patches as shown in Figure
2. By rotating and linearly clipping the domain, each group can be represented as
one linearly-trimmed, bicubic, tensor-product NURBS patch.

The increased flexibility provided by the internal second-order knot lines of the
trimmed patches results in better surface parametrizations than bicubic or even
biquartic Bernstein-Bézier patches (cf. Theorem 2 of [5]). In particular, this con-
struction guarantees tangent plane continuity, the strong convex hull property, lo-
cality and affine invariance. The patches join seamlessly with tensor-product bi-
quadratic patches obtained by interpreting nine points forming four quadrilaterals
in the planar-cut polyhedron as a B-spline control net. The transition between
the trimmed bicubic patches and the biquadratic patches is automatically tangent
continuous (cf. [6], p 654).
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Fig. 3. The effect of locally changing the ratio for planar cuts from a default setting of 0.35.

3. USAGE

Figure 1 illustrates the two stages of the algorithm for three objects of increasing
complexity. A preprocessing step generates a planar-cut polyhedron from an arbi-
trary polyhedron, while the main step generates the spline coefficients from subnets
of the planar-cut polyhedron.

3.1 Preprocessing: Generating the planar-cut polyhedron

The goal of the preprocessing step is to transform an arbitrary input polyhedron
into a planar-cut polyhedron.

DEFINITION 3.1. A planar-cut polyhedron is a polyhedron with every interior
vertex surrounded by four facets. The first and third facet are four-sided, the other
two must be planar affine n-gons if they have more than four edges.

This conforms with the intuitive notion of (edge and) corner cutting except that
4-sided facets need not be planar (cf. the twisted facets in Figure 1, middle ). Any
rectilinear control mesh is a particular planar-cut polyhedron.

There are many strategies for generating a planar-cut polyhedron. The most
efficient strategy will depend on the particular class of surfaces modeled. A general
algorithm for generating a planar-cut polyhedron can be found in [6] pp 649-650.
The code provided with this paper is an independent module and does not re-
quire the data structures for maintaining polyhedra. Such data structures, e.g.
the half-edge data structure, can be found in [4]. Also many commercially avail-
able modeling environments provide the necessary functionality for maintaining a
planar-cut polyhedron.

When generating the planar-cut polyhedron, interpolation and curvature prop-
erties of the surface can be controlled. First, note that the depth of the cuts can
be chosen to determine in a natural way, the sharpness of features. Variation of
the extent of the cuts between 0% and 100% results in a continuous change of the
distribution of curvature. In particular, as Figure 3 illustrates, sharp features can
be produced by zero-extent cuts which amount to placing vertices or edges of the
planar-cut polyhedron on top of one another. The latter may be thought of as a
locally singular immersion of the smooth surface spline manifold and is the natural
limit of a smooth local homotopy from a smooth to a sharp shape.
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Fig. 4. (left) The default case: smoothness and containment in the local convex hull of the
polyhedron; (middle) smoothness and interpolation by moving the planes of the planar-cut poly-
hedron; (right) the local convex hull property and interpolation force sharp edges in any surface
representation; surface splines capture the case as the limit of a family of smooth but ever more
highly-curved surfaces.

Fig. 5. Vertices of the planar-cut polyhedron that determine one surface patch.

Interpolation of points and normals of the input polyhedron can be achieved
without solving a global system of equations. The key observation is that the surface
interpolates face centroids and face normals of the planar-cut polyhedron. Hence,
it suffices to place the centroids and normals of the planar-cut polyhedron so that
the input points and normals are matched (see Figure 4(middle)).

An example of a planar-cut polyhedron is provided with the driver routine
nurb_ivl.c. Consider the cube with vertex coordinates +2 as displayed in Fig-
ure 1 upper left. Cutting all corners at depth 0.5 yields 6 * 4 new vertices with
coordinates (1,1,2), (—1,1,2), etc.. The resulting planar-cut polyhedron is dis-
played in Figure 1 (middle-left) and Figure 5.
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Fig. 6. An ivview of the surface pieces generated by Pcp2Nurb. The three patches around the
central point are bicubic. The fourth, attached patch is biquadratic.

3.2 The routine Pcp2Nurb: Generating the spline coefficients from the planar-cut poly-
hedron

Each vertex of the planar-cut polyhedron gives rise to one linearly-trimmed bicubic
NURBS patch (cf. Figure 5). To generate the coefficients of the patch anchored at a
vertex Cyp, a nine-point subnet of the planar-cut polyhedron with vertices C;,i = 0..8
serves as input. As shown in Figure 5, the vertex sequences Cy,Cy,Csy,C3 and
Co, Cs,Cg,C7 each form a quadrilateral face of the planar-cut polyhedron. The
vertices Cy and Cj are centroids of faces with edge counts or valencies recorded as
ng and n;. The nine vectors C; and the two integers n; are the input to the routine
Pcp2Nurb. Pcp2Nurb returns the knot sequence and coefficients of a bicubic tensor-
product spline patch in B-spline representation. Note the intended similarity of this
nine-point subnet to the generic nine-point subnet defining a biquadratic tensor-
product patch. The distance of any point on the untrimmed bicubic from the convex
hull of the nine-point subnet is conservatively bounded by the maximal distance
between the centroid vertices Cy, Cs to any of the other C;.

The example nurb_iv1l.c illustrates the usage of Pcp2Nurb by generating four
Inventor V2.0 ascii NurbsSurfaces that can be rendered by ivview as shown
in Figure 6. Three of these NurbsSurfaces are linearly-trimmed, the fourth is
a regular biquadratic B-spline patch. This patch is added to demonstrate the
smooth integration of both patch types. To illustrate the use of varying depth cuts
when generating the planar-cut polyhedron, the driver routine accepts a command
line parameter which varies the sharpness of the blend. A second driver routine,
nurb_iv2.c generates the spline surface shown in the central column of Figure
1(middle).
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