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Abstract. To efficiently animate and render large models consisting of bi-cubic
patches in real time, we split the rendering into pose-dependent, viegndent
(Compute-Shader supported) and pure rendering passes. Thavsplis recom-
putation of curved patches from control structures and minimizes eadrdue

to data transfer — and it integrates nicely with a technique to determine a near-
minimal tessellation of the patches while guaranteeing sub-pixel accudacy
DX11 implementation generates and accurately renders 141,000 aditviate
cubic patches of a scene in the movie ‘Elephant’'s Dream’ at more tiafi@es

per second on a 144®00 screen using one GTX 580 card.

1 Introduction

Curved, smooth, piecewise polynomial surfaces have beaiaralard in high end,
movie-quality animation. Subdivision surfacek[1,2]jspNURBS) surfaces or&ier
patch-based surfaces are chosen over polygonal, polyhedfaceted-based represen-
tations both for aesthetic reasons and for their abilityeforesent models more com-
pactly. In particular, curved surfaces yield more lifeelikansitions and silhouettes and,
in principle, support arbitrary levels of resolution wititaexhibiting polyhedral arti-
facts (see Fid.]1). But while curved surfaces are commoray irscinematic production
and geometric design, they are not commonly used for infigeaciewing. Animation
artists and designers typically work off faceted modelsgivan resolution and have to
call special off-line rendering routines to inspect theetawtcome of their work. At the
other end of the spectrum, game designers opt for coaraetéd models, made more
acceptable by careful texturing, to achieve real-time eging with limited resources
under competing computational demands, e.g. computing gaysics. In an attempt
to narrow the gap, a number of mesh-to-surface conversgmritiims have been devel-
oped in the past years that run efficiently on the GPU (sedd®€g}. But so far their
rendering has depended on screen projection heuristibsutiguarantees of accuracy.
The present paper explains how to render, at interacties rahd on high-resolution
screens, a substantial number of animated curved surfeeesffperceptible polyhedral
artifacts, parametric distortion and pixel dropout. Thpgrdeverages and extends the
authors’ approach [3] for efficiently determining the neadirimal tessellation density
required forpixel-accurate rendering (see Sectiofi]2). Determining the near-minimal
tessellation density requires, depending on the modekdmt 1% and 5% extra work.
However, by avoiding overtessellation, pixel-accuratelezing is often faster than ren-
dering based on heuristics (see [Ey. 2, middle and righgci@ipally, the paper shows



Fig. 1. Faceted versus smoothProog’s head.

how to integrate the approach into animation the animatipelipe to make it inter-

active. Rather than repeatedly sending large control nets the CPU to the GPU for
rendering, we load the base mesh(es) once and we apply nengdt-and skeletal-
animation transformations to the characters’ mesh modeherGPU and convert it
into a curved surface. We then use the natural partition ohated sequences into
pose-dependent, view-dependent and pure rendering fresvesmpute both the an-
imation and the pixel-accurate patch-tessellation in alioation of two, one or no

Compute Shaders preceding each standard rendering pdss GRU.

As proof of concept, we animated and rendered 141K patch@ssokene of the
open-source movie Elephants Dream. In 2006, each frameeaithvie required 10
minutes of CPU time at full-HD resolutionl[4]. We can now rendhe higher-order
surfaces and textures (leaving out post effects) on the GPtdoee than 300 frames
per second Fid._15 thanks to parallelism and new algoritiaistake advantage of this
parallelism. To wit, doubling processor speed every yaaresR006 would reduce the
time per frame only to ca 10 seconds per frame, three ordermghitude slower.

Overview. In Sectior 2 we review the definition of pixel-accurate ramutgof curved
surfaces, animation basics and the conversion of facetasthtmth curved surfaces.
Section B presents the idea and formulas for enforcing fasigelirate rendering. Sec-
tion[4 presents the algorithm and an efficient implementaiiacluding pseudo-code,
of pixel-accurate rendering of animated curved surfaceSedctiofd we analyze the
implementation’s performance and discuss trade-offs ¢ednative choices. We also
compare to a similar widely-available DX11 sample program.

2 Background

To efficiently pixel-accurately render the surfaces of BEmts Dream on the GPU,
our proposed animation framework has to near-optimallytsetessellation factor for
Bézier patches after replicating linear skeletal animatielative shape-key animation
(morph targets), and mesh-to-surface conversion on the. GPU
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Fig. 2. Balancing pixel-accuracy and rendering speed\o red or green colors should be visible
in the lower row if the tessellation is sufficiently fine for pixel-accuracy. Tée and the green
spots indicate a parametric distortion of more than 1/2 pixel (cf. the coldingdower left).
Additional objects are analyzed in Fig. 12 bf [3].

Tessellation and Pixel-accuracyA key challenge when working with a curved sur-
face is to set the density of evaluation so that the surfaaedulation is a good proxy
of the smooth surface. The density, or tessellation, hae gBufiiciently high to prevent
polyhedral artifacts and parametric distortions, and cieffitly low to support fast ren-
dering. In modern graphics pipelines, the level of detail lsa prescribed by setting the
tessellation factor(s) of each patclp : (u,v) € U — R? of the curved surface. In 3D
movie animation, it is common practice to over-tessellattshade a very high number
of fragments. Real-time animation cannot afford this sieaeh fragment is evaluated,
rasterized and shaded. Since the camera is free to zoomut of the scene, fixed level
of tessellation results in faceted display or overtessefiaThis disqualifies approaches
that require setting a priori. Popular screen-based heuristics based on magadge-
length or estimating flatness (see elg. [B], [6, Sec 7]) dacnote with guarantees or
require an a priori undetermined number of passes to reelysiplit patches and verify
that the measure falls below a desired tolerance.

Pixel-accurate rendering, Figl2, middle, determines the tessellatiorsidgijjust) fine
enough to guarantee correct visibility, prevent pararoatistortion or pixel-dropout.
Pixel-accuracy has two components: covering (depth) acguend parametric (distor-
tion) accuracy([B, Section 3Tovering accuracy requires that each pixel’s output value
be controlled by one or more unoccluded pieces of patchesevpmjection overlaps
it sufficiently andparametric accuracy requires that for each pixel the following holds
(cf.Fig.[3). Let[3] be the pixel's centerp : R? — R3 a surface patch ang,v) a
parameter pair. Then the surface paiit;, v) € R must project into the pixel:

1P(p(u,v)) = [§]llec <0.5. (1)
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Inequality [1) preventparametric distortion: if P(p(u,v)) lies outside the pixel asso-

Patch Linear
Approx.

Rasterization

Fig. 3. Triangulation and projection distorting the image of a curved surface. Pixel-accurate
rendering guarantees that the distortion is at below pixel level.

ciated with parameter@:, v) then the wrong texture, normal or displacement is com-
puted causing artifacts incompatible with accurate rendeParametric inaccuracy is
color-encoded in Fig.]2: lack of accuracy is shown in red areg. Predictably, too
coarse a tessellation yields a high frame rate and too fingseltation slows down ren-
dering. The largely grey coloring of the teapot in Fib. 3, wve, under pixel-accurate
rendering, indicating a distortion just below the pixelgsinold, is therefore highly de-
sirable. Work similar to[[B], but based on the bounds’in [dlules [8] and most re-

cently [9].

Skeletal animation.The most common technique for character animation, useley t
artists of Elephants Dream, is linear blend skinning, alson as linear vertex blend-
ing or skeletal subspace deformation][10]. Here a charéstéefined by a template,
a faceted model, called skin. The models animation or dedtiom is defined by a
time-varying set of rigid transformations, called bonésttare organized into a tree
structure, called skeleton. Any vertex position in a linelnd skin is expressed as a
linear combination of the vertex transformed by each booe®sdinate system: at time
t;, @ convex combinatiow;, of bone transformationB,, is applied to each skin vertex
initial positionv(0):

v(t) = (O wiRi()v(0), > wp=1. 2)
k k

The weightsu;, are assigned by the artist. Sectidn 4 provides pseudo-code.

Since this direct linear combination of rotation matriceserically does not yield
a valid rotation, a number of improvements have been sued €&l 12]. In particular
dual quaternion$ [12] are sufficiently simple to have begulémented in Blender. Our



framework is agnostic to the choice of animation since itslementation as a Compute
Shader allows alternative animation techniques to be gutest such as deformation
of the mesh points with respect to control cages (see le.(1411%,16]). However,
since the artists of Elephants Dream used linear blend signand compensated for
its shortcomings, our real-time rendering applies linskeletal animation.

ah A AN A

(a) without shape keys (b) with shape keys

Fig. 4. Emo’s mouth opened witehape keys

Shape Keys.For more nuanced, say facial expressions, Elephants Draaanhence
our implementation, additionally applies shape keys, &sowvn as morph targets or
blend shapes. Shape keys average between morph targetsengjimg standard poses
(see e.g[[17] for a detailed explanation.)

Mesh-to-Surface Conversionln recent years, a number of algorithms have been de-
veloped to use polyhedral meshes as control nets of curwddces and efficiently
evaluate these curved surfaces on the GPU. Such algoritichgle conversions to
piecewise polynomial and rational representation [120@1] as well as subdivision
[22/23.6,24]. Our framework is agnostic to the choice ofvession algorithm. To be
able to compare our GPU implementation to a widely accesgibplementation, we
chose Approximate Catmull-Clark (ACC) [20]: optimized dka code of ACC ani-
mation, SubD11, is distributed with MicroSoft DX11|25]. &loutput of ACC is one
bi-cubic patch patch for each face of the (refined) contradim@lus a pair of tangent
patches to improve the impression of smoothness aslin [261g that parametric accu-
racy is not concerned with whether ACC provides a good appration to subdivision
surfaces, an issue of independent interest[(cf. [27,28]).

3 Computing near-minimal accurate tessellation levels

The two main ingredients that make pixel-accurate rendegfficient are avoiding re-
cursion and triangulating as coarsely as possible whilesgueeing pixel-accuracy (see
Fig.[§). This section explains how to address both challerdyecomputing a near-
minimal tessellation factor in a single step according to the approach_in [3]. The tes-
sellation factor is computed with the help of slefe-boxe3j [Bilinear interpolants of
these slefe-boxes, called slefe-tiles, sandwich the dusueface and the triangulation
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Fig. 5. Optimal tessellation of curved surfacesFewer, hence bigger triangles improve effi-
ciency. (Note the different use of color-coding from K. 2).

as illustrated in Fid.J6. Such slefe-boxes are not tradititmounding boxes enclosing a
patch. Rather the maximal width of slefe-boxes gives an uppend on the variance
of the exact curved surface from triangulation. This refigbe goal: to partition the
domain sufficiently finely so that the variance and hencewhdth’ of the all projected
slefe-boxes and therefore of the slefe-tiles falls belowesgribed tolerance, e.g. half
the size of a pixel.

Fig. 6. The bi-linear interpolants to groups of four slefe-boxes defieée-tilesthat locally en-
close the surface. Note that the tiles, while useful of collisionnaker explicitly computedfor
the pixel-accurate rendering.

Since knot insertion stably converts NURBS patches of degte d-) to tensor-
product patches in &ier-form gIMap2in OpenGL) with coefficients;; € R? and



basis functioné;’-l,

1

do
ZZc”bdz )b (u), (u,v) € [0..1], (3)

=0 j=0

and since subdivision surfaces can be treated as nestedafirsyich patches, we fo-
cus on tensor-producté&ier patches. (Knot insertion can be a pre-processingostep
done on the fly on the GPU. Rational patches are rarely usediimagion; if needed,
for strictly positive weights, bounds in homogeneous spdas standard estimates of
interval arithmetic do the trick.) Moreover, slefe-boxes patches in tensor-product
form can be derived from bounds in one variable and the coatipus for building
slefe-boxes are separate in eaghy andz coordinate. We can therefore simplify the
discussion in the next subsection to one univariate polyaopiecep in Bézier-form
with coefficientsc; € R and parametex € [0 .. 1]:

d o
p:R—=>Rum plu Zc] -:= <_>(1—u)d_3u3.
J

Subdividable Linear Efficient Function Enclosures abbreviated aslefes tightly
sandwich non-linear functions such as polynomials, splines and subdivision surfaces,
between simpler, piecewise linear, lower and upper funstipandp:

p<p<Dp,
[30/31.3%.38.20,34.,35]. Specifically, in one variaklé]][8hows that (cf. Fid17gft)

p(t) < p(t) Zmax{O Vip}ad (1) (4)
j=1
d—1
+> min{0, Vip} aj ().

with the matching lower boungobtained by exchangingin andmax operators. Here

are polynomials that span the space of polynomials of deggra@gus the linear func-
tions £(¢); ;?m is an m-piece upper ant’.\;?m an m-piece lower bound on?; and
Vip == ¢j_1 — 2¢j + ¢j41 is a second difference of the control pointsplfs a lin-
ear function, upper and lower bounds agree. The tightneisedfounds is important
since loose bounds result in over-tessellation.[Big. 7lvskem example froni [3], where
the min-max or AABB bound is looser by an order of magnitudantthe slefe-width
w 1= max¢[o..1) P(t) — p(t).

Being piecewise linear, the bounding functio?j’sm anda?m in (@) are defined by
their values at the uniformly-spaced break points. Thes&gegacan be pre-computed.
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Fig. 7. Theslefe-constructionfrom [29]. (a) The functiom(t) := —b3(t) + b3(t) and its upper
boundp. (b) The lower bound ., and the upper bounai® tightly sandwiching the function
a1 = —2b}(t) — Lb3(t), usingm = 3 segments. Tabld 1 shows = max.;)p — p to be

< 04072. The corresponding number fdrl [7] (not iIIustrated)gis: 0.75 and for the min-max-
bound3.

t=| 0 1/3 213 1

a?s 0 -.370370.. -.296296.. 0

ﬁa -.069521.. -.439891.. -.315351.. -.008732..
Table 1. Values atbreakpoints of am = 3-piece slefe This table and the tables for higher
degree can be downloadéd[36]. Similar slefe-tables exist for spliitsmiform knots[[30].

Since, ford = 3, i.e. cubic functionsa3 (1—t) = a3(t), Tablel lists all numbers needed
to compute Fid.17, e.g., far= 1/3, the upper and lower breakpoint values370370..
and—.439891... Moreover, by tensoring, the 8 numbers suffice to computbalhds
required for ACC patches: the tensor-product pafi¢h (3) eabdunded by computing
the upper values;;,i = 0,...,d; (for eachj = 0,...,my) of the 1-variable slefe in
the v direction and then treat the values as control points whempcbing the upper
slefe in theu direction:

di ma2 mo Mmi
plu,v) <Y bl ()b (u) <Y Y ebl (u)b (v).
i=0 j=0 =0 i=0

Ensuring pixel-accuracyThe slefes just discussed are for functions, i.e. one coateli
of the image. Since we want to control the variance of theaserpatches from their
triangulation we now consider a patgh: R? — R? with three coordinates bounded
by bilinear interpolants to upper and lower values at the goints (u;,v;), ¢,j €

{0,1,...,m}. For each(u;,v;), abbreviatingp;; := p(u;,v,), pij == p(ui,vj), @




slefe-box is defined as

_ _ Pij T Pij 1 1g.

P(ui,v5) == 5 + [*5-5] (Pij *@)a (5)
where[—3..1]3 is the0-centered unit cube. That s, the slefe-box is an axis-atigrox
in R? (see red boxes in Fifll 8) centered at the average of uppepaed Values.

x,y pixel size

Fig. 8. Projected slefe-boxesThe projected slefe-boxes (red) are enclosed by axis-aligned
rectangles (blue, dashed) whose linear interpolant (grey area)sesctbe image (here of
p([ui—1..us],v5)). The (square-root of the) maximal edge-length of the dashednglet in
pixel size, determines the tessellation facter

To measure parametric accuracy, we define the minimal saeenlinate-aligned
rectangle that encloses the screen projection:= P(p(u;,v;)) of to the slefe-box

with indexi, j (see the blue dashed rectangles in Eig. 8):

Gij = [%i5-%i5] X [y, i3] 2 P(B(ws, v5))- (6)
The maximal edge length over all; is the parametrigvidth w,,. This width is a close
upper bound on the variance from linearity in the paramedéion since the width of
the projected boxes dominates the width of the slefe-tildgt-therefore need not be
computed. The width shrinks to zero when the parametesizéicomes linear.

We want to determine the tessellation factgy € R so thatw,, < 1. Letw,,(p)
be the width of the projection of patgh measured for a slefe wit pieces and,,
a constant betweenh5 and1, depending only omn. Since partitioning the.-domain
into 1/h segments, and re-representing the function over the snivatiéeval before re-
applying the bound, scales the maximal second differenaa dpiadratically tch? its
original size (cf. FiglB), partitioning both the and thev-domain into

7-xy(Tna p) = k'rn V Wim (p) (7)
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3 segments 2 * 3 segments

W =0.2767 W =0.0579

Fig. 9. Shrinkage of the widthfor a curve segment under subdivisibiack: cubic curve, control
polygon,blue: piecewise linear interpolantgd: slefe,

many pieces, confines the parameter distortion to below aitgaf. Fig.[I0) Analo-
gously, the widthw, (m, p) of the depth componetof the projection measures depth
of the slefe-tiles and therefore trustworthiness of theiffeln test for covering accuracy.

1 ¥
;_ZW <pixe| — h>\W
h

Fig. 10. Shrinkage of slefaunder h-fold subdivision.

To guarantee that any error due to linearization is belowlpsize and the depth
threshold tol, we compute the width for lown, saym = 2 or 3, and then apply{7) to
obtain a safe tessellation factor of

Tp i= max{7yy (M, p), km /W, (m, p)/tol, }. (8)

Fig.[d shows that the resulting triangles are, as hopedypically much larger than
pixels and experiments confirm thit (8) determines a neainmai 7, in the sense that,
for typical models, already a 10% decreasegrieads to pixel inaccuracy.
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skeletal animation, conversion

newt CS (or PS)

news look upr  grid generation evaluation shading
else lvs|[_bws | _TE |

GPU buffer:b, animation data; , camera, materials, textures

Fig. 11. Mapping of animation and conversion to curved surfaces tdhe DX11 graphics
pipeline. CS=Compute Shader, VS=Vertex Shader, HS= Hull Shader, TEella#sn Engine,
DS= Domain Shader, PS=Pixel Shader.

4 Algorithm and Implementation

The main costs, that our algorithm for rendering animatedvenl surfaces seeks to
minimize, are the conversion of the mesh to the surface matefficients and rendering
the patches with pixel accuracy. For details of the impletai@on of pixel accuracy as
a Compute Shader pre-pass, we refef to [3]. The key to miimignthe conversion cost
is to restrict conversion to pose changes of the animatedctea. The key to efficient
pixel-accurate rendering is to integrate the control ofwagance of the curved patch
geometry from its triangulation, as just explained in Sadf, with the conversion to
minimize overhead. Specifically, we split the work as foldow

— For everypose (geometry or mesh connectivity) change, re-compute théraon
mesh, all affected patches and slefe-boxes.

— For everyview change, measure the width, of the boxes’ screen projections and
their depth variance,.

— Determine the tessellation factoaccording to[(B), i.e. a low as possible while still
guaranteeing pixel-accuracy to make best use of the efficsterization stage on

the GPU.

Pose and view changeTo minimize conversion and computation cost, our imple-
mentation calls either two, one or no Compute Shader pasfies/éd by a standard
DX11 rendering pass. This is illustrated in Hig] 12 and thaitkeare as follows.

(@) If the scene does not change in view or pose then the sémietated curved
surface at time stefy py, is rendered with the existing tessellation factors.

(b)  For each view change at time stethat is not an animation step, the modelview
transformations are applied to the sapg@nd the tessellation factorsare updated
to guarantee pixel-accuracy for the new viewpoint. Thengaxecuted.

(c) Foreach pose change (animation gfephe coefficients of the animated curved
surfacep, are computed by executing the animation and conversios.stég co-
efficients ofp, are stored in the GPU buffer. Then the slefe-boxes are reputad
and stored and the same computations are executed as in (b).
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Throughout, only modified patches are updated.

Mapping to GPU Shader Code.In modern graphics APIs the triangulation density is
set by up to six tessellation factors per surface patch. Whértterior tessellation factors
are set tor, while the other four tessellation factors, correspondmthe boundaries,
are set to the maximum of the interior factors of the patchesisg the boundary.
This coordination in the Compute Shader pass guaranteesséstent triangulation by
avoiding mismatch along boundaries between differengatated patches.

The pseudo-code of the Compute Shaders is given below.l&g&{@seudo-code of
pixel-accurate slefe-estimates is presented in Sectioh[B].oThe rendering pass is
standard DX11 rendering.

animated curved surfage

animationt changeg update]

viewing s changed update, shaﬂe

evaluate, rendgp;:

Fig. 12. Updating slefe-boxe$] and the tessellation factorsis only required when the input
mesh is animated or the view is changed.

The data flow outlined in Fig. 12 is made concrete by the fdligupseudocode.
The mapping of the pseudocode to the DX11 graphics pipesirshown in Fig[Tl1.
Recall that each bi-cubic patch hax 4 = 16 coefficients.

function MAIN (¢, s)
if newt then COMPUTE.SHADER POSE CHANGE(t)
end if
if news then COMPUTE.SHADER.VIEW _CHANGE(S)
end if

end function

[shared-mem cpts[16]]
[num_threads 16]
function COMPUTE.SHADER POSE CHANGE(t)
vtx_id < thread_id + (patch_id * 16)
SHAPEKEY (vtx_id, t)
SKELETAL_ANIMATION (vtz_id, t)
CONVERT_TO_ACC(vtx_id)
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end function

[shared-mem width[16]]
[num _threads 16]
function COMPUTE.SHADER.VIEW _CHANGE(s)
vtz _id < thread_id 4+ (patch_id % 16)
width[thread_id] < project_slefe(vtx_id)
synchronize_threads()
if thread_id = 1then
TF <+ pick-max_width(width)
save_to_gpu(TF_buf fer, patch_id, TF)
end if
end function

function SHAPEKEY (vtz_id, t)
base_sk < get_base_shape_key(vtx_id)
shaped_vtx < (0,0,0)
for sk in shape_keys[vtz_id] do
sk_wt < get_shape_key_wt(vtx_id, sk, t)
shaped vtz += sk_wt * (sk.v[vtx_id] — base_sk.v[vtx_id)])
end for
rest_vtx[vtr_id] < shaped_vtx + base_sk.v[vtz_id]
end function

function SKELETAL_ANIMATION (vtz_id, t)
tot_wt < sum_in fluence_weights(vtz_id)
final_mat + zero-matriz(4,4)
for bone; inin fluencing_bones[vtz_id) do
posed_bone_mat < pose_mat(bone;, t)
rest_bone_mat_inv + rest_mat_inv(bone;)
bone_wt < get_bone_wt(vtx_id, bone;)ltot_wt
final_mat += (rest_bone_mat_inv x posed_bone-mat * bone_wt)
end for
posed_vtz[vtx_id] + rest vtz[vtz_id] * final_mat
end function

function CONVERT_TO_ACC(vtx_id)
cpts(thread_id] < (0,0,0)
for i < 0 to stencil_size[vtx_id] do
stencil_vtx <+ posed_vtz|[stencil lookup[vtx_id, )|
cpts[thread_id]+=stencil wt[vtz_id, i] * stencil vtz
end for
normalize(cpts[thread_id])
save_to_gpu(cpt_buf fer,vtx_id, cpts[thread_id))
synchronize_threads()
slefe < update_slefe(thread_id)
save_to_gpu(slefe_buf fer,vtz_id, slefe)
end function
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skeletal animation conversion grid generationevaluation shading

subD11[25] <[ vs [ hs |==-[TE |~ ESNN-EN

GPU buffer:b, animation datagona, Camera, materials, textures

Fig. 13. DX11 SubD11 implementation[[25]CS=Compute Shader, VS=Vertex Shader, HS=
Hull Shader, TE=Tessellation Engine, DS= Domain Shader, PS=Pirele8h

GPU processing |% of total
skeletal animation + conversipn 58
slefe bounds 4

pose change total 62

view change 6

rendering pass 32

Table 2. Distribution of work per frame among pose, view and rendering. Plosiege dominates.

5 Discussion and Comparison

Performance. Table[2 shows the work distribution of a rendering cycle. Pose
change consists of mesh animation and conversion plus pagaiion of slefe-box ver-
tices. The pose change dominates the work, but the recotigutd the slefe bounds
accounts for less than 4%. The slefe bounds and their prajectake up ca 10% of
the overall work. According to measurements in Section Bhfthe bounds are within
12% of the optimal for widely-used, representative test@plas in computer graphics
(the tessellation factor in the implementation [df [3] waadwertently scaled by/2).
Given that tight bounds reduce work when accurate rendéirgguired, it is not sur-
prising that 10% computational overhead buys a considesgi#edup compared to the
overtessellation of conservatively-applied heuristics.

We used an NVidia GeForce GTX 580 graphics card with InteeCbQuad CPU
Q9450 at 2.66GHz with 4GB memory to render the geometry oftbeie Elephants
Dream. Elephants Dream is a 10-minute-long animated mohieses source is open.
In 2006 it was reported to have taken 125 days to render, aanguup to 2.8GB of
memory for each frame in Full-HD resolution (1920080) [4]. That is, each frame
took on the order of 10 minutes to render. Since the Eleph2wmgam character meshes
of Proog and EImo contain triangles, but ACC requires a dladral input mesh, we
applied the standard cure of one step of Catmull-Clark sigidn yielding 140,964
curved surface patches for Proog and Emo together. In oueimgntation, we repli-
cated Elephants Dream except that we did not apply postteffecas to isolate the
effect of improved patch rendering. The 141K textured bitctACC patches render
at over 300 frames per second (fps) with full pixel-accurd@ye also used a variant
of ACC that avoids the increase in patches and rendered 328sqand 350 triangles
at 380 fps when animating every frame and 1100 fps when aimnighat 33 frames per
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second.) For comparison, the SubD11 demo scene i Hig. 14khgaadrilaterals and
its frame rate varies with the user-set tessellation fatto(see upper left of Fid.14)
between 250 fps at the coarsest |e¥dl' = 1 and 23 fps at TE 64. For a detailed
analysis of how model size, screen size, etc. affect pigeltate rendering seel[3].
Memory usage and data transferBy placing the animation and the conversion from
the quad mesh to the&ier patches onto the GPU, the approach is memory efficient
and minimizes data transfer cost. For example, one framgeifPtoog and Emo scene
has up to 0.25 million bi-cubic &ier patches requiring 206.5 MB of GPU memory.
Traditional CPU-based animation would transfer this antairdata to the graphics
card at every frame. In our approach, for the same sceneijgstat startup, the static
mesh of 4MB plus 9MB of shape key data are transferred; alscskieletal anima-
tion data per frame (45kB for 684 ‘bones’) and the 289 shapys k&kB) are packed
into GPU buffers at startup. Moreover, the near-optiegilemeral triangulation via
the tessellation engine saves space and transfer cost penripamassive, ‘pre-baked’
triangulations.

Relation to Micro-polygonization. An established alternative for high-quality render-
ing, used in 3D movie animation, is micro-polygonizati®icro-polygonization owes
its prominence to the Reyes rendering framework [37]. Stweonical implementa-
tions of micro-polygonization are recursive (¢fl [5]), moepolygonization is harder to
integrate with current graphics pipelinés][38] and leadwntitiple passes as refinement
and testing are interleaved. Even on multiple GPUs, theeetiade-off between real-
time performance and rendering qualfty|[39] (RenderAmgro-polygonization aims
to tessellate the domaliii of a patch into(u, v) triangles so that theize of the screen
projection of their image triangles is less than half a piBsl contrast, pixel-accurate
rendering aims at minimally partitioning the patches, grebugh so that the difference,
under projection, between the triangulated surface antitikanon-linear surface is less
than half a pixel: pixel-accurate rendering forces ¥agance, between the displayed
triangulated surface and the exact screen image, to bevwisible pixel threshold.

Comparison with the DX11 ACC SubD11 distribution. Our implementation is sim-
ilar to that of SubD11[]25]: both implement skeletal aniroatand apply mesh con-
version by accessing a 1-ring neighborhood of each quaehalla However, our imple-
mentation uses a sequence of Compute Shaders to animateramitavhile SubD11

uses the Vertex Shader and the Hull Shader. Sed Hig. 11 faxtéwution pipeline of

our algorithm and compare to that of SubD11, Eid. 13.

Since SubD11 executes in a single pass it appears to be niwiersgf However,
the Vertex Shader (VS) animation and Hull Shader (HS) caiwarthat perform the
bulk of the work in SubD11need to be synchronized by the irdgfker mechanism
to prevent conversion before every vertex of a surface patahimated; and SubD11
does not support interactive adaptive tessellation (witltoacks) and must re-execute
animation and conversion steps even when no view or poseetatur.

In our approach the main work, apart from rendering, is etegtin the Compute
Shader (CS). This automatically provides the necessamghsgnization and allows co-
ordination for interactive GPU-baseulaptive tessellation without cracks. Using the
Compute Shader also allows saving partial work in the GPU{ebthe animated sur-
facep,; and the tessellation factorg and thereby reduces data transfer and commu-
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Fig. 14. DX11 SubD11 modefrom [25] consisting of 3,749 ACC patches (plus 150,108 flat
triangles). The screen is captured at 1440x900 resolution. S&tiihg= 1 results in polyhedral
artifacts, at the shoulder and neck, while setting it high to remove thesactstiflecreases the
frames per second by an order of magnitude.

nicates edge tessellation factors for adaptive renderiitigowt mismatch. Executing
only the appropriate type of the CS avoids re-computatiod, guarantees sub-pixel
accuracy. The end of the next section compares timings. thdéuadvantage of using
the Compute Shader is that it allows an indexed list rathean thfixed-size array when
accessing neighbors. The Hull Shader limitation on priragiin SubD11 constrains
the vertex valence, i.e. the number of points that can besaedeto construct the ACC
patches. This matters for Proog and Emo models which coB&@rvertices of valence
32.

Compute Shader vs. Pixel ShadelVe explored executing animation anecomputation
in a Pixel Shader (PS) pass. For large data sets, our CS iraptation was clearly more
efficient (see Tablgl3; Note that the CS has less overheacdhteatra pass.). This can
partly be attributed to higher parallelism: we can use 18&dtls per patch in the CS
as opposed to one per patch on the PS. (We could use 16 pixis PS, but would
then have to synchronize to be able to compytéVe also tried to use the Hull Shader
(HS). But not only is the HS computationally less efficientoomrent hardware, but the
HS also can not provide the necessary communication of mdaptssellation factors
to neighbor patches. The rightmost column*\8 Table[3 shows that just executing
the animation in the Vertex Shader is already slower thanwugigy animation and con-
version in the CS. This explains why our code is considerfdsier than SubD11, even
though our code guarantees sub-pixel accuracy while Sulloé$ not.

Anim Updates/Se€S |PS |VS*
33 311|184{253
every frame 13053 |75

Table 3. Performance in frames per second when placing animation and cdioputr onto
the CS or PSor* just the animation onto the VS.
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6 Conclusion

To optimally leverage the approach to pixel-accurate rendef [3] to skeleton-based
animation, we partitioned the work for pixel-accurate reniing into stages that match
animation-dependent transformations and view-time dégeincamera motions. This
allocation is as natural as it is practically powerful: iioals us to combine interactive
animation with high-quality rendering of curved surfacé®r gaming and animation
it is crucial to spend minimal effort in redrawing static iges since many other op-
erations, say physics simulations, compete for computauress. Also, in the game
setting, the user often pauses to react to new informatiomthere is not continuous
animation. The resultis accurate for the given bi-cubiclpas — distortion is below half
a pixel, i.e. the error is not visible; it is efficient — thesenio recursion and triangles are
of maximal size; the adaptation is automatic — there is nd h@emanually setting the
level of detail; and our implementation is fast, renderidg Kk patches at more than 300
frames per second.

We tested the framework by rendering scenes of the moviehtgp Dream at
10x real-time, leaving enough slack for larger data sets, cerpixel shaders and the
artists’ other work. Since the final pass is a generic DX1deeimg pass, it is fully
compatible with displacement mapping (not used in EleghBnéam) and post effects.
(We are not claiming pixel-accurate displacement, sinisertbtion is not well-defined:
displacement maps prescribe discrete height texturesehatre interpretation.) The
rendering speed can provide high visual quality under a&utire response. This may
be useful for interactive CAD/CAM design in that the user ander has to guess a
suitable level of triangulation.

Fig. 15. Proog and Emo sceneendered in 7 seconds by Blender on a Intel Core 2 Duo CPU at
2.1GHz with 3GB memory; and iB x 10~ seconds by our GPU algorithm.
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