Refinable bi-quartics for design and analysis

Kęstutis Karčiauskas Jörg Peters

Vilnius University University of Florida
Input – Catmull-Clark (CC) nets

B-spline (CC) net
Input – Catmull-Clark (CC) nets

B-spline (CC) net

bicubic ring + tensor-border of degree 3
Guided subdivision

CC-net, $n = 5$
Guided subdivision

CC-net, $n = 5$

bicubic ring
Guided subdivision

CC-net, $n = 5$

bicubic ring

guide
Guided subdivision

- CC-net, \(n = 5 \)
- Bicubic ring
- Guide
- Of degree bi-4
Guided subdivision

CC-net, \(n = 5 \)

bicubic ring

guide

of degree bi-4

bicubic ring + guide
Guided subdivision

CC-net, $n = 5$

bicubic ring

guide

of degree bi-4

bicubic ring + guide

guided rings
Guided subdivision

CC-net, $n = 5$

bicubic ring

guide

of degree bi-4

bicubic ring + guide

guided rings

highlight lines
Two crossing beams
Two crossing beams

mesh

CC refinement
Two crossing beams
Two crossing beams

mesh CC refinement layout highlight lines
Two crossing beams

- Mesh
- CC refinement
- Layout
- Highlight lines

- CC-net
- 6 rings + cap
Two crossing beams

mesh
CC refinement
layout
highlight lines

CC-net
6 rings + cap
guided
Two crossing beams

mesh CC refinement layout highlight lines

CC-net 6 rings + cap guided Catmull-Clark
Assembling Bézier patches from corner jets

\[
\begin{pmatrix}
\frac{\partial^2 f}{\partial v^2} & \frac{\partial u \partial^2 f}{\partial v} & \frac{\partial^2 u \partial^2 f}{\partial v^2} \\
\frac{\partial^2 f}{\partial v} & \frac{\partial u \partial^2 f}{\partial v} & \frac{\partial^2 u \partial^2 f}{\partial v} \\
\frac{\partial f}{\partial v} & \frac{\partial u \partial f}{\partial v} & \frac{\partial^2 u \partial f}{\partial v}
\end{pmatrix}
\rightarrow
\text{Hermite data in Bernstein-Bézier form}
\]
Assembling Bézier patches from corner jets

\[\begin{pmatrix} \frac{\partial^2 f}{\partial v^2} & \frac{\partial u \partial^2 f}{\partial v \partial u} & \frac{\partial^2 f}{\partial u^2} \\ \frac{\partial f}{\partial v} & \frac{\partial u \partial f}{\partial v \partial u} & \frac{\partial^2 f}{\partial u^2} \\ f & \frac{\partial f}{\partial u} & \frac{\partial^2 f}{\partial u^2} \end{pmatrix} \rightarrow \text{Hermite data in Bernstein-Bézier form} \]
Assembling Bézier patches from corner jets

\[
\begin{pmatrix}
\frac{\partial^2 f}{\partial v^2} & \frac{\partial u \partial^2 f}{\partial v \partial u} & \frac{\partial^2 f}{\partial u^2} \\
\frac{\partial v f}{\partial v} & \frac{\partial u \partial v f}{\partial u \partial v} & \frac{\partial^2 v f}{\partial u^2} \\
f & \frac{\partial v f}{\partial u} & \frac{\partial^2 v f}{\partial u^2}
\end{pmatrix}
\rightarrow
\]

Hermite data in Bernstein-Bézier form

bi-4

assembled tensor-border
Characteristic map of Catmull-Clark subdivision
Characteristic map of Catmull-Clark subdivision as sampling tool
Characteristic map of Catmull-Clark subdivision as sampling tool

guide

sampled rings
Guide of degree bi-4

preguide of total degree 4: piecewise C^1; C^2 at central point
Guide of degree bi-4

preguide of total degree 4: piecewise C^1;
C^2 at central point

increasing flexibility with linear shear L:
Guide of degree bi-4

preguide of total degree 4: piecewise C^1; C^2 at central point

increasing flexibility with linear shear L: preguide $\circ L$
Guide of degree bi-4

preguide of total degree 4: piecewise C^1; C^2 at central point

increasing flexibility with linear shear L: preguide $\circ L$

3×3
Guide of degree bi-4

preguide of total degree 4: piecewise C^1; C^2 at central point

increasing flexibility with linear shear L:
preguide $\circ L$
$3 \times 3 \bullet$
$13n + 6$ dof
Guide of degree bi-4

preguide of total degree 4: piecewise C^1; C^2 at central point

increasing flexibility with linear shear L: preguide $\circ L$
$3 \times 3 \bullet$
$13n + 6$ dof
$6n + 1$ of CC
Characteristic parameterization
Characteristic parameterization
Characteristic parameterization for sampling
Characteristic parameterization for sampling

\[L^{-1} \]

sampled \(C^1 \)
Characteristic parameterization for sampling

- Sampled C^1
- C^2 correction
Characteristic parameterization for sampling
Assembling bi-4 rings

tensor-border → C^1

The quality of C_1 and C_2 surfaces is alike; C_1 has more analysis functions, more sparse analysis matrix. By contrast, in regular bi-3 case: more C_1 functions, more dense analysis matrix.

K. Karčiauskas, J. Peters (VU, UF)
Assembling bi-4 rings

tensor-border

C^1

C^2

The quality of C^1 and C^2 surfaces is alike; C^1: more analysis functions, more sparse analysis matrix. By contrast, in regular bi-3 case: more C^1 functions, more dense analysis matrix.
Assembling bi-4 rings

tensor-border

C^1

C^2

macropatches internally C^3
Assembling bi-4 rings

quality of C^1 and C^2 surfaces is alike;
Assembling bi-4 rings

tensor-border

\[\rightarrow \]

\(C^1 \)

\(C^2 \)

macropatches internally \(C^3 \)

quality of \(C^1 \) and \(C^2 \) surfaces is alike; \(C^1 \): more analysis functions, more sparse analysis matrix.
Assembling bi-4 rings

quality of C^1 and C^2 surfaces is alike; C^1: more analysis functions, more sparse analysis matrix. By contrast, in regular bi-3 case: more C^1 functions, more dense analysis matrix.
Reformulation towards traditional subdivision

Original dof

New structure
Reformulation towards traditional subdivision

Original dof contains almost all data for assembling bi-4 rings.

New structure

⊿ Fewer arithmetic operations ⇒ faster evaluation;

⊿ new refinement is akin to traditional subdivision;

⊿ considerably larger precalculated stencils;

⊿ considerably better quality.
Reformulation towards traditional subdivision

Original dof contains almost all data for assembling bi-4 rings.

of tensor-border: ○ are defined by ● and ●;

Completion

Fewer arithmetic operations ⇒ faster evaluation;

new refinement is akin to traditional subdivision;

considerably larger precalculated stencils;

considerably better quality.
Reformulation towards traditional subdivision

Original dof contains almost all data for assembling bi-4 rings. of tensor-border: ◦ are defined by ● and ○; averaging;

New structure

Completion

Fewer arithmetic operations ⇒ faster evaluation; ⊿

new refinement is akin to traditional subdivision; ⊿

considerably larger precalculated stencils;

considerably better quality.
Reformulation towards traditional subdivision

Original dof contains almost all data for assembling bi-4 rings. of tensor-border: ○ are defined by ● and ●; averaging; correction to C^2.
Reformulation towards traditional subdivision

Original dof contains almost all data for assembling bi-4 rings. of tensor-border: ○ are defined by ● and ○; averaging; correction to C^2.

▷ Fewer arithmetic operations \Rightarrow faster evaluation;

Completion
Reformulation towards traditional subdivision

Original dof contains almost all data for assembling bi-4 rings.

New structure:

- of tensor-border: • are defined by • and •;
- averaging; correction to C^2.

- Fewer arithmetic operations \Rightarrow faster evaluation;
- new refinement is akin to traditional subdivision;

Completion
Reformulation towards traditional subdivision

Original dof contains almost all data for assembling bi-4 rings.

of tensor-border: ○ are defined by ● and ◦; averaging; correction to C^2.

▷ Fewer arithmetic operations ⇒ faster evaluation;
▷ new refinement is akin to traditional subdivision;
▷ considerably larger precalculated stencils;
Reformulation towards traditional subdivision

Original dof contains almost all data for assembling bi-4 rings.

of tensor-border: ○ are defined by • and ●; averaging; correction to C^2.

 jScrollPane少吃 arithmetic operations ⇒ faster evaluation;
 jScrollPane新 refinement is akin to traditional subdivision;
 jScrollPane considerably larger precalculated stencils;
 jScrollPane considerably better quality.
Central G^1 bi-4 cap

well-defined curvature at eop;
C^1 connection to last guided ring
Central G^1 bi-4 cap

well-defined curvature at eop; C^1 connection to last guided ring

$$\partial \hat{f}_v + \partial \hat{f}_v - (2c(1 - u) + \frac{2}{3} cu) \partial \hat{f}_u = 0$$

$$\partial \hat{f}_v + \partial \hat{f}_v - \frac{2}{3} c(1 - u)^2 \partial \hat{f}_u = 0$$
Homogeneous functions I

Homogeneous function of degree d: $F(\lambda x) = \lambda^d F(x)$

$d = 4$
Homogeneous functions I

Homogeneous function of degree d: $F(\lambda x) = \lambda^d F(x)$

d = 4
Homogeneous functions I

Homogeneous function of degree d: $F(\lambda x) = \lambda^d F(x)$

$d = 4$

$d = 3$
Homogeneous functions I

Homogeneous function of degree d: \(F(\lambda x) = \lambda^d F(x) \)
Homogeneous functions II
Homogeneous functions II

$\mathbf{d} = 4$

$\mathbf{d} = 5$

$\mathbf{d} = 6$

$\mathbf{d} = 7$

$\mathbf{d} = 8$
Homogeneous functions II

\[d = 4 \]
\[d = 5 \]
\[d = 6 \]
\[d = 7 \]
\[d = 8 \]
Eigenfunctions

Top row: $d = 2$ (hyperbolic shape); bottom row: $d = 3$
Eigenfunctions

Top row: $d = 2$ (hyperbolic shape); bottom row: $d = 3$

eigen-guide
eigen-ring
Eigenfunctions

Top row: $d = 2$ (hyperbolic shape); bottom row: $d = 3$
Eigenfunctions

Top row: \(d = 2 \) (hyperbolic shape); bottom row: \(d = 3 \)

eigen-guide
eigen-ring
eigen-cap
surface:

eigen-ring scaled by \(\lambda^s \), \(s = 0, 1, \ldots, m - 1 \) and eigen-cap scaled by \(\lambda^m \); \(\lambda \) is subdominant eigenvalue of Catmull-Clark subdivision.
Convex shape

CC-net, $n = 5$
Convex shape

CC-net, $n = 5$ layout
Convex shape

CC-net, $n = 5$

layout

Gauss curvature

highlight lines
Convex shape

CC-net, $n = 5$

CC-net, $n = 6$

Catmull-Clark

layout

Gauss curvature

highlight lines
Convex shape

CC-net, $n = 5$

CC-net, $n = 6$

Catmull-Clark

guided after one CC refinement

layout

Gauss curvature

highlight lines
Convex shape

CC-net, $n = 5$

CC-net, $n = 6$

Catmull-Clark guided after one CC refinement default
Exotic shape (Mitsubishi logo)

CC-net, $n = 9$
Exotic shape (Mitsubishi logo)

CC-net, \(n = 9 \)

6 guided rings

+ cap
Exotic shape (Mitsubishi logo)

CC-net, \(n = 9 \)

6 guided rings + cap

8 guided rings + cap
Examples

Exotic shape (Mitsubishi logo)

CC-net, $n = 9$

6 guided rings + cap

8 guided rings + cap

highlight lines
Dominant multi-sided surfaces

mesh, $n = 6$
Dominant multi-sided surfaces

mesh, $n = 6$

layout
Examples

Dominant multi-sided surfaces

mesh, \(n = 6 \)

layout

highlight lines
Examples

Dominant multi-sided surfaces

mesh, $n = 6$

layout

highlight lines
Examples

Dominant multi-sided surfaces

mesh, $n = 6$

layout

highlight lines
Dominant multi-sided surfaces

mesh, $n = 6$

layout

highlight lines
Examples

Refinability: embossing the details

CC-net, $n = 8$
Catmull-Clark
default
Refinability: embossing the details

CC-net, $n = 8$

Catmull-Clark

default
Summary

New class of smooth high quality bi-4 surfaces using

• subdivision ⇒ refinable C^1 (C^2) surfaces;
• guided subdivision + G^1 central cap ⇒ good highlight line distribution.

Thank you!
Summary

New class of smooth high quality bi-4 surfaces using

- subdivision \Rightarrow refinable C^1 (C^2) surfaces;

- guided subdivision + G^1 central cap \Rightarrow good highlight line distribution.

Thank you!
Summary

New class of smooth high quality bi-4 surfaces using

- subdivision \Rightarrow refinable C^1 (C^2) surfaces;
- guided subdivision + G^1 central cap \Rightarrow good highlight line distribution.
Summary

New class of smooth high quality bi-4 surfaces using

- subdivision \Rightarrow refinable C^1 (C^2) surfaces;
- guided subdivision + G^1 central cap \Rightarrow good highlight line distribution.
- Built-in eigen-structure characterized and determined by the guide.
New class of smooth high quality bi-4 surfaces using

- subdivision \Rightarrow refinable C^1 (C^2) surfaces;
- guided subdivision + G^1 central cap \Rightarrow good highlight line distribution.
- Built-in eigen-structure characterized and determined by the guide.

Thank you!