GPU Smoothing of Quad Meshes

Y. Yeol

University of Florida.

T. Ni

University of Florida.

ABSTRACT

We present a fast algorithm for converting quad meshes oG g

to smooth surfaces. Meshes with 12,000 input quads, of ws0éh
have one or more non-4-valent vertices, are converteduaial
and rendered with 9 9 resolution per quad at 50 frames per sec-
ond. The conversion reproduces bi-cubic splines wheresssiple
and closely mimics the shape of the Catmull-Clark subdivisiur-
face by c-patches where a vertex has a valence different &rom
The smooth surface is piecewise polynomial and has weliele
normals everywhere. The evaluation avoids pixel dropout.

Keywords: subdivision, GPU, smooth surface, quadrilateral mesh

Index Terms: 1.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Curve, surface, solid, and ohjepte-
sentations; 1.3.7 [Computer Graphics]: Three-Dimendi@raph-
ics and Realism—Animation

1 INTRODUCTION AND CONTRIBUTION
Due to the popularity of Catmull-Clark subdivision [3], glia

A. Myles*

University of Florida.

J. Peters'
University of Florida.

V. Goel®

Advanced Micro Devices.

Figure 1: GPU smoothed quad surfaces with displacement mapping.

2. every extraordinary quad is converted into a compositehpa
(shortc-patch) with cubic boundary and de ned by 24 coef-
cients, Figure 2, (c);

meshes are common in modeling for animation. Quad meshes are

meshes consisting of quadrilateral facets without resiricon the
valence of the vertices. Any polyhedral mesh can be corénte

a quad mesh by one step of Catmull-Clark subdivision, butaggo
designer creates meshes with the quad-restriction in rontthat
no global re nement is necessary.

For real-time applications such as gaming, interactivenation
and morphing, it is convenient to of oad smoothing and reimte
to the GPU. In particular, when morphing is implemented an th
GPU, it is inef cient to send large data streams on a rourpl twi
the CPU and back. Smooth surfaces are needed, for examfie, as
base for displacement mapping in the surface normal dinecf8]
(Fig 1). Current and impending GPU con gurations favor e
plicit surface de nitions as derived below over recursidk ned
surfaces.

For GPU smoothing, we distinguish two types of quads: omgina
and extraordinary. A quad igrdinary if all four vertices have 4
neighbors. Such a facet will be converted into a degree 3 at&p
in tensor-product Bézier form by the standard B-spline &ziBr
conversion rules [4]. Therefore, any two adjacent patclesved
from ordinary quads will joinC2. The interesting aspect of this
paper is the conversion of tie&traordinaryquads, i.e. quads having
at least one and possibly up to four vertices of valemée4. We
present a new algorithm for converting both types of quadten
y so that

1. every ordinary quad is converted into a bicubic patch in
tensor-product Bézier form, Figure 2, (b);

e-mail: tni@cise.u .edu
Te-mail:yyiguy@gmail.com
*e-mail:marcianx@gmail.com
8e-mail:Vineet.Goel@amd.com
fle-mail:jorg@cise.u .edu

3. the surface is by default smooth everywhere (Lemma 1);
4. the shape follows that of Catmull-Clark subdivision;

5. conversion and evaluation can be mapped to the GPU to ren-
der at very high frame rates (at least an order of magnitude
faster than for example [2, 12] on current hardware).

(a) quad neighborhoodp) hicubic (c) c-patch

Figure 2: (a) A quad neighborhood de ning a surface piece. (b) A
bicubic patch with 4 4 control points. This patch is the output if the
quad is ordinary, and used to determine the shape of a c-patch (c) if
the quad is extraordinary. A c-patch is de ned by 4 6 control points
displayed as and can alternatively, for analysis, be represented as
four Cl-connected triangular pieces of degree 4 with degree 3 outer
boundaries identical to the bicubic patch boundaries.

1.1 Some Alternative Mesh Smoothing Techniques on
the GPU

A number of techniques exist to smooth out quad meshes. Uatmu
Clark subdivision [3] is an accepted standard, but does asitye
port to the GPU. Evaluation using Stam's approach [13] i<mD-

plex for large meshes on the GPU. [2, 12, 1] require separated
qguad meshes, i.e. quad meshes such that each quad has ahenost o
point with valencen 6 4. To turn quad meshes into separated quad
meshes usually means applying at least one Catmull-Cldoétisu
vision step on the CPU and four-fold data transfer to the GRU.

Figure 3: GPU smoothed quad surfaces: orange patches correspond
to ordinary quads, blue patches to extraordinary quads.

more detail, Shiue implements recursive Catmull-Clarldétibion
using several passes via the pixel shader, using texturestdo
age and spiral-enumerated mesh fragments [12]. Bolz tedauthe
subdivision functions up to a given density and linearly bame
them in the GPU [1]. Bunnell provides code for adaptive re ne
ment. Even though this code was optimized for an earlier igene
tion GPUs, this implementation adaptively renders the Fragure
3) inreal-time on current hardware [2] (See Section 5 forrajgari-
son with our approach). The main difference between our and B
nell's implementation is that we decouple mesh conversiomf
surface evaluation and therefore do not have the primitipéosion
before the second rendering pass. Moreover, we place omer
early in the pipeline so that the pixel shader is freed foritaafthl
tasks.

Two alternative smoothing strategies mimic Catmull-Clsulk-
division by generating a nite number of bicubic patches.téPe
generates NURBS output [11], that could be rendered, faneia
by the GPU algorithm of [6]. But this has not been implemented
our knowledge. The method of [10] generates one bicubicygae¢c
quad following the shape of Catmull-Clark surfaces. Sirwese
bicubic patches typically do not join smoothly, Loop and &sh
fer compute two additional patches whose cross productoappr
mates the normal of the bicubic patch. As pointed out in [f#§
trompe l'oeil represents a simple solution when true smuoegh
is not needed. Comparing the number of operations in cartsiru
and evaluation, the method of [10] should run at compargi#eds
to our GPU quad mesh smoothing (see also Section 6).

2 THE CONVERSION ALGORITHM

Here we give the algorithm for converting the quad mesh intfc
fcients that de ne a smooth surface of low degree. Analyéithe
properties of this new surface type and the implementatfche
algorithm on the GPU follow in the next sections. Essentidhie
algorithm consists of computing new points near a vertexgu$a-
ble 1 and, for each extraordinary quad, additional point®ating
to Table 2 (see Figure 4). In Section 3, we will verify thatté@ew

N NN
Q/\/
\/.\/ ® .

vertex neighborhood: Table 1/"

c-patch interior: Table 2

Figure 4: Vertex neighborhoods with coef cients v and eij and c-
patch interiors with coef cients bl ;, bi,;, b, .

points de ne a smooth surface and in Section 4, we show how the
two stages naturally map to the vertex shader and geomeddesh
stage, respectively, of the current GPU pipeline.

Pon 2

Pon 1

Figure 5: Smoothing the vertex neighborhood according to Table 1.
The center point p , its direct neighbors pyj and diagonal neighbors
p2j+1 form a vertex neighborhood.

fi = (4p + 2p2j+ 2poje2+ P2j+1)=9
g = (fj+fj 1+p +p=4

v o= > 2e+(n 3p
= v+ n—;épzécos%e, j=01.

Table 1: Computing control points v, e, f and t, the projection
of e at a vertex of valence n from the mesh points p; of a
vertex neighborhood; the subscripts are modulo 2n. By default,
Sp:= cp+t 5+ (ch+ 9)(ch+ 1) =16, the subdominant eigenvalue of
Catmull-Clark subdivision.

In the rst part, we focus on a vertex neighborhood. vArtex
neighborhoodconsists of a mesh point and mesh pointgy,
k= 0;:::;2n 1 of all quads surrounding (Figure 5). A ver-
tex v computed according to Table 1 is the limit point of Catmull-
Clark subdivision as explained, for example, in [7]. For 4,
this choice is the limit of bicubic subdivision, i.e. B-gpdi evalua-
tion. The rules forej and f; are the standard rules for converting
a uniform bicubic tensor-product B-spline to its Bézigonesenta-
tion of degree 3 by 3 [4]. The pointgare a projection og; into a
common tangent plane (see e.g. [5]). The default scalerfagtis
the subdominant eigenvalue of Catmull-Clark subdivisife note
that forn= 4, ej:2= 2v € andss = 1=2 so that the projection
leaves the tangent control points invariantjas e;:

2
forn=4; tj=v+ Z(Ej ej+2)= v+(ej V)=¢gi (1)
In the second stage, we focus on the quads. Combining informa
tion from four vertex neighborhoods as shown in Figure 6, & c
populate a tensor-product patgtof degree 3 by 3 in Bézier form

[4]:

3 3 3
ouv) =8 &g | U@ wke
k=0"=0

vl v

The patch is de ned by its 16 control pointg:. If the quad is
ordinary, the formulas of Table 1 make this patch the Baapre-
sentation of a bicubic spline in B-spline form. For examjptethe
notation of Figure 6(gko)k=0;::3 = (VO;tS;th;vl). If the quad is
extraordinary, we use the bicubic patch to outline the skepee

if extraordinary

16

Figure 6: Patch construction. On the left, the indices of the control
points of g are shown. Four vertex neighborhoods with vertices v
each contribute one sector to assemble the 4 4 coef cients of the
Bézier patch g, for example goo = V°, gip = eg g11= % gzgo= V4,
O31= e% (we use superscripts to indicate vertices; see also Figure 8).
On the right, the same four sectors are used to determine a c-patch
if the underlying quad is extraordinary. Note that only a subset of the
coef cients of the four triangular pieces b' is actually computed to
de ne the c-patch. The full set of coef cients displayed here is only
used to analyze the construction.

bhyy = byt B! 3t6)+ ,l st V)
+ ()
by = blgot () t'+1)+ Lewt vt
firl e|+1)
4(§+§*1)(
by, = g+ 3(bhy+ by DY by)=16
+(byyp+ bllzzﬁ blz&? blz% =16

Table 2: Formulas for the 4 3 interior control points that, together
with the vertex control points VV and the tangent control points t!,

de ne a c-patch. See also Figures 8 and 9. Here ¢\ := cosgniﬂ, §:=
sin%’i2 and superscripts are modulo 4. By default, g = (é’1i3:0vi +
3(&,+ €,)+ 9f1)=64, the central point of the ordinary patch.

replace it by a c-patch (Figure &), A c-patch has the right degrees
of freedom to cheaply and locally construct a smooth surfide
introduce the c-patch in terms of a well-known Bézier forfreo
polynomial pieceo' of total degree 4 [4]:

w)™ (2

busw):= @ uluz(l g

k+ +m=4
k'sm 0

. 4l
bk mkl 'm

The c-patchis equivalent to the union of fou', i = 0;1;2;3 of
total degree 4. But it is de ned by only 46 c-coef cients con-
structed in Tables 1 and 2:

vi;tg);til;bim; bi121; bi112; i=01,23:

These 24 c-coef cients impli/ the missing interior contralifts
of the representation (2) b@+ continuity between the triangular
pieces: forj = 0;1;2;3 andi = 0;1;2;3,

(b3]lj+bl3 jj)_z @)

and the boundary control poinb%o are implied by degree-raising
[4]:
bhoo = V;

i —
b3 501+ — b03]1+]

bi:= (V+30)=4; bhyo= (to+ 11" 1)=2;
blgg:= (VI1+ 30 =4 b= VP (4)

In particular, a tensor-product
identical boundary curves of
Basis functions corresponding to
the 24 c-coefcients of the c-
patch can be read off by setting
one c-coef cient to one and all
others to zero and then applying
(3) and (4) to obtain the repre-
sentation (2).

~To derive the formulas for
b, and its symmetric counter-
partb},, note that the formulas
must guarantee a smooth tran-
sition betweerb' and its neigh-
bor patch on an adjacent quad,
regardless whether the adjacent

patch and a c-patch have
degree @here they meet.

Figure 7: Dark lines cover
the control points involved in
the C? constraints (5). The

points on dashed lines are

quad is ordinary or extraordi-
implied by averaging.

nary. That is, the formulas are
derived to satisfisimultaneously
two types of smoothness constraints (see Section 3). Byasint
b1, is not pinned down by continuity constraints. We could cleoos
eachb) ; , arbitrarily without changing the formal smoothness of the
resulting surface. However, we opt for increased smoothatthe
center of the c-patch and additionally use the freedom teetjo
mimic the shape of Catmull-Clark subdivision surfaces, asd
earlier for vertices. First, we approximately satisfy f@# con-
straints across the diagonal boundaries at the central pgjnby
enforcing

3
2 1 1 0 0 %1 b%ll bizgl q
§0 1 1 0 g gb%lzé 1 gg%u b%Zl qé)
01 8 0 ;}12 311 821 q
bi15 311 b @

whereq:= 742 o(bl;; bi,;). The perturbation byis necessary,
since the coef cient matrix of th€? constraints is rank de cient.
After perturbation, the system can be solved with the lagaggn
implied by the rst three We add the constraint that the agerof
b}, matchegy := =g} 5 2) the center position of the bicubic patch.
Now, we can solve for thb} ;,, i = 0;1;2;3 and obtain the formula
of Table 2.

3 SMOOTHNESS VERIFICATION

In this section we formally verify the following lemma. Fdnet
purpose of the proof, we view the c-patch in its equivalepree
sentation (2) as four Bézier patches of total degree 4.

Lemma 1 Two adjacent polynomial pieces a and b de ned by the
rules of Section 2 (Table 1, Table (), (4)) meet at least

(i) CZ%ifaand b correspond to two ordinary quads.

(i) Clifaand b are adjacent pieces of a c-patch;
(i) Clifaand b correspond to two quads, exactly one of which
is ordinary;

(iv) with tangent continuity if a and b correspond to two diffaren
extraordinary quads.

Proof (i) If a andb are bicubic patches corresponding to ordinary
quads, they are part of a bicubic spline with uniform knotd an
therefore mee€2. (i) If a andb are adjacent pieces of a c-patch
then Equations (3) enfore@! continuity.

For the remaining cases, lebe a triangular piece. Letthe pa-
rameter corresponding to the quad edge betvimgg= \°, where

u= 0 and the valence isy andbgag= v} whereu= 1 and the va- Then, comparing the rst two Bézier coef cients ¢fb(u;0) and
lence isny (see Figures 8 for (iii) and 9 for case (iv)). By construc- 2f,b(u;0)+ f;a(0;u) yields equality and establish€s continuity:
tion, the common boundary(u;0) = a(0;u) is a curve of degree

3 with Bézier control pointgv®;t3;t1;v!) so that bicubic patches 3(ed VO; 3(ed+ e;) 6v0 3(€) ; G}
on ordinary quads and triangular patches on extraordinaads) | — | {17

match up exactly. 1b(0:0) 212b(0,0) 1a(0:0)

Denote by f;b the partial derivative ob along the common ())+ 2ef €)= 2er e)+(ef)+ 3(f0)
boundary and byfbb the partial derivative in its other variable. 3(f0 98)3 (609
Sinceb(u;0) = a(0;u), we havefib(u;0) = fha(0;u). The par-
tial derivative in the other variable @fis f,a. We will verify that

the following conditions hold, that imply tangent contityui {0
if one quad is ordinary (case (iii)), b
Tub(u;0) = 212b(u; 0) + fha(0;u); (6)
if both quads are extraordinary (case (iv)), t‘g ““““““““““““““
(1 wlo+ulq1 Mfb(u;0) = hb(u;0)+ ﬂla(O'u)' @)
a
wherelg:= 1+ ¢% [1:= 1 ¢! andc = cos(—)
No
Both equations, (6) and (7), equate vector-valued polyatsrof Figure 9: G* transition between two triangular patches.
degree 3 since we writf b(u; 0) in degree-raised form. The equa-
tions hold, if and only if all Bézier coef cients are equ&@ff hand, The equations for (7) are similar, except that we need taoepl

this means checking four vector-valued equations for edd6)o ej by tj and keep in mind that, by de nition,
and (7). However, in both cases, the setup is symmetric with r

spect to reversal of the direction in which the boundagy; 0) is @ 1 W)+t VW)= 2%t VO):

traversed. That means, we need only check the rst two egusti

(6" and (6”) of (6) and the rst two equations (7') and (7") ¢7). Hence, for example,

We verify these equations by inserting the formulas of Tatiland

2. 1b(0;0)+ 11a(0;0) = 4(bgor V' + agor V°)
3

=24 27°5 V)

ofl e

The rst of the four coef cient equations of (7) then simpés

to
3(1+ Ot V0= Albsor+ agon 2°)
t°+t o 1+
- 3(0 P4 1 5 0 vo)
Figure 8: C! transition between a triangular patch b (top) and a bicu- — 27 (9:0(10 0 .
bic patch a (bottom). 32(20 @ VO+26 V) (7

Noting that termgfo €3)=(8(° + %)) in the expansions df,11

. L) anday1 cancel, the second coef cient equation is
To verify (6), the key observation is thag = ny = 4 if one quad 211 q

is ordinary. Hence? = ¢! = 0 ands? = s! = 1 (cf. Table 2) and 6l ot 19+ 37 1(t0 \O) = 12(byrs+ b
= €. Therefore, for example (cf. Figure 8) ofti to)* 3ty V)= 12Abaat &11 20310

12 2(1+ 12 2(1 ¢t
- A @ 2Dy vy (79
3.+
2b(0;0) = 2 4(bzgpr V°) = 821(5 W) Itis easy to read off that the equalities hold. So the claisnadoth-
ness is veri ed. iii

3(eg+e)) 6

4 GPU IMPLEMENTATION

We implemented our scheme in DirectX 10 using the vertexeshad
to compute vertex neighborhoods according to Table 1 andehe
ometry shader primitivériangle with adjacencyo accumulate the
coef cients of the bicubic patch or compute a c-patch acraydo
Table 2. We implemented conversion plus rendering in twe- var

where the factor% stems from raising the degree from 3 to 4; and
the second Bézier coef cient dfib(u;0) (in degree-raised form)
and of ZLb(u;0) are respectively (cf. Figure 8)

0 + 0 ants: a 1-pass and a 2-pass scheme.
’l(eo v 2(e% %) and The2-pass implementatiazonstructs the patches inthe rst pass
3 using the vertex shader and the geometry shader and ewap@te

88 + 88 W + 3f0 68)_ sitions and normals in the second pass. Pass 1 streams puhenl
8 8 7 4 6 coef cients of a c-patch and not the 4 452 Bézier control

el
2 4(bp11 bz10) = §(14

Pass 1| conversion
VS In pin;s

VS Use texture lookup to retrieviey;; p2j+ 1
Computev; gj; fj, to;t; (Table 1)
- Input Assembler | VS Out Vito;ty; fj;j =00n 1
® GSIn Vithity; fi= 003
e P-,n, © GS if ordinary quad _
3 assemblgy; k;| = 0::3 (Figure 6)
m Vertex Shader else
P v, to.te . computebizn; b, 1; b} 1, (Table 2)
£ GS Out | if ordinary quad, stream owgf; k; 1 = 0::3:
@ Vit <\.\ else s;rea(;n 30Lh'400; LA NP P TP
= . . i=0:3
= I 7 Pass 2| Evaluating Position and Normal
P oo | o VSin (uv)
Coefficients — °o%clor] © ° VS if ordinary quad
T o0 ° o 9 compute normal and position @tf; v)
B - by the tensored de Casteljau's algorithm
bago’, to, t', g else
ba1el, B2, Dyggt “ Compute the remaining Bézier control points (3)

Compute normal and position @f; v)
by de Casteljau's algorithm adjusted to c-patchgs.
VS Out | position, normal
PSIn position, normal
PS compute color

Vertex Shader PS Out | color
Table 3: 2-Pass conversion: VS=vertex shader, GS=geometry
\

Tnput Assemblen

position, norma shader, PS=pixel shader. VS Out of Pass 1 outputs n points f; for

one vertex (hence the subscript) and GS In of Pass 1 retrieves four

points fi, each generated by a different vertex of the quad (hence the
superscript).
lcolor

21NIXa| U9)ing ‘S221n0SaYy

points of the equivalent triangular pieces. The data aroption
Figure 10: 2-pass implementation detailed in Table 3. The r st pass necessary to e_valuate takes place by.'nStanC'm\a'g”d on the
converts, the second renders. Note that the geometry shader only vertex shader in theeconq paS.sThat 'S’ wedo not stream back
computes at most 24 coef cients per patch and does not evalua te. large data sets after ampli catianPosition and normal are com-
puted on thgu;v) domain[0::1]2 of the bicubic or of the c-patch
(not on any triangular domains). In our implementation, rihen-
ber of ALU ops for this evaluation is 59 both for the bicubidgia
and for the c-patch. Table 3 lists the input, output and thremo
tations of each pipeline stage. Figure 10 illustrates thi®eiation
of computations and resources. Overall, the 2-pass impitatien

n has small stream-out, short geometry shader code and niiama
put Assembler R .
] pli cation on the geometry shader.
Pin o B > In the 1-pass implementatigrthe evaluation immediately fol-
- \ lows conversion in the geometry shader, using the geometry

Vertex Shader shader's ability to amplify, i.e. output multiple point pritives for
VEnf O each facet (Figure 11). While a 1-pass implementation soomate
NS ef cient than a 2-pass implementation, DX10 limits data diroa-
Vi, toi by, fi tion in the geometry shader so that the maximal evaluatiositie
] is 8 8 per quad. Moreover, maximal ampli cation in the geome-
{ try shader slows the performance. The performance difterde-

T
!
[try Shader] 5
T
1

x
o
1%
o
=
S
[}
[0}

&
@
£
o

3
3
o
x
X
c
[0}

l position, normal tween the two implementations is easily visible when cornmgar
: Tables 4 and 5, with the caveat that we did not spend much time
G optimizing the clearly slower 1-pass approach.
l color 5 RESULTS

We compiled and executed the implementation on the lategthgr
ics cards of both major vendors under DirectX10 and tested th
performance for several industry-sized models. Two serfacd-
els and models with displacement mapping are shown in Figure
and 1 respectively. Table 4 summarizes the performanceed?th
pass algorithm for different granularities of evaluatiohhe frog

Figure 11: At present, the 1-pass conversion-and-rendering must
place patch assembly and evaluation on the geometry shader. This
is not ef cient.

cc Our Scheme cC Our Scheme

Surface

Geometry 4o S
Difference (%)

Normal Angle
Difference (°) \ 4

® o hNO

Figure 12: Comparison between the Catmull-Clark (CC) subdivision
limit surface and the smoothed quad mesh surface for the same in-
put.

model, in particular, provides a challenge due to the largalver
of extraordinary patches.

Mesh Frames per second
(verts,quads, eqs) N=5 9 17 33
Sword (140,138, 38%)| 965 965 965 703
Head (602,600, 100%)| 637 557 376 165
Frog (1308,1292, 59%) 483 392 226 87

Table 4: Frames per second for some standard test meshes with
each patch evaluated on a grid of size N N; egs = percentage of
extraordinary quads. Sword and Frog are shown in Figure 3, Head in
Figure 12.

Mesh | Slower 1-pass implementation
N=2 5 8

Sword | 389 96 43

Head 108 34 15

Frog 44 10 4

Table 5: Performance of the 1-pass implementation.

The Frog Party shown in Figure 16 currently renders at 50 fps
for uniform evaluation of nine frogs for N=9, i.e. on a ® grid.
That is, the implementation converts nine times 1292 coafag
quads, of which 59% are extraordinary, and renders of 1anilli
polygons 50 times per second. On the same hardware, we radasur
Bunnell's ef cient implementation (distribution accompang [2])
featuring the single frog model, i.e. 1/9th of the work of fr@g
Party, running at 44 fps with three subdivisions (equivatertes-
sellation factor N=9). That is, GPU smoothing of quad meskes
an order of magnitude faster. Compared to [12], the speed up i

Especially after displacement, large models rendered bgigi
sion and quad smoothing appear visually indistinguishafilae
relatively small examples, without displacement, showiigure
12 and the close up in Figure 13 are also important to support o
observation that c-patches do not create shape problemsacech
to a single bicubic patch: despite the lower degree andriat&?!
join, their visual appearance is remarkably similar to tifdticubic
patches.

The accompanying video(see screen shots in Figures 13, 14,
15, 16) illustrates real time displacement and animatianwas
captured with a camcorder to show real time performance.fihe
rates shown are lower than the ones in Table 4 since we cdpture
before we separated ordinary and extraordinary quad csiovein
the implementation.

6 DiscussiON

Smoothing quad meshes on the GPU offers an alternative hdyhig
re ned facet representations transmitted to the GPU andafep
able for interactive graphics and integration with compiesrph-
ing and displacement. The separation into vertex and painoh c
struction means that the number of scaled vertex additiadds)
per patch is independent of the valence. The cost of comput-
ing the control pointgper patch i.e. with the cost of vertex com-
putations distributed, is 4 (4+ 1+ 1+ 2) = 32 adds per bicu-
bic construction and computirtg from to andt; and determining
b1, b},; andbl;, according to Table 2 amounts to an additional
(2+ 6+ 6+ 12) = 104 adds per c-patch. The data transfer be-
tween passes in the 2-pass conversion is low since onlg 4on-
trol points are intermittently generated. This compare®siably
to, say [10] where 16+12+12 coef cients are generated. &foee
c-patches are an attractive representation not only on Big.G

Since we only compute and evaluate in terms of the 24 c-patch
coef cients, the computation of the cubic boundaries stidrng a
bicubic and a c-patch is mathematically identical. An ecipliif'-
statement in the evaluation guarantees the exact samenyasr
computations since boundary coef cients are only compuateck,
in the vertex shader, according to Table 1. That is, there igixel
drop out or gaps in the rendered surface. The resulting cuifa
watertight.

We advertised a 2-pass scheme, since, as we argued, the DX10
geometry shader is not well suited for the data ampli catfon
evaluation after conversion. The 1-pass scheme outlin&g@tion
4 may become more valuable with availability of a dedicatadih
ware tessellator [9]. Such a tesselator will make ampli@aimore
ef cient and support watertighadaptive tesselatiofwhich is why
we only discussed uniform tesselation in Section 4). Sucérd-h
ware ampli cation will also bene t the 2-pass approach imtlhe
(u;v) domain tessellation, fed into the second pass will be replac
by the ampli cation unit.

ACKNOWLEDGEMENTS

This work bene tted from CGAL's half-edge data structurenda
used Bay Raitt's Frog and the ZBrush Sword model.

even more dramatic. While the comparison is not among equals RererENCES

since both [12] and [2] implement recursive Catmull-Claukdi-
vision, it is nevertheless fair to observe that the speedwt ieast
partially due to our avoiding stream back after ampli cati@ata
explosion due to re nement). We expect that more carefulagfe
of vertex neighborhoods, in retrieving order, will furthemprove
our use of texture cache and thereby improve the frames pende
(fps) count.

Figure 12 compares the smoothed quad mesh surfaces with

densely re ned Catmull-Clark subdivision surfaces basadtie
same mesh. Both geometric distance, as percent of the loedl q
size, and normal distance, in degrees of variation, are aoeadp

[1] J. Bolz and P. Schroder. Rapid evaluation of Catmu#lsubdivi-
sion surfaces. 1Web3D '02: Proceeding of the seventh international
conference on 3D Web technologages 11-17, New York, NY, USA,
2002. ACM Press.

M. Bunnell. GPU Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose Computatidmapter
7. Adaptive Tessellation of Subdivision Surfaces with Daspment
Mapping. Addison-Wesley, Reading, MA, 2005.

E. Catmull and J. Clark. Recursively generated B-spfingfaces on
arbitrary topological meshesComputer Aided Desigr0:350-355,
1978.

(2]

(31

(4]
(5]

(6]

(7]

(8]

El

[20]

[11]

[12]

[13]

[14]

G. Farin.Curves and Surfaces for Computer Aided Geometric Design:
A Practical Guide Academic Press, 1990.

C. Gonzalez and J. Peters. Localized hierarchy surfoliees. In S. S.

J. Rossignac, editoCM Symposium on Interactive 3D Graphics
pages 7-15, 1999.

M. Guthe, A. Balazs, and R. Klein. GPU-based trimmingl des-
sellation of NURBS and T-spline surfacesACM Trans. Graph.
24(3):1016-1023, 2005.

M. Halstead, M. Kass, and T. DeRose. Ef cient, fair intefation
using Catmull-Clark surfacesProceedings of SIGGRAPH 9Bages
35-44, Aug 1993.

A. Lee, H. Moreton, and H. Hoppe. Displaced subdivisiomfaces.

In K. Akeley, editor, Siggraph 2000, Computer Graphics Proceed-
ings Annual Conference Series, pages 85-94. ACM Press / ACM
SIGGRAPH / Addison Wesley Longman, 2000.

M. Lee. Next generation graphics programming on
Xbox 360, 2006. http://download.microsoft.com/download
/d/3/0/d30d58cd-87a2-41d5-bb53-baf560aa2373/next genera-
tion_graphicsprogrammingon_xbox_360.ppt.

C. Loop and S. Schaefer. Approximating Catmull-Cladbdivision
surfaces with bicubic patches. Technical report, Micro&efsearch,
MSR-TR-2007-44, 2007.

J. Peters. Patching Catmull-Clark meshes. In K. Akedgljtor, Sig-
graph 2000, Computer Graphics Proceedingsnual Conference Se-
ries, pages 255-258. ACM Press / ACM SIGGRAPH / Addison Wes-
ley Longman, 2000.

L.-J. Shiue, I. Jones, and J. Peters. A realtime GPUigisiizh kernel.
ACM Trans. Graph.24(3):1010-1015, 2005.

J. Stam. Exact evaluation of Catmull-Clark subdivisisurfaces at
arbitrary parameter values. 81IGGRAPH pages 395-404, 1998.

A. Vlachos, J. Peters, C. Boyd, and J. L. Mitchell. Cuh@N tri-
angles. In2001, Symposium on Interactive 3D GraphiB$-Annual
Conference Series, pages 159-166. ACM Press, 2001.

Figure 13: Close-up of the Frog.

Figure 14: Real time displacement on the twisting Sword model. See
the video.

Figure 15: Real time displacement on the twisting Frog model. See
the video.

Figure 16: Asynchronous animation of nine Frogs. See the video.

