Generalized spline subdivision

Jorg Peters
SurfLab
(Purdue, UFL)

- Polynomial Heritage
- Computing Moments
- Shape and Eigenvalues
Polynomial heritage
of generalized spline subdivision

• Doo-Sabin

Catmull-Clark
Polynomial heritage
of generalized spline subdivision

- Increasing regions are regular: points and faces have standard valence
Polynomial heritage
of generalized spline subdivision

• Doo-Sabin bi-2 B-spline
• Catmull-Clark bi-3 B-spline
• Midedge Zwart-Powell C^1 box-spline
• Loop C^2 box-spline

box-spline = generalization of B-spline to shift-invariant partitions
book: [de Boor, Hollig, Riemenschneider 94]
Polynomial heritage
of generalized spline subdivision

- Subdivision of the Zwart-Powell C^1 quadratic box-spline

![Diagram of polynomial heritage](image)
Polynomial heritage
of generalized spline subdivision

Mid-edge Rule
(“simplest rule”)

Zwart-Powell subdivision
= 2 steps of Midedge subdivision

regular: 4-valence, quadrilaterals

Jorg Peters, SurfLab
Polynomial heritage
of generalized spline subdivision

- Increasing regions are regular (polynomial)
- Union of surface layers at an extraordinary point
Polynomial heritage of generalized spline subdivision

• Uses:

 Representation as Bezier patches

 Evaluation at non-binary points

 Fast moment computation
Generalized spline subdivision

Jorg Peters
SurfLab
(Purdue, UFL)

• Polynomial Heritage
• Computing Moments
• Shape and Eigenvalues
Moments
of objects enclosed by generalized subdivision surfaces

- Challenge: Exponential increase in the number of facets!

Volume
Center of mass

Inertia Frame

Jorg Peters, SurfLab
Moments

of objects enclosed by generalized subdivision surfaces

Theory: Gauss’ Divergence Theorem:

The integral of the divergence over the volume

\[\int_{V} \nabla \cdot f \, dV \]

equals the integral of the normal component over the surface S

\[\int_{S} f \cdot n/|n| \, dS \]

\[\int_{V} \nabla \cdot f \, dV = \int_{S} f \cdot n/|n| \, dS = \int_{U} f \cdot n \, dU \]

Jorg Peters, SurfLab
Moments
of objects enclosed by generalized subdivision surfaces

Theory: Change of variables

The area of the surface element S equals the integral of the Jacobian $|n|$ of the surface parametrization (x,y,z) over the domain U.

\[
\int_{U} |n| \, dU = \int_{S} dS
\]

\[
\int_{V} \nabla \cdot f \, dV = \int_{S} f \cdot n/|n| \, dS = \int_{U} f \cdot n \, dU
\]
Moments
of objects enclosed by generalized subdivision surfaces

For example, \(f = [0,0,z] \) \(n = x_u y_v - x_v y_u \)

\(f \cdot n = z (x_u y_v - x_v y_u) \) is piecewise polynomial in regular regions

Volume = \(\int_V 1 \ dV = \int_U z [x_u y_v - x_v y_u] \ du \ dv \)
= \(\sum_{\text{patch } p} \int_{U_p} z^p (x_u^p y_v^p - x_v^p y_u^p) \ du \ dv \)

Jorg Peters, SurfLab
Moments
of objects enclosed by generalized subdivision surfaces

“Volume” patch \(p = \int_{U_p} z^p (x^p_u y^p_v - x^p_v y^p_u) \, du \, dv \)

Schema for bi-3 Bezier patch
Moments
of objects enclosed by generalized subdivision surfaces

Volume patch $p = \int_{U_p} z^p (x^p_u y^p_v - x^p_v y^p_u) \, du \, dv$
Moments of objects enclosed by generalized subdivision surfaces

Volume patch $p = \int z^p (x^p_u y^p_v - x^p_v y^p_u) \, du \, dv$
Moments
of objects enclosed by generalized subdivision surfaces

Volume patch $p = \int_{U_p} z^p (x_u^p y_v^p - x_v^p y_u^p) \, du \, dv$
Moments
of objects enclosed by generalized subdivision surfaces

Work: at each subdivision step linear
for each extraordinary point
add volume contribution of 3n patches

Doo-Sabin

Jorg Peters, SurfLab
Moments
of objects enclosed by generalized subdivision surfaces

\[V_i = \sum_{p \text{ in layer } i_{UP}} \int f^{p} (x_{u_{v}}^{p} y_{v}^{p} - x_{v_{u}}^{p} y_{u}^{p}) \, du \, dv \]

Volume \(= \sum_{i=0}^{m} V_i + W_m \)
Moments
of objects enclosed by generalized subdivision surfaces

- Error estimation: bounding boxes
Moments
of objects enclosed by generalized subdivision surfaces

- Geometric decay of error volume \(1, \frac{1}{8}, \frac{1}{64}, \ldots\)
Moments
of objects enclosed by generalized subdivision surfaces

- Computing geometry given a fixed volume

Bisection
Moments of objects enclosed by generalized subdivision surfaces

- Higher moments and the inertia frame

$$\int \int \int_V V dV \quad dV \quad \text{center of mass}$$

$$\int \int \int_V xy dV \quad dV \quad \text{inertia tensor:}$$

$$\int \int \int_V x dV, \int \int \int_V y dV, \int \int \int_V z dV$$

$$\Rightarrow \Rightarrow \Rightarrow \Rightarrow$$

$$\Rightarrow \Rightarrow \Rightarrow$$
Moments
of objects enclosed by generalized subdivision surfaces

• Higher moments and the inertia frame
Moments of objects enclosed by generalized subdivision surfaces

- Physics-based animation

Center of mass support

Jorg Peters, SurfLab
Moments
of objects enclosed by generalized subdivision surfaces

• Simple registration, comparison

matching frames = computing a 3x3 matrix Q:

$IP Q = IS$
Moments of objects enclosed by generalized subdivision surfaces

Solution: Moments efficiently and exactly computed via Gauss' theorem and polynomial heritage.

- Volume
- Center of mass
- Inertia Frame
Shape and eigenvalues

- Union of surface layers at an extraordinary point
- Control points transformed by the subdivision matrix
Shape and eigenvalues

\[B_{m+1} = A \cdot B_m = A^{m+1} B_0 \]

\[A \cdot v_i = \lambda_i v_i \]

\(\lambda_i \) is the eigenvalue to the eigenvector \(v_i \)

\[B_0 = \sum \alpha_i v_i \]
eigenvector expansion

\[B_{m+1} = A^{m+1} B_0 = \sum \alpha_i A^{m+1} v_i \]

\[= \sum \alpha_i \lambda_i^{m+1} v_i \]
Shape and eigenvalues

- If all $\lambda < 1$, then collapse
- If some $\lambda > 1$, then unbounded growth
- Good sequence: $1, \ell, \ell, \ldots$ where $|\ell| < 1$
- Eigenvectors of ℓ determine the tangent plane

Jorg Peters, SurfLab
Shape and eigenvalues

- Fast contraction of 3-sided facets
 \[\ell = \frac{1 + \cos(\frac{2\pi}{3})}{2} = 0.25 \]

- Slow contraction of large facets
 \[\ell = \frac{1 + \cos(\frac{2\pi}{16})}{2} = 0.962... \]
Shape and eigenvalues

- adjust subdominant eigenvalues
 (modified midedge subdivision)

\[\iff \lambda = 0.5 \]
Shape and eigenvalues
Generalized spline subdivision

Summary

- Polynomial Heritage
 - regular regions
- Computing Moments
 - Gauss’ theorem
- Shape and Eigenvalues
 - subdominant values

Jorg Peters, SurfLab