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Abstract

This paper gives a construction to complete, at extraordinary points,
an otherwise bi-cubic spline surface – so that the resulting surface is curva-
ture continuous everywhere. To fill the n-sided gap in the bi-cubic surface,
a cap is constructed from n spline patches, each consisting of 2× 2 pieces
of polynomial degree bi-5. Particular care is taken to continue the curva-
ture distribution from the bicubic boundary of the gap into the cap, and
gently average out such propagated curvature in the neighborhood of the
extraordinary point.

1 Introduction

With an emphasis on curvature distribution, we give an algorithm to cap an n-
sided hole within a tensor-product spline, degree bi-3 C2 surface. Our solution
uses n spline patches of polynomial degree bi-5 and such that each patch consists
of 2 × 2 pieces as shown in Fig. 1. Given the lower bound on the polynomial
bi-degree and corresponding number of polynomial pieces of G1 constructions,
and given the existing constructions for G2 surfaces (see Section 1.1 below), this
construction likely offers the combination of least degree and minimal number
of pieces if we want the entire surface to be curvature continuous.

Since we focus on curvature and hence shape, the new bi-5 construction
emphasizes gradual distribution of second-order, hence curvature information
from the boundary to the center of the cap. In a two-stage process, we first
construct a guide surface, then build the final surface, based on that guide. The
guide serves as a form of ‘pre-conditioning’ that determines the overall shape
and curvature distribution, while the second stage constructs the actual bi-5
cap that exactly matches the boundary data and enforces curvature continuity.
In this second step, extra degrees of freedom are set by referencing the guide
surface.

The guide blends position, tangents and curvature, the tensor-border, from
the bi-cubic boundary of the gap. The initial focus is on defining an expansion in
the neighborhood of the extraordinary point that averages the boundary data.
To this end, we fit a C2 piecewise polynomial g△ of total degree 5. To improve
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(a) Control net (b) Curvature continuous
surface

Figure 1: Converting the neighborhood of a quad control net into a curva-
ture continuous surface of degree bi-5. (a) A net of control points with
central star point of valence n = 5 that defines (b) the outer (green) surface
layer of degree bi-3 and the inner (red) cap whose 2 × 2 pieces are shown for
one sector.

Figure 2: Input (left) A cap-net for n = 5 or, alternatively, (right) a corre-
sponding tensor-border of depth 2 represented as BB-form coefficients of degree
3.
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the fit to the boundary data, we extend this initial approximation to a guide g
consisting of one polynomial piece of degree bi-5 for each of the n sectors. The
guide gives rise to an auxiliary surface a that has the ‘binary’ 2× 2 partition of
each sector, but is not yet smooth between sectors. A final step in the sequence
g△ → g → a → p creates the cap p. We demonstrate on a number of exam-
ples, that this approach of gentle averaging of boundary data and distributing
curvature over the cap results in gradual distribution of curvature.
Overview. Section 2 gives an overview of the construction. Section 3 details
the guide construction g△ → g. Section 4 specifies the data-independent repa-
rameterizations that ensure G2 connectivity of the cap. Section 5 gives the
construction details: g → a → p. Section 6 treats the spacial case n = 3.
Section 7 completes the picture with a ‘ternary split’ variant useful for high
valences and to match tensor-borders of degree bi-5. Section 8 presents results
and outlines a guided C2 subdivision based on the guide g. Next, we review the
pertinent literature.

1.1 G2 surface constructions

A good G2 surface construction has to be flexible to model any and all quadratic
and some cubic expansions to match higher-order saddles at its extra-ordinary
point – otherwise we would simply extend the boundary data into a plane and
generate a flat spot to satisfy smoothness. This basic flexibility requirement
implies a minimal degree of general piecewise polynomial surface constructions.
For example, flexible G1 tensor-product n-sided cap constructions for quad
meshes with possibly adjacent extraordinary points of valence n 6= 4 must have
degree bi-3 and 3 × 3 polynomial pieces per sector if no flat spots are allowed
[PF09]. A similar lower bound theorem for G2 surfaces has not yet been proven,
but it appears unlikely that good quality G2 capping of an n-sided gap in a C2

bicubic B-spline complex, such as Fig. 1, can be constructed exclusively with
polynomial patches of degree bi-4 or by using just one bi-5 patch per sector:
The bi-5 construction in [GZ99] is interesting from algebraic point of view, how
constraints between sectors are solved, but generally disappoints with respect to
shape. [KP07b] has a central cap of degree bi-4 but requires a transition layer
of degree bi-6 and the construction [Pet02] of degree 3,5 can have shape defects
for moderate to high valence.

Focusing on constructions that use a finite number of tensor-product spline
pieces arranged in an unrestricted patch layout, the constructions of [GH95,
CNG00, KP04] are high-degree rational and [YZ04, Lev06] use exponential func-
tions and roots. Among polynomial G2 constructions using a single patch per
sector, the degree of can be as high as bi-18 [GH89] and bi-9 [Ye97, Kic13]. The
constructions in [Pra97, Rei98] offer solutions of degree bi-6 but only if their
flexibility is restricted to degree 2. To attain degree 3 flexibility, the construc-
tions in [Pra97, Rei98] require surfaces of degree bi-9. The constructions of
[Loo04, LS08] assume, as does our construction, that surrounding patches are
C2 and of degree bi-3. These constructions explore the space of caps with one
polynomial piece of degree bi-7.
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Figure 3: Algorithm Overview: Capping an n-sided hole within a bi-3 C2

surface by n spline patches of 2×2 pieces of polynomial degree bi-5. The pieces
(quadrants) of a patch are denoted by superscripts o, ℓ, m, and r. b denotes
the n-sided input tensor-border and p the output surface cap. The corners of b
are denoted by vk and the edge-midpoints by mk.

To separate star points where more or less than 4 patches meet or to re-
duce the sudden change in curvature at the transition between the cap and the
surrounding bi-cubic surface, a number of constructions assume that the input
control net is the result of two or more Catmull-Clark refinement steps. Such
preprocessing may however itself introduce shape problems due to the domi-
nance of the hyperbolic terms in Catmull-Clark subdivision [KPR04].

Various differential functionals, often linearized, have been proposed to set
the degrees of freedom that a smooth surface caps typically enjoy. Since their
effect is difficult to predict, we prefer to construct an explicit guiding shape.
Already [Pra97, Rei98] introduced a guide polynomial, primarily to ensure C2

continuity at the extraordinary point of the cap. Entire polynomials were also
chosen as ‘guide shapes’ in [YZ04] and [Lev06] (here the degree of the guide does
not play a role since neither scheme generates polynomial or rational surfaces.)
However, restricting the guides to be entire polynomials makes the resulting
surfaces less expressive and flexible than using piecewise polynomial guides pro-
posed in [Pet02]. The Guided Splines construction [KP09b] specifically advo-
cates the use of piecewise guides for shape control over (global) optimization
via functionals.

2 Construction Overview

We consider a network of quadrilateral facets or quads such that always four
quads meet at a vertex or regular point, except for some extraordinary points.
We assume that each extraordinary point, abbreviated eop, is isolated in the
sense that it is surrounded by at least one layer of regular points. We denote
as cap-net the star point plus the sub-network of 6n points forming two layers
of quads surrounding the eop. Fig. 2 displays a cap-net and Fig. 1a a cap-
net plus one additional layer that is not required, but useful here to define
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the (green) surface ribbon surrounding the cap. As in Fig. 1b, away from the
star point, each 4 × 4 tile of points of the network is interpreted as the B-
spline control net of a bi-cubic tensor-product spline surface. The well-known
conversion formulas of a B-spline control net to Bernstein-Bézier form (BB-form;
see e.g. [Far02, PBP02]) can be applied to the cap-net except at the central
star point. Along the boundary of the cap, the partial conversion provides
Hermite data in bi-degree 3 form up to and including the second derivative (cf.
Fig. 2,right). We refer to these Hermite data in the following as the tensor-border
b (of depth 2 and degree 3).

An important concept for determining and controlling shape of the surface
cap is the guide surface. The guide surface translates the layout and shape of
the cap-net into a surface fragment. The guide surface needs neither exactly
match the tensor-border nor obey the smoothness constraints.

Since we are interested in G2 constructions, only position and the first two
derivatives across a common boundary curve have to be explicitly defined. In
particular, we will match, at corners of tensor-product patches f of degree bi-
5, without loss of generality at (0, 0), collections of 3 × 3 BB-coefficients fi,j ,
i, j ∈ {0, 1, 2}, referred to as BB-jets:

Htf := [fij ]i,j∈{0,1,2}, f(0, 0) = t. (1)

Since the BB-coefficients correspond to the derivatives (the tensor-jet) ∂i
u∂j

vf ,
i, j ∈ {0, 1, 2}, up to and including degree bi-2, the argument of Ht is allowed to
be of lower degree or of higher degree than bi-5. If the degree is lower, ‘degree-
raising’ is applied, if it is higher, the local expansion at t is recast in degree bi-5
form.

2.1 Capping Algorithm

Input: A cap-net of 6n + 1 points with star point of valence n or a tensor-
border b of degree 3 and depth 2 (see Fig. 2).
Data-independent input, that is tabulated for moderate n < 10:
Rotation-invariant reparameterization maps ρ, β, σ : R2×n → R2.
Output: (see Fig. 1) The surface cap p consisting of n spline patches pk,
k = 0, . . . , n − 1. Patches pk−1 and pk are joined G2 and join with b both C1

and G2. Each pk consists of 2 × 2, C2-connected polynomial pieces po,k, pℓ,k,
pm,k, pr,k of degree bi-5.

Algorithm: (see Fig. 3)

1. Construct the guide surface g. The guide g consists of n C0-connected
pieces of degree bi-5, i.e. a single bi-5 polynomial piece per sector. The
guide depends on, but needs not exactly match b the tensor-border of
depth 2 of the cap-net (Fig. 3(b)).

2. Construct the tensor-border of p to match b ◦ β.
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3. Construct the surface cap p via an intermediate non-smooth cap a. De-
termine the free BB-coefficients near the star point by best matching g ◦σ
while satisfying the following smoothness constraints.

1. Adjacent pieces pk−1 and pk (cf. Fig. 3(a)) are G2 connected via ρ.
2. The cap p joins b both C1 and G2 (cf. Fig. 3(b)).

3. The 2 × 2 polynomial pieces making up pk join C2 internally: pk is
a C2 spline patch.

While the implementation is considerably simpler, deriving it requires con-
structing in order, as explained in the next three sections, the maps

g△ −→ g −→ a −→ p. (2)

3 Construction of the guide surface g

The n-piece bi-5 guide surface g is initialized by an auxiliary C2 map g△ : Ω (

R2 → R3 of total degree 5 that is defined on the n-gon Ω. The purpose of the
map g△ is to average boundary information and define the cap near the star
point. The initial cap g△ need not fit the boundary well. A sector g△k of
the map g△ is defined on the wedge

△k with vertices (0, 0), (ck, sk), (ck+1, sk+1), (3)

ck := cos(k
2π
n
), sk := sin(k

2π
n
).

Note the placement of mk and vk with respect to g△: the corner points g△k
050

are edge-midpoints of b. The points vk will require an extension of the domain.
Fig. 4 shows, as disks and circles, the free BB-coefficients g△k

ijm of any such C2

map consisting of pieces in BB-form of total degree 5 (cf. Sect 2.3 of [KP09a];
n = 3, 6 offer one additional degree of freedom). We set the central point of g△

to the Catmull-Clark limit point of the cap-net and the remaining points g△k
ijm

to best match the tensor-border (cf. [KP09b, PK10]) in the sense of matching
BB-jets:

min
free g△k

ijm

n−1∑

k=0

∑

t∈{mk,vk}

‖Ht
(
g△k ◦ χ

)
− Htbk‖2

2. (4)

Here the tensor-border of the characteristic map (spline) of Catmull-Clark sub-
division, χ : [0..1]2×n → R2, normalized to edge-length 1 (cf. Fig. 6b, left,
and also Fig. 2, right) relates the domain of g△ to n unit squares so that

g△k ◦ χk(1, 1) = vk (χk(0, 0) = (0, 0), Fig. 5a) and g△k
050 = mk (Fig. 5b). The

auxiliary map g△ determines g at o via

Hogk := Ho
(
g△kL

)
, (5)
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Figure 4: Structure and labeling of g△: BB-coefficients marked by circles
or disks are free to choose and are set by matching the tensor-border. The
remaining BB-control points are determined by the smoothness requirements.
Note the placement of mk and vk.
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Figure 5: Matching jets. (a) Matching jets of g△ ◦ χ to those of the tensor-
border b. (b) Local exact matching of two pairs of BB-jets. (Note: BB-
coefficients denoted by filled circles are different from black disks in (a)).
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Figure 6: Linear transformation of the domain. (a) g△k ◦ L is a bi-5 patch.
(b) Transformation of χ.
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Figure 7: Separate H-fitting of BB-jets. The BB-jet of g△kL at the star
point determines the BB-jet of g at the star point. The remaining coefficients
of g are directly derived from b.
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where L is the linear map from the unit square to the unit parallelogram with
opening angle 2π/n (Fig. 6a).

Next, to improve the fit, we re-compute, locally, one by one, a part of g△k−1

and g△k so that

Hmk

(
g△k ◦ χ

)
= Hmkbk. (6)

Fig. 5b illustrates (6): nine BB-coefficients of two pieces of g△ (marked by filled
circles) are determined by nine BB-coefficients of b (marked by black boxes)
plus some coefficients of g△ (marked by circles). Not-marked coefficients are
determined by enforcing C2 continuity of g△. Then the corresponding BB-jet
of gk is

Hmkgk := Hmk

(
g△kL

)
, (7)

as illustrated in Fig. 7: for example the BB-jet of gk at mk that is marked
as squares is defined as an affine combination of the twelve BB-coefficient of
g△k in Fig. 7, middle, marked by squares. Explicit formulas for the labelled
BB-coefficients are simple and do not depend on n. Note that we enforce G2

constraints between sectors only at the endpoints, o and mk, of the sector
boundary. That is, we emphasize quality of fit over global smoothness. Finally,
we set the remaining free BB-jet of gk at vk (see Fig. 7,right) by solving for the
coefficients of gk

Hvk

(
gkL−1 ◦ χ

)
= Hvkbk. (8)

4 Reparameterizations

It is well-known that Cr continuity of surfaces can be achieved by Gr construc-
tions, i.e. by relating adjacent surface pieces by reparameterization: f̃ = f ◦ ρ.
While smoothness of the resulting surface can be expressed in the language of
differential geometry, i.e. in terms of charts, it suffices, and is often more effi-
cient, to express the reparameterization locally, as a (Taylor) expansion or jet
along the boundary where two surface pieces are glued together. This approach
is followed below.

We restrict our attention to polynomial maps, both for reparameterizations
and to model the geometry. The polynomial pieces, 2 × 2 of which make up
one C2 bi-5 spline patch, will be represented in tensor-product BB-form on the
unit square [0, 1] × [0, 1]. Throughout, we will choose the transition boundary
to correspond to (u, v = 0) and do not repameterize the boundary. Hence the
relevant Taylor expansion up to and including degree 2 of the reparameterization
ρ with respect to v is

ρ = (u + b(u)v +
1

2
e(u)v2, av +

1

2
d(u)v2). (9)
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This yields the well-known constraints

∂v f̃ = a∂vf + b(u)∂uf , (G1)

∂2
v f̃ = a2∂2

vf + 2ab(u)∂u∂vf + b(u)2∂2
uf + e(u)∂uf + d(u)∂vf . (G2)

4.1 Reparameterizing between sectors

We assume that the valence of the star point is n > 3. The case n = 3 will receive
special attention in Section 6. Symmetry implies, that the generic formula (9)
along the inter-sector boundary becomes (i) a := −1 for symmetry at G1 level

and (ii) e(u) := b(u)
(
b′(u) − d(u)

2

)
, i.e.

ρ = (u + b(u)
(
v +

1

2
(b′(u) −

d(u)
2

)
)
v2, −v +

1

2
d(u)v2). (10)

We choose for the ‘top’ reparameterization at o and the ‘bottom’ reparam-
eterization at mk respectively

for ρo : b(u) := 2c(1 − u) +
2

3
cu, d(u) := 0, c := cos

2π
n
;

for ρℓr : b(u) :=
2

3
c(1 − u)2, d(u) := 0.

Although ρo and ρℓr are not C2-connected, po and pℓ, respectively po and
pr can be constructed to join with C2 continuity. The major challenge of the
construction is the interaction at mk, especially on the coefficients marked as
diamonds in Fig. 8(b). We present the key formulas for enforcing constraints
(G1) and (G2) and the internal C2 connection at the star point and at mk. With
the labels of Fig. 8b and abbreviating q := pr,k−1, q̃ := pℓ,k, the BB-coefficients
(marked in Fig. 8(b) as hollow boxes for (11), respectively as diamonds ⋄ for
(12)) are

qi1 := qi0 +
1

4
(qi2 − q̃i2), q̃i1 := qi0 −

1

4
(qi2 − q̃i2), i = 4, 5, (11)

q31 :=q30 +
1

4
(q32 − q̃32) + w1(q52 − q̃52) + w2(q42 − q̃42) + w3(q50 − q40),

(12)

q̃31 :=q30 −
1

4
(q32 − q̃32) − w1(q52 − q̃52) − w2(q42 − q̃42) + w3(q50 − q40),

w1 := −
c

96
, w2 :=

c

96
, w3 :=

c

30
.

Abbreviating pij := po,k−1
ij , p̃ij := po,k

ij , near the star point p00 (see Fig. 8b),
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Figure 8: Inter-sector G2 constraints. (a) reparameterizations (top = star
point). (b) BB-coefficients of join between sectors: solidly marked coefficients
are chosen from data and guide, hollow and unmarked coefficients enforce G2

continuity. Note that here we chose indices with respect to the sector boundary
rather than with respect to rotational symmetry around the star point.

we set

p10 :=
(
1 −

1

c

)
p00 +

1

2c
(p01 + p̃01),

p20 :=
15 − 26c+ 12c2

12c2 p00 +
11c − 15

24c2 (p01 + p̃01) +
5

8c
(p11 + p̃11),

p̃02 :=p02 + (2 −
5c

2
)(p̃01 − p01) +

5c

2
(p̃11 − p11),

p̃12 :=p12 −
c

6
(p̃01 − p01) + (2 −

11c

6
)(p̃11 − p11) + 2c(p̃21 − p21) .

(13)

The remaining formulas for enforcing the constraints (G1) and (G2) and the
internal C2 connection express pij , i = 3, 4, 5, j = 0, 1 and p̃ij , i = 3, 4, 5,
j = 0, 1, 2 in terms of: the unknowns pi2, i = 3, 4, 5, the coefficients computed
in (11), (12) and the BB-jet of p at the star point.

4.2 Reparameterizing the tensor-border b

Due to sector-wise symmetry, we need only define reparameterizations R2 → R2

for one sector and rotate by Rn, the rotation by 2π/n. Also note that all
reparameterizations are data-independent. They can therefore be computed
and tabulated for n once and for all.

To satisfy (11) and (12), we define the reparameterization β : [0..1]2 → R2

of one sector bk of the tensor-border to be the identity up to and including the
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Figure 9: Transition between bi-3 C2 surface and the surface cap. Two
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Figure 10: Structure and labeling of the quadrants of one sector shared by
the spline-patch pk, the auxiliary patch ak and the reparameterization σ. Lower
left corner is the star point. BB-coefficients marked as black disks match the
tensor-border, BB-coefficients of the grey strips are involved in the inter-sector
G2 constraints.

second cross-derivative along the border of the cap. That is, we set in (9)

a := 1, b(u) := 0. (14)

Enforcing C2 continuity internally between the pieces βm and βr, and symmetry
about the diagonal of βm (Fig. 9(a)), β is uniquely defined along the tensor-
border by the following choice of bi-3 BB-coefficients

βm
22 :=

(1
3
+

c

216
,
1

3
+

c

216

)
, βm

32 :=
(1
2
+

7c

1296
,
1

3
+

c

72

)
, βr

32 :=
(
1,

1

3
+

c

18

)
. (15)

This choice yields the following lemma.

Lemma 1 The reparameterized tensor-border b ◦ β is C2 within each sector
and adjacent pieces bk−1 ◦ β and bk ◦ β join G2 according to (11) and (12).
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Figure 11: Sampling improved by a virtual Catmull-Clark subdivision
step.

4.3 Parameterization σ for sampling the guide

We relate pk to gk via a parameterization σ : R2 → R2 that has the same
structure as p: σ is a symmetric planar 2× 2 patch of degree bi-5 that matches
the tensor-border of χ, reparameterized by β, i.e. the same construction by
which p matches and extends b. The map σ is chosen to be symmetric with
respect to its diagonal u = v, to match the (equally symmetric) tensor-border
of χ (see disks in Fig. 10), to be internally C2 and to enforce G2 continuity
with Rnβ using the reparameterization ρ. Points along the boundary must lie
on the sector partition lines, and symmetry across the diagonal remove half the
degrees of freedom. After enforcing the G2 constraints (see Fig. 8b) along the
inter-sector boundaries, σ has 15 scalar parameters to be determined. These
are fixed by minimizing (cf. [KP09b] )

F3σ, where Fκf :=

∫ 1

0

∫ 1

0

∑

i+j=κ,i,j≥0

κ!
i!j!

(∂i
sf∂j

t f)2. (16)

This minimization concerns the domain of the final surface, not the surface
itself.

5 Assembling p

Section 3 showed how to create the guide g and Section 4 introduced maps from
R2 to R2 to allow us to relate the domains of g and b to the pieces of p. The
BB-coefficients of the expansion at the star point marked by circles in Fig. 8,
and at mk, marked as boxes, are computed first. Then the remaining G2 and
C2 constraints are enforced.

We start with an auxiliary cap a of the same degree and layout as p (see
Fig. 10), but not yet G2 continuous across sector boundaries. The outermost

layers with BB-coefficients as,k
ij , s ∈ {ℓ, m, r} (see black disks in Fig. 10) match

the tensor-border reparameterized by β as detailed in Section 4.2. The four
BB-jets at the corners t of ao,k, the piece nearest o, are defined by

Htao,k := Ht
(
C(g)k 1

λ
L−1 ◦ σo)

. (17)
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Here C(g)k is the guide obtained by applying one step of Catmull-Clark sub-
division to the cap-net to smooth out abrupt transitions in curvature before
computing (4) and (7). We counteract this contraction (and do not introduce
an extra surface layer) by scaling the parameterization of the new guide with
the inverse of the subdominant eigenvalue λ := 1

16 (c + 5 +
√

(c+ 1)(c+ 9)) of
Catmull-Clark subdivision (see Fig. 11). We complete a by connecting ao,k C2

to as,k
ij , s ∈ {ℓ, m, r}.
To obtain a cap that is G2 also across the sector boundaries (o, mk), we

have to correct the BB-coefficients in the n strips (underlaid grey in Fig. 10)
that define the derivatives up to and including second order across the sector
boundaries. Setting, with the indexing of Fig. 8,

pr,k−1
ij := ar,k−1

ij and pℓ,k
ij := aℓ,k

ij , i = 3..5, j = 0..2, (18)

enforces the G2 constraints (11) and (12) at mk and allows us to focus on the
remaining strips

PK := {po,k−1
ij , po,k

ij , i = 0..5, j = 0..2;pr,k−1
ij , pℓ,k

ij , i = 0..2, j = 0..2}k=0..n−1.

We enforce G2 vertex enclosure constraints at the star point by giving to Hopo,k,
k = 1, . . . , n, as degrees of freedom, exactly the n+6 BB-coefficients (n+1+ 6
if n = 6)

G3 := {ḡ△1
ijm}i>0 ∪ {ḡ△k

030}k=0...n−1 (19)

of a C2 piecewise polynomial ḡ△ of degree 3 – shown as circles in the gray region
of Fig. 4. That is all BB-jets Hopo,k at the star point have the form

Ho
(
ḡ△k ◦ σo)

(20)

with po,k
22 still free to choose. After the substitutions derived in Section 4.1 and

enforcing the C2 continuity internal to each pk, the BB-coefficients of PK are
expressed in terms of po,k

i2 , i ∈ {2, 3, 4, 5} (marked as small black disks • in

Fig. 8b), the BB-jet at the star point and the BB-jets at mk, pr,k−1
ij and pℓ,k

ij ,

i = 3..5, j = 0..2. Treating the 4n coefficients po,k
i2 together with G3 of (19) as

unknowns, PK now depends on 5n+6 unknowns (5n+1+6 unknowns if n = 6)
that are determined by minimizing

min
G3,po,k

i2

F1(ps,k − as,k), k = 0..n − 1, i = 2..5, s = {ℓ, o, r}. (21)

We verify the following proposition by substitution.

Proposition 1 The jets of po,k computed in (20) satisfy (13).

To summarize, we constructed in order

g△ −→ g −→ a −→ p. (22)

Since the patches pk are constructed to be internally C2, Proposition 1 and
Lemma 1 prove that the cap is curvature continuous and matches the tensor-
border with curvature continuity.
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Figure 12: cap-net-labelling.

(a) n = 3
00

22 32 42

(b)

Figure 13: (a) Black disks = free points of the bi-6-construction g near the star
point. Circles = unconstrained innermost control points (b) Degree 4 reparam-
eterization ρ of input tensor-border.

5.1 Implementation

We compute, for various n, once and for all, the data-independent reparam-
eterizations β and σ (ρ is not needed in explicit form). The construction is
linear and coordinate-wise. Due to the relatively short, explicit formulas for
the BB-coefficients of g and p in terms of unconstrained BB-coefficients, the
construction steps of the Capping Algorithm are stable and fast. The unde-
termined coefficients of g△ (the star point is fixed) are determined by solving
a linear system of size (6n + 5) × (6n + 5). Enforcing (21) requires solving a
linear system of size (5n + 6) × (5n + 6). The implementation is made even
more efficient by tabulating seven generating functions of the cap-net. Since the
Capping Algorithm works for each coordinate separately, it can be applied to
when all cap-net points have value 0, except for c1

m = 1, for one of m = 1, . . . , 7
(see Fig. 12. This yields the scalar-valued bi-5 coefficients hk,m

ij , m = 1, . . . , 7,
k = 0, . . . , n − 1, i, j ∈ {0, . . . , 5} where h1,7

ij = . . . = hn,7
ij . Then po has the

BB-coefficients

po,s
ij :=

n−1∑

k=0

6∑

m=1

hk,m
ij cs−k

m + h1,7
ij c1

7. (23)
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(a) free BB-coefficients (b) σ for n = 3 (c) S

Figure 14: (a) Unconstrained BB-coefficients • of po after resolving the smooth-
ness constraints. (b) ’Characteristic’ parameterization. (c) Biquintic reparam-
eterization for sampling bi6 guide.

6 Special construction for valence 3

Since a denominator of σ vanishes for n = 3, we exploit the special options
offered by n = 3.

6.1 A G2 bi-6 guide surface

We construct a G2 guide surface g̃ of degree bi-6 with one patch per sector. This
guide is by itself a G2 cap, of lower degree than previous known constructions
and good shape, but will be replaced by a bi-5 cap to match the representation
in the rest of this paper. We choose b(u) := −(1 − u)2, d(u) := −4(1 − u)2

for the reparameterization between the patches. Then the tensor-border defines
the BB-coefficients qij of g̃k and q̃ of g̃k+1 so that

qi1 := qi0 +
1

4
(qi2 − q̃i2), q̃i1 := qi0 −

1

4
(qi2 − q̃i2), i = 5, 6. (24)

q41 := q40 +
1

4
(q42 − q̃42) + w1(q62 − q̃62) + w2(q52 − q̃52) + w3(q60 − q50),

q̃41 := q40 −
1

4
(q42 − q̃42) − w1(q62 − q̃62) − w2(q52 − q̃52) + w3(q60 − q50),

where w1 := 1
150 , w2 := − 1

100 , w3 := − 1
30 . The remaining unconstrained BB-

coefficients are shown as black disks in Fig. 13a.
Similar to the general case, but using just one piece, the degree 6 tensor-

border is obtained by reparameterization with a map β of degree 4 (see Fig. 13b).
Position and first cross-derivative layers are preserved by (24). The coefficients
of β defining G2 continuity are

β22 :=
(287
576

,
287

576

)
, β32 :=

(293
384

,
47

96

)
, β42 :=

(
1,

15

32

)
. (25)

With the outermost layers of g̃ match the tensor-border, we fix the three neigh-
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bors of the star point so that

star point :=

2∑

i=0

6∑

m=1

Emci
m + (1 − 3

6∑

m=1

Em)c1
7, (26)

where c is defined in Section 5.1 and

E1 :=0.00004133, E2 = E4 := 0.00049235, E3 := 0.00079515,
E5 :=0.04832434, E6 := 0.16420709

(27)

is obtained by experiment improving on poor results when choosing the limit
of Catmull-Clark subdivision. Fixing the star point reduces number of uncon-
strained BB-coefficients, marked by circles or disks in Fig. 13a. The remaining
10 BB-coefficients are determined by minimizing F4(g̃1) + F4(g̃2) + F4(g̃3).
Applying this construction to the symmetric planar input of a degree-raised
normalized tensor-border of χ yields the parameterization σ6 shown in Fig. 13a.

6.2 Reparameterization across sector-boundaries

To have pr,k−1 and pℓ,k join C2, we choose

ρo : b(u) := −(1 − u)3, d(u) := −6(1 − u)3. (28)

Fig. 14a shows as black disks the unconstrained BB-coefficients of po after
resolving the smoothness constraints over all three sectors and enforcing C2

continuity within each pk. The structure of p is the same as for n 6= 3: b
defines the outermost layers of pℓ,k, pm,k and pr,k. The strips are modified to
enforce (28) plus internal C2 continuity and only the 3 × 3 collection of BB-
coefficients, where the four pieces of a patch meet, is undetermined. Applying
this construction to the symmetric planar tensor-border of χ and minimizing
F3 yields σ for n = 3, shown in Fig. 14b.

We construct the guiding bi-5 go,k by setting

Htgo,k := Ht
(
g̃o,k ◦ S

)
(29)

where S is a bi-5 reparameterization obtained as follows. We compute numeri-
cally the four vertices vij := (σ6)−1 ◦ σo(i, j), i, j ∈ {0, 1} where σ6 is a ’charac-
teristic’ parameterization of degree bi-6 constructed as in the previous section.
Then S is defined by the requirement Hvij

σo = Hvij

(
σ6 ◦ S

)
. Analogous to

general case, we finally determine p by minimizing

2∑

k=0

∑

s∈{ℓ,m,r}

F4(ps,k − gs,k). (30)
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(a) (b)

Figure 15: Degrees of freedom in the G2 of ternary spline patch: (a) according
to (12), (b) according to (34).

m
r

ℓ
ṁṙ

ℓ̇o

(a) n = 8 (b) n = 10

Figure 16: Ternary parameterization σ.

7 Ternary-split for high valences

For completeness of discussion and since the curvature distribution can deterio-
rate for challenging data when n ≥ 8, we consider a ternary split of each sector
into seven C2-connected patches as shown in Fig. 16 b. Analogous to Catmull-
Clark subdivision, it is not necessary to split the outer patches, and create a
3 × 3 macro patch. Fig. 20 demonstrates the resulting shape improvement for
higher valences over the earlier 2 × 2 spline construction of Section 5.

For the G2 join between sectors we choose

for ρo : b(u) := c

2∑

j=0

bo
j Bj(u) , d(u) := do

0 + do
1u;

for ρṙℓ̇ : b(u) := c

2∑

j=0

bṙℓ̇
j Bj(u) , d(u) := dṙℓ̇

0 + dṙℓ̇
1 u;

for ρrℓ : b(u) :=
2Z̄
5
cB0(u), d(u) := 4ZcB0(u), Z := 3z − 4, Z̄ := 2z − 1,

(31)
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where z is a free parameter, Bj(u) a BB-polynomial of degree 2 and

bo
0 :=2c, bo

1 :=
1

5
(4z + 3)c, bo

2 := zc, do
0 := 6Zc, do

1 := −2Zc;

bṙℓ̇
0 :=zc, bṙℓ̇

1 :=
3Z̄
5
c, bṙℓ̇

2 :=
2Z̄
5
c, dṙℓ̇

0 := 4Zc, dṙℓ̇
1 := −2Zc.

(32)

The G2 construction connecting to the tensor-border uses

w1 :=
c

160
(z − 3), w2 :=

c

160
Z̄, w3 :=

c

50
Z̄ ; (33)

which is identical to (11) when z := 4
3 . Fig. 15(a) shows the BB-control points

not constrained by the G2 constraints across sector boundaries. The structure
and degrees of freedom in the gray neighborhood of the star point are as in
Fig. 8(b), σ is defined via F3 with z := 53

41 (see Fig. 16).
The patchworks ps,k and as,k are defined according to Section 5 but mini-

mizing F3.

7.1 Ternary bi-5 cap matching a degree 5 tensor-border

The extra degrees of freedom can alternatively be used to accommodate tensor-
borders of degree 5, as is common in modeling complex shapes and avoids in-
troducing an artificial layer of bi-3 spline patches. Choosing d(u) := 0 and

ρo : b(u) := 2c(1 − u) +
5

4
cu;

ρṙℓ̇ : b(u) :=
5

4
c(1 − u) +

1

2
cu, (34)

ρrℓ : b(u) :=
1

2
c(1 − u)3.

we obtain one extra degree of freedom (see Fig. 15b) and the constraints at mk

become the standard C2 constraints corresponding to w1 = w2 = w3 = 0 in
(33). Such C2 constraints allows the cap to continue a tensor-border of degree
5 without reparameterization. However, although we gained one degree of free-
dom, one degree of freedom is lost in the reparameterizations and the curvature
distribution of the construction according to (34) appears to be slightly worse
than that according to (31).

8 Results and Discussion

We use basic hard test cases in Fig. 17. Fig. 18 demonstrates high quality for
valences n = 5, 6 based on the main ‘binary split’ bi-5 construction. However
Fig. 19c hints for n = 8 that an improvement may be needed for higher valences
and Fig. 20(a),(b) confirms this for n = 9.

The ‘ternary split’ construction carries good quality beyond n = 7, up to
and including n = 10. Beyond that the sectors of the guide g become so slim
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(a) Off-center peak (b) Bent star (c) Convexity test

Figure 17: Test cases. (b) planar mesh (light gray) with perpendicular back
(dark grey). (c) Convex cap test (that Catmull-Clark-subdivision fails).

(a) highlight lines (b) mean curvature (c) highlight lines

Figure 18: (a) Input Fig. 17(a). (b,c) Input Fig. 17(c) of valence n = 6.

(a) cap-net+layer (b) Gauss curva-
ture

(c) highlight lines

Figure 19: Input Fig. 17(b) for valence n = 7 (a,b,c) and n = 8 (c).

(a) 2 × 2 spline patch (b) ternary split spline patch

Figure 20: Input Fig. 17(c): Mean curvature and highlight shading.
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(a) off-center peak (b) g̃ standard (c) g̃ using (26)

Figure 21: Valence n = 3: (b,c) improvement of highlight lines by choice of
star point.

Figure 22: Correction to C2 of sampled patches in guided subdivision.

and the C0 junctions so close that we suggest for valences n > 10 to use a bi-7
guide that is G2 between sectors.

At first glance, it seems that using a single patch of degree bi-7 with 64
coefficients per sector of the cap is computationally advantageous. However,
since the tensor-border is prescribed, and since our bi-5 construction pins down
coefficients by internal C2 constraints, the actually free BB-coefficients are those
of one bi-5 patch per sector, or 36 coefficients. In any case, such simple counting
can mislead since the actual implementation involves numerous trade-offs. For
example [Loo04, LS08] reparameterize already the first derivative across the
boundary between the bi-cubic data and the cap to satisfy algebraic constraints.
We found that C1 continuation yields a better curvature distribution.

8.1 Guided subdivision based on g

Since the b-i5 guide g plays a crucial role and since g is curvature continuous
at the star point, it is tempting to base a guided subdivision algorithm on g
following [KP07a, PR08]. Applying that approach with patches of degree bi-5
yields a surface that is curvature-bounded at the star point; using patches of
degree bi-6 yields C2 continuity at the star point. The construction is simple,
requiring only adjustment of the BB-jets shown in Fig. 22 to make them C2 (the
’bottom’ BB-jets already meet C2 as C2 extensions of the preceding subdivision
surface ring). While the construction appears simpler, it comes at the usual cost
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of rendering recursively generated surfaces.

9 Conclusion

The paper explored the ‘guided’ approach to creating surfaces with good cur-
vature distribution. The goal was to not abruptly change the curvature distri-
bution across the bicubic boundary of the gap and to gently average out the
propagated curvatures in the neighborhood of the star point. Besides the main
approach using a ‘binary’ 2 × 2 partitioned spline patch, we addressed more
challenging data, such as high valence, by a ternary variant, also of degree bi-5.
While the constructions appear at first look complex, and indeed their deriva-
tion involved challenging symbolic computing, the resulting construction has a
simple tabulated representation.

Acknowledgments.

Work supported in part by NSF Grant CCF-1117695.

References

[CNG00] J. Cotrina Navau and N. Pla Garcia. Modelling surfaces from planar
irregular meshes. Comput. Aided Geom. Design, 17(1):1–15, 2000.

[Far02] G. Farin. Curves and Surfaces for Computer Aided Geometric Design:
A Practical Guide. Academic Press, San Diego, 2002.

[GH89] John A. Gregory and Jorg M. Hahn. A C2 polygonal surface patch.
Comp Aided Geom Design, 6(1):69–75, 1989.

[GH95] C. M. Grimm and J. F. Hughes. Modeling surfaces of arbitrary
topology using manifolds. Computer Graphics, 29(Annual Conference
Series):359–368, 1995.

[GZ99] John A. Gregory and Jianwei Zhou. Irregular C2 surface construction
using bi-polynomial rectangular patches. Computer Aided Geometric
Design, 16(5):423–435, 1999.

[Kic13] Przemyslaw Kiciak. Spline surfaces of arbitrary topology with con-
tinuous curvature and optimized shape. Computer-Aided Design,
45(2):154–167, 2013.

[KP04] K. Karciauskas and J. Peters. Polynomial C2 spline surfaces guided
by rational multisided patches. In Tor Dokken B. Jüttler, editor,
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