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Abstract

The paper develops a rational bi-cubi(.z(Ecurvature continuous) analogue of the non-uniform polynom%l C
cubic B-spline paradigm. These rational splines can exactly reprogads of multiple basic shapes, such as cy-
clides and quadrics, in one by default smoothly-connected structueevdrsatility of this new tool for processing
exact geometry is illustrated by conceptual design from basic shapes.

Categories and Subject Descript@gscording to ACM CCS) 1.3.5 [Computer Graphics]: Curve, surface solid and

object representation—Splines

%@%

(b)

(d) (e) (f) (9)

Figure 1: Both the meshes (a) and (c) map to the exact torus
(b) represented as a piecewise rational spline of degree bi-3
(bi-cubic). The two different mesh structures allow for dif-
ferent designs: (a) is geometrically modi ed to (d) yielding
the bi-3 surface (e) and (c) is geometrically modi ed to (g)
yielding the bi-3 surface (f). The golden components remain
exactly on the torus.

1. Introduction

This paper develops a ration@f spline analogue of the
ponnomialC2 cubic B-spline paradigm to be able to include

tionality or simplicity of shape, and modify them. Extend-
ing this way of thinking to implementation, however, creates
challenges. When multiple pieces are created in isolation, as
separate entities, they must be combined using intersections,
llets and blends. This complicates downstream manipula-
tion, design re nement and analysis. This paper therefore
proposes a class of curvature continuous rational splines that
generalize(:2 splines in that they reproduce classical shapes
without the need to, a posteriori, stitch the conceptual pieces
together. Such built-in blending is useful when varying de-
signs while preserving constraints as part of a shape opti-
mization process.

Bi-cubic polynomial B-splines are well-known and
widely used at all levels of geometry processing since they
combine smoothness and exibility with simplicity. How-
ever, even for the regular tensor-product layout, let alone in
the presence of extraordinary points, designing surfaces as
fair as the classical basic shapes, is a challenge. Moreover,
for mechanical applications, for example for ball and socket
joints, basic non-polynomial shapes have to be reproduced
exactly. Rational geometric splines have been developed as
early as Boe87GB88 and both Joe89Bar93 observe that
the paramete of rst order geometric continuity can repre-

a sequence of approximate or exact rational primary shapes,sent local knot spacing. This classical work is primarily in-

such as tori, cyclides, spheres etc. and automatically com-

terested in algebraic generality. It treats the many scalars of

bine them into a smooth whole. The new splines support ab geometric continuity and rational weights as free parameters

initio design, re-design starting with CSG models or recon-
struction in reverse engineering. We focus on use in con-
ceptual design as illustrated in Fiy.a popular approach to

conceptual design of outer surfaces is to start from primary

and does not provide constructive recipes. In our approach,
all parameters are initialized to reproduce basic shapes and
modifying them is entirely optional. Concerning shape re-

production, there are two approaches in the literature. The

shapes, such as quadrics or cyclides, that represent func- rst, exempli ed by modeling circles as projections a?
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curves in homogeneous space, leads to high degree param-

eterizations, e.g. degree 6 for circl&H97. The second is

to use rational pieces in Bernstein-Bézier form to model in-
dividual conic shapes; this lacks built-in smooth transitions.
A concrete framework, that guarantdssth built-in smooth-
ness and reproduction of multiple basic shajsasissing in

the literature. We now present such a framework, based on
4-tuples of rationaG? splines of lowest possible bi-degree.

The structure of this paper is as follows. Sectibspeci-

es the construction of rational cubié® spline curves that
can reproduce basic curve shapes. Se@igives a tensor-
ing procedure that yields rational bi-cut®? splines capa-
ble of reproducing cyclides and tori. Sectibradds spheres
and sphere-like shapes to the toolkit. General, multi-sided
blends fall outside the rational biG? paradigm and are not
covered by this paper.

2. Rational Cubic G2 Curves

When de ning splines, here rst in one variable, we make
use both of a B-spline-like control polygon with points
and of functionsf of degree 3 in rational Bernstein-Bézier
form to represent curve segments. For example, with
[0::1] (cf. [Far88 PBP02 for canonical expositions)
|
f(U) = é:|;3:0kakBk(u).

e : TR
Ag= okak(U)

3
K ¢

By(u) :=
First we recall the notion of geometric continuity, i.e. match-
ing of derivatives after reparameterization. This notion is
central to our splines when we express them piecemeal
in Bézier-form: it plays a role akin to non-uniform knot-
spacing for standard splines.

De nition 1 (G2 continuity) The mapsf : [0::1] ! and

g:[0:1]! join G! at a common point (1) = g(0) if for
some scalab > 0
g%0) = bfYD); )
andG? if additionally there existg 2
g0 = b* D)+ of YD) ; )

We note that iff "™ andg™™®" join G with scalarsb, g
denom denom; . 2 o
and f andg join G* using the same scalars then

fnumer numer

and%join G? with these parametels g

fdenom

As illustrated in Fig2, the control structure of our rational
cubicG? curves consist of

the af ne B-spline-like control pointspi 2 d (d= 2for
planar curves; we will also ugsk= 1;3;4);

the parameters o> continuity bj,g, associated with the
junction of consecutive cubic segmerifs; and f; and
the weightsv, 2 of mapsf; such thai, 1= wh=:W.

pl by by p*t
by b3
pi 1 pi+2
W o1 sz Dwoowh owh, W ijl Wi+ 2
bi;a bi+1;0+1

Figure 2: The control structure of a rational cubic@urve.

From the control structure, we determine the af ne coef -
cientsby, 2 d

bi:=(1 t)p'+4p™ i bhi=Gp' (1 )P -
bo:=(1 x)by '+ xby; by T:= bp:
o MW Wi W T wh
b cibi + cob2+ cag w2
oL = 2w, H(3wh)® Wwy W) ;
co = 2uh(3wh 12 Wwy b Wiw, 1) @)
C3 ::Wil lVvlwili
) i . li+1 . W
tj = <t = =X 1= — —!
T T e T T e 50T W hew,

The formulas 8) have the same structure as the standard
conversion from B-spline to Bézier form. The additional
exibility guaranteeing reproduction and smoothness comes
at the cost of the complex but explicit formulas.(For poly-
nomial C? splines, these formulas simplify sinog, = 1,

g = 0 andb; is the ratio of the  1st andth knot interval.

With the help of symbolic computation, one can verify the
following theorem.

Theorem 1[KP, Thm 1] Letf; 1, fj be rational cubic curves
with weightsw, *, w and control points,, *, b} de ned by
(3). Then

£%0) = bi 2 1(1) ; £°%0) = b 1)+ g0 1(2) :

Conversely, we can derive the control poipiso_f the cu-
bic G2 spline curve from the Bézier-coef cient&‘li. As for

C_2 splines, they are simply the intersections of lines through
b} ;b L andb};b} (cf. Fig. 2 and Fig.3 (a)).

Circular arcs. As illustrated in Fig.3 (a), circle arcsf;

with opening angles; can be represented as rational cu-
bic splines withG? continuity: we simply degree-raise their
standard rational degree 2 representation, with end-weights
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(a) circle

(b) arc-preserving design

Figure 3: Exact circle (a) de ned from the asymmetric con-
trol polygonp’ as & rational spline of degree 3. (b) Design
variation that preserves circle arcs exactly (thick arcs).

equal to 1 and end- pomt% 1=
obtain

b0 on the circle Far8§ to

[ bhBg + wh By + whblB, + b5Bs 5)
b Bo+ WB; + WB, + B '

L + 2 cosE

33

This rationalG? circle parameterization has scalars

sin% ;
bi= w9 =2 tan®, 2

W

+tang sing:

2 .
We will use 6) repeatedly to replace cos and sin expressions.

3. Bi-cubic Rational G* Splines

We obtain rules for a tensor-product spline surface essen-

tially by tensoring the construction in Secti@nThat is, we
derive control pointsrs and weightsais 2 @ of the bi-

cubic patches in Bernstein-Bézier form on the unit square

Ij(u V) = r3 oé’lgzoWIrsblrsBr(U)Bs(V)
ér oagov\erBr(u)BS(V)

from a regular quadrilateral grid of (B-spline-like) control

pointsp'! 2 9 with associated scalams;;bj;g in the u-

direction and scalarwéj'bj ;gj in thev-direction.

(6)

Bi-cubic Construction: We setvv'rs = w'rwé and compute
the averaging quantitiei§; tj;X; of (4) for one direction to
get, as shown in Fig}, (a),

hi=(1 §)p' +t-_pi;j+1, hi=fpl+(1 §)ph*e;

hl=(1 sphy! T+ shl ;i Y= nl: (Fig.4 ()
and thertj;j; x; to compute for the other direction

bl :=(1 t)hd+the ™ bl = §hd + (1 §)hS Y

bl :=(1 x)bh ™+ xbll; bh. 1= bll: (Fig. 4 (b))

i 11 21
A i+ 1 1j

U0

@p! Mh! b

Figure 4: Bi-cubic Construction

Theorem 2 The bi-cubic rational functionss} de ned by
the Bi-cubic Construction form &2 spline complex.

Proof We show that
iov = bifl F(Lv);
(o) = bf fiu ™ (L) + g fl M (L)
By the symmetric argumemfv (u 0 = bfy! Yu1),

fl(u;0) = b2 H(u;1)+ g (u 1) then follows. By
de nition of the weightswi} := whvid, and therefore

a a WLB: ()B(v) = a W, Br (u) a VidBs(v):  (7)
r=0s0 r=0 S0
Let j be xed and de new(v) := WI{Bk(v) a2 o WiBs(v).
Thena . o Wi(v) = 1 and

a2 owt a2 oWs(vbil Br(u)

£l (uv) = :
() ay=oWiBr(u)

With the abbreviations

3 -
a Ws(v)pe;

s=0

3 .
4 Ws(v)bis and  pi(v) =

=0

bir (v) :=

&2 oWibir (V)Br (U)

&7 oWiBr (U)
bir(V) =(1 6)pi(V)+ tiPjs1(V) ;
bio(V) =ipi(V+ (1 )pisa(V) ;
bio(v) =(1  x)b;i 12(v)+ xibj1(V);
bi 1:3(v) = bio(V):

The proof then follows from Theoreth  []

il (uyv) =

8)

Using (7) and following the steps of the tensoring proce-
dure, we get the following corollary.

Corollary 1 Considering one coordinate at a time, let
f f,(u)g be the rational cubic pieces ofaf spline with con-
trol pointsp; as in Theorent, and letf gj(v)g be another
piece with control point§;.

(a) Then the bi-cubic function8’ (u;v) := fi(u)gj(v) form

2 i .=
As in any tensoring procedure, the result is unchanged if we @ Pi-cubic rationalG” spline with control pointp) = pi;.

change which direction is rst.
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3.1. Reproduction of Basic Shapes

We consider several families of basic shapes. Many of these

basic shapes have a natural trigopnometric representation in

real projective 3-space 3 ie. equivalence classes of 4-

tuples of real numbers. By re-representing cos-sin-pairs as (&) designer (b) algorithm  (c) designer (d) algorithm

rationalG? cubics and applying Corollary;, we will be able

to express them as= 4-tuples of rational, scalar-valued co-

ordinate maps,’, k= 1;2;3;4 of type €), with coef cients

bk 2 - Since the denominators of all four splines are iden-

tical, they are cancelled when we form the rational spline in
3 and since allfi'J‘ share the samte g, the remark following

De nition 1 guarantee&? continuity.

Figure 5: Design work ow: (a) the designer partitions, (b)
the algorithm creates the mesh and sets the parameters, (c)
the designer modi es, (d) the algorithm creates the surface.

1. The rst family to be reproduced has the homogeneous

parameterizatioghy; hy; hs;hg) 2 3 where @ ®) ©

hy = ago+ ax1 COSU+ ayp Sinu+ a3 Cosv+ agaSinv+  (9)
(aks cosu+ ayg sinu) cosv+ ((axy CosUu+ akg Sinu) sinv.

This includes the torus and cyclides. For given partitions
(opening angles)aig in the u-direction and &;g in thev-
direction, we convert the cos-sin-pairs 18B),(apply Corol-
lary 1 and gather coef cients after scaling lays to obtain (d) ©) ®
the 4-tuplegp} ; p3 ;p3;p;) that the Bi-cubic Construction

converts to the standard forr)( Figure 6: Alternative designs based on meshes of three torus

segments (red and green in (d) and (e)) and of one one-
2. The second family includes all quadric surfaces except for sheeted hyperboloid (orange). The transitions are gray.
the hyperbolic paraboloid which appears in 3. In particular,
the family includes the sphere with or without composition
with Mébius transformations. Its 3 parameterization, for
k=1;2;3;4,is

3 . (@) (b) (©) (d)

he = Q (8 + 8k COSU+ e SINU)V: (10)

s0
For given opening angles in thedirection, we convert the
cos-sin-pairs by%) and Corollaryl into rational .(;ubicGz
form and set alv-direction weights to 1 so that/} := w}.
Thev-direction is treated as a spline by expressihgs ac?
spline with knot sequendev;g. Thenb := % g :=0.
We then combine with coef cientays to obtain the 4-tuple
(p};pY;p3;p4) 2 *which the Bi-cubic Construction con-
verts to the standard forné).

®

3. The third family has a bi-cubic homogeneous parameteri- (") 0 )
zation and includes the hyperbolic paraboloid. In general, we Figure 7: Alternative designs for joining a torus with a cy-

proceed as in 2 above. As a special case, we include a NON-¢lide. Red and green regions remain as pieces of the original

uniform bi-cubic polynomial spline by setting all weights shapes: transitions are grav: (i) mean curvature of (h). (i
to 1,g := 0=:g and all scalard;, bj to the ratio of the highriigk;t lines (zoomed i%) i ) ®. 0

lengths of consecutive knot intervals. TB2 control mesh

is the spline control net. r/’— ( )
9

./
4. Design With G? Splines

Bi-cubic rational splines € offer a number of scalar @ (b) (©) (d)
and vector-valued parameters;;bj;g and bik. In con-

trast to the classical algebraic treatmeBE87 GBSS Figure 8: Designs appreciated in particular by very young

audiences, joining a torus (red) with a sphere (green).

Cc 2011 The Author(s)
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Joe89 Bar93, here the designer is not expected to set
these parameters. Rather, all parameters of the 4-tuples

shapes (including bi-cubic NURBS) and modifying them is
entirely optional. The suggested work ow is summarized in (a) polarmesh  (b) unfolded and (c) de ned by
Fig. 5. In (a) the designer indicates a local region to work poles split grey mesh
on, in (c) the designer manipulates the spline control points
(p};p3;p4;p4) by standard CAD tools in 3-space as

1
3 <
dl= 2.0 o 3 Wihi=pl: (1) .

’

Pi Pi Pi . R
In return, the algorithm reversesl) to obtainp') 2 4 from -
al;W', applies the Bi-cubic Construction to obtain new
af ne Bézier coefcientshll, 2 , k= 1;:::;4 and, since (d) bymesh+ (e) capped (f) C? completion

rs;k
the 4-tuple of functiond,) represents a function in3, the poles sphere

common denominator can be discarded to obtain a 4-tuple

Fi 9: Bi-cubi li her d (b) Control h
of polynomial maps with control points gure I-cubic spline sphere(a) and (b) Control mes

with polar con guration. (f) Logical diagram (layers of con-

(V\fr!sb:-ls;l;V\fr!sb:»ls;z;V\fr!sblrjs;g;V\frgsb:»Js;A) 2 4 trol points) of ac completion of a 3-piece polar cap.
that de ne a rational bi-3 spline patch irt.
Examples In the following examples, parts of th&? parameters in the pole-to-pole direction (see General Con-

meshes p'l g of several basic shapes are merged into®he  struction at Poles below) the algorithm yields the additional
mesh, without adding any control points! While more subtle sphere-reproducing spline rings of Fiy(d).

transitions can potentially be designed by adding transition
layers, the examples show that even straightforward use of
the new spline representation yields satisfactory results.

To exactly reproduce a spherical cap, we reparameterize
the inverse stereographic projectionl =(262y1 X2
YL+ y?) 2 by (XU V) Y(Uv) = 1 (u;v)

Fig.6 showsG? design variations that merge torus pieces 1 v 1 v
with a one-sheeted hyperboloid. FigshowsG? design vari- r(u,v) ;= ——cosu; ——sinu : (12)

. ; . > % %
ations that merge a cyclide with a torus. FgshowsG* de-
sign variations that merge a torus with a sphere. Note that the That is, we form  (r) wherev = 0 corresponds to south
cut torus piece does not meet the sphere at axially symmet- pole andv = 1 to the north pole. Multiplication by? clears
ric points. Changing the location of the poles, by a Mébius the common denominators of the 4-tuple to yield a rational
transformation, will be addressed in the next section. bi-3 G? spline.

. General Construction at PolesFor the south-to-north di-
5. Free-form Sphere-Based Design . ) .
rection parameterized by, we pick the knot sequence

bi-cubicG? spline patchwork where the patches surrounding polar control points
the poles form a specially constructed assembly of bi-cubic

patches with one edge collapsed to the pole. This explicit pS°”‘h;:( 0;0; 3 3wt 2V%;1) iboi=1 wvq;
singularity is acceptable to CAD packages and allows for 3(vi 1) (13)
much lower degree than the construction&Pp7. notth ., o 2 Vit 2V _ 1,
p -:(0|01T71)‘bm+1.: —:
'm Vm
5.1. Polar Construction We construct the polar caps so that the free-f@fbi-cubic

spline defaults to the sphere (F(e)). A polar spline cap
is periodic inu. Inv, itis partitioned into thre€2-connected
rings with the outer ones interpolating, respectively, data at

the pole and of the existing body (Fig(f)). The expansion
1

As illustrated in Fig9 (a), (b), the control mesh of our con-
struction is a regular tensor-product mesh with control points
collapsed to form a northern and a southern triangle fan,
called polar con gurations[KPQ9. Apart from these con-

gurations, the algorithm of Sectiod.1applied to the (gray) 2t the pole is obtained by generalizing to

mesh in Fig.9 (a) yields the equatorial part of the sphere =( 1 2, 3 4)2 3. (14)
shown in Fig.9 (c). Interpreting the carefully-set polar con- . 2 _

trol points as collapsed edges and choosing the proper scalar k= 0Okot QX+ Oky+ Oka(X+ yz),

¢ 2011 The Author(s)
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with, as yet, undetermined coef cientgs and form
(r(uvm(l W+ 0); V2 [0:1]:

As before, we replace the sincosu pairs in this expres-
sion by 6) and remove the common denominator of the 4-

(15)

tuple. This yields a bi-2 map that is expressed in our bi-cubic

form as f°@P. We determine the coef cientgys So that the

boundary of the bi-cubic cap best matches the boundary of

the already constructed bi-cubic patcH&8 of Fig. 9 (d).
Concretely, we minimize the two-norm distance of position,
rst and second derivative, i.e. the 2-jet along the bound-
ary, 'llszc’dy. As areparameterization of a quadratic, the con-
structed bi-cubic cap is in nitely smooth at the pole, but typ-
ically does not join smoothly withi®°%. A simple remedy is

to trisect the cap in the direction and have the sub-patches
adjacent tof °°% inherit its 2-jet (Fig9 (f)). Then the 2-jets

of £8P and f2°% uniquely determine the remaining Bézier
coef cients since we require that the patches join parametri-
cally c?as 4-tuples in the direction.

Since the map can in particular represent 1 the cap
construction completes a sphere if the dgta°% come
from a sphere.

(a) sphere (b) merged with cylinder (c) design

Figure 10: Design with polega) Mesh segmented to admit
(b) merging with cylinder mesh; (d) design variation.

(b)

Figure 11: Design with poleSube-design.

@ (b)

Figure 12: Elliptic paraboloid (green) merged with a two-
sheeted hyperboloid (red) into a smooth whole. (b) and (c)
show two different viewpoints.

© (d) (e)

Fig. 11illustrates the capping of NURBS tubes of degree

(@ (b) (© (d) (e)
Figure 13: Morphing the sphere-torus %spline (a) of

Fig. 8to a single torus (e).

@ (b) © (d) (e)

Figure 14: Mobius transformation for free-form spheroids.
(a) Bi-cubic patchwork on sphere of the surface from Big.
(b) polar mesh of sphere stemming from composition (@M
with inverse of stereographic projection. (c) corresponding
bi-cubic patchwork of sphere. (d) perturbed polar mesh. (e)
perturbed spheroid.

bi-3 with caps of degree bi-3. Note for comparison that the
algorithm in KPO9 results in a cap of degree 6 in the
direction. An analogous capping procedure applies to the el-
liptic paraboloid and the two-sheeted hyperboloid as shown
in Fig. 12

While for typical design, the initial choice of scalars
w;;bi;g and Wé;Bj;Qj are de ned to reproduce the basic
shapes in Sectio3.1 and need not be modi ed, they and
the control points can be continuously changed to morph be-
tween basic shapes, as in Fig.

M@obius transformations Figures8 and14 demonstrate the
need for controlling the placement of poles for design with
sphere-like free-form shapes: the ends of the cut torus do not
meet the sphere at opposing points. To adjust poles, we use
the Mobius transformation of the sphere, a composition of
the stereographic projectiogwith the rational linear map-
; — azxh _ - ;
ping M(2) := &g, 2= X+ 1y and the inverse stereo-

graphic projection: M L. For our application, we can
restrictM(2) := %bl, b2 which moves the north pole to
20 .01 P and the south pole to;22,:0; 11
1+p2* > 1+ b2 p 1+b2' > 1+b2 -

In general, we compose M r to obtain for each coor-
dinate (hence dropping the indix
= 0ob? + qub+ gg+ quC+ Gps 203
+2(Goc G+ QeO)b (200 dact GIb” v
+ 0o € s+ gz 2(qoC o1+ asC)b
+(do  OuC+ Ops+ ga)b” v

Cc 2011 The Author(s)
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wherec := cosu, s:= sinu. With the scalar®;, g of (13)

(1 b?)(3 3vi+ 2V

south._ .0 . AR
p '_( 2b1 Ov 3(Vl 1) 1l+ b )1 (16)
oMt = 2p: 0 (1 b?)(2 vm+ 2vr2n);1+ b?)
3Vm

generalizes13).
(a) (b) (c) general (d) 4-saddle,
saddle
mesh

Figure 15: Non-elliptic cappings of cylinder.

Saddle-like Polar Constructions Polar con gurations are
typically used with elliptic designs. For completeness, we
consider here the hyperbolic case. The mesh in Biya)
calls for a saddle. The construction usingf the form (L4)
results in the oscillating surface (b). This can be repaired to
obtain (c), by replacing with a general quadratic with six
coef cients per coordinate, at the cost of increasing the bi-
degree to 4. On the other handyorks well for higher-order
saddles that have central points with zero curvature (d).

6. Conclusion

We created an analogue of tensor-prodm?t bi-cubic
splines, the workhorse of CAD geometry processing, in or-
der to exactly reproduce parts of the classical shapes auto-
matically joined into a smooth whole. This opens up a num-
ber of applications in design, localized re-design or recon-
struction in reverse engineering (see eRMV01,AJS11]).

An analogous rational bi-g5* spline construction general-
izesC! bi-2 splines but yields surfaces of lower quality.

Extending the approach to more general settings such as
in Fig. 16, requires multi-sided blends that lead to splines of
higher degree than bi-3, with additional techniques outside
the scope of this presentation. Subdividing the splines can

@

(b) re ection lines

Figure 16: G> multi-sided blend of degree bi-6.

Cc 2011 The Author(s)
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be used to localize deformations, but also gives a rst subdi-
vision algorithm able to combine basic shapes in one smooth
whole.

We focused on the use of splines to support conceptual de-
sign, starting from primary shapes that represent functional-
ity or simplicity of shape. Since portions of the basic shapes
are reproduced exactly, the spline constructions can also be
viewed as a form of interpolation.

The approach taken is novel in the way it combi@ss
continuity and projective trigonometric parameterizations.
The classical work, on rational spline curv&og87 GB88
Joe89Bar93 and surfaces4WL92, ZWL95], focused on
general necessary and suf cient constraints for smoothness
but missed out on the speci ¢ useful constructions we pre-
sented here. Only looking for and nding formulas such as
(4) allows combining the exact pieces smoothly —which may
explain why no such construction existed to date.
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