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Abstract
The paper develops a rational bi-cubic G2 (curvature continuous) analogue of the non-uniform polynomial C2

cubic B-spline paradigm. These rational splines can exactly reproduceparts of multiple basic shapes, such as cy-
clides and quadrics, in one by default smoothly-connected structure. The versatility of this new tool for processing
exact geometry is illustrated by conceptual design from basic shapes.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface solid and
object representation—Splines

(a) (b) (c)

(d) (e) (f) (g)

Figure 1: Both the meshes (a) and (c) map to the exact torus
(b) represented as a piecewise rational spline of degree bi-3
(bi-cubic). The two different mesh structures allow for dif-
ferent designs: (a) is geometrically modi�ed to (d) yielding
the bi-3 surface (e) and (c) is geometrically modi�ed to (g)
yielding the bi-3 surface (f). The golden components remain
exactly on the torus.

1. Introduction

This paper develops a rationalG2 spline analogue of the
polynomialC2 cubic B-spline paradigm to be able to include
a sequence of approximate or exact rational primary shapes,
such as tori, cyclides, spheres etc. and automatically com-
bine them into a smooth whole. The new splines support ab
initio design, re-design starting with CSG models or recon-
struction in reverse engineering. We focus on use in con-
ceptual design as illustrated in Fig.1: a popular approach to
conceptual design of outer surfaces is to start from primary
shapes, such as quadrics or cyclides, that represent func-

tionality or simplicity of shape, and modify them. Extend-
ing this way of thinking to implementation, however, creates
challenges. When multiple pieces are created in isolation, as
separate entities, they must be combined using intersections,
�llets and blends. This complicates downstream manipula-
tion, design re�nement and analysis. This paper therefore
proposes a class of curvature continuous rational splines that
generalizeC2 splines in that they reproduce classical shapes
without the need to, a posteriori, stitch the conceptual pieces
together. Such built-in blending is useful when varying de-
signs while preserving constraints as part of a shape opti-
mization process.

Bi-cubic polynomial B-splines are well-known and
widely used at all levels of geometry processing since they
combine smoothness and �exibility with simplicity. How-
ever, even for the regular tensor-product layout, let alone in
the presence of extraordinary points, designing surfaces as
fair as the classical basic shapes, is a challenge. Moreover,
for mechanical applications, for example for ball and socket
joints, basic non-polynomial shapes have to be reproduced
exactly. Rational geometric splines have been developed as
early as [Boe87,GB88] and both [Joe89,Bar93] observe that
the parameterb of �rst order geometric continuity can repre-
sent local knot spacing. This classical work is primarily in-
terested in algebraic generality. It treats the many scalars of
geometric continuity and rational weights as free parameters
and does not provide constructive recipes. In our approach,
all parameters are initialized to reproduce basic shapes and
modifying them is entirely optional. Concerning shape re-
production, there are two approaches in the literature. The
�rst, exempli�ed by modeling circles as projections ofC2
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curves in homogeneous space, leads to high degree param-
eterizations, e.g. degree 6 for circles [BP97]. The second is
to use rational pieces in Bernstein-Bézier form to model in-
dividual conic shapes; this lacks built-in smooth transitions.
A concrete framework, that guaranteesboth built-in smooth-
ness and reproduction of multiple basic shapesis missing in
the literature. We now present such a framework, based on
4-tuples of rationalG2 splines of lowest possible bi-degree.

The structure of this paper is as follows. Section2 speci-
�es the construction of rational cubicG2 spline curves that
can reproduce basic curve shapes. Section3 gives a tensor-
ing procedure that yields rational bi-cubicG2 splines capa-
ble of reproducing cyclides and tori. Section5 adds spheres
and sphere-like shapes to the toolkit. General, multi-sided
blends fall outside the rational bi-3G2 paradigm and are not
covered by this paper.

2. Rational Cubic G2 Curves

When de�ning splines, here �rst in one variable, we make
use both of a B-spline-like control polygon with pointspi

and of functionsf of degree 3 in rational Bernstein-Bézier
form to represent curve segments. For example, withu 2
[0::1] (cf. [Far88,PBP02] for canonical expositions)

f(u) :=
å 3

k= 0 wkbkBk(u)

å 3
k= 0 wkBk(u)

; Bk(u) :=

 
3
k

!

(1� u)3� kuk:

First we recall the notion of geometric continuity, i.e. match-
ing of derivatives after reparameterization. This notion is
central to our splines when we express them piecemeal
in Bézier-form: it plays a role akin to non-uniform knot-
spacing for standard splines.

De�nition 1 ( G2 continuity) The mapsf : [0::1] ! R and
g : [0::1] ! R join G1 at a common pointf (1) = g(0) if for
some scalarb > 0

g0(0) = b f 0(1); (1)

andG2 if additionally there existsg2 R

g00(0) = b2 f 00(1) + gf 0(1) : (2)

We note that iff numer andgnumer join G2 with scalarsb, g
and f denomandgdenomjoin G2 using the same scalars then
f numer

f denom and gnumer

gdenom join G2 with these parametersb, g.

As illustrated in Fig.2, the control structure of our rational
cubicG2 curves consist of

� theaf�ne B-spline-like control pointspi 2 R

d (d = 2 for
planar curves; we will also used = 1;3;4);

� the parameters ofG2 continuitybi ,gi , associated with the
junction of consecutive cubic segmentsfi� 1 and fi and

� the weightswi
k 2 R of mapsfi such thatwi� 1

3 = wi
0 = : Wi .

pi� 1

pi pi+ 1

pi+ 2

bi
0

bi
1 bi

2

bi
3

Wi� 1 Wi Wi+ 1 Wi+ 2wi� 1
2 wi

1 wi
2 wi+ 1

1

bi ;gi bi+ 1;gi+ 1

Figure 2: The control structure of a rational cubic G2 curve.

From the control structure, we determine the af�ne coef�-
cientsbi

k 2 R

d,

bi
1 :=( 1� ti)p

i + tip
i+ 1 ; bi

2 := t̃ip
i + ( 1� t̃i)p

i+ 1 ;

bi
0 :=( 1� xi )b

i� 1
2 + xib

i
1 ; bi� 1

3 := bi
0 :

(3)

l i := �
2Wiw

i� 1
1 (wi

1 + wi� 1
2 bi)b

2
i

c1bi + c2b2
i + c3gi

; l̃ i :=
wi

2

wi� 1
1 b2

i

l i ;

c1 := 2wi� 1
2 (3(wi

1)2 � Wiw
i
2 � Wiw

i
1) ;

c2 := 2wi
1(3(wi� 1

2 )2 � Wiw
i� 1
1 � Wiw

i� 1
2 ) ; (4)

c3 := wi� 1
1 Wiw

i
1 ;

ti := �
l̃ i

1� l i+ 1 � l̃ i
; t̃i := �

l i+ 1

1� l i+ 1 � l̃ i
;xi :=

wi
1

wi� 1
2 bi + wi

1

:

The formulas (3) have the same structure as the standard
conversion from B-spline to Bézier form. The additional
�exibility guaranteeing reproduction and smoothness comes
at the cost of the complex but explicit formulas (4). For poly-
nomial C2 splines, these formulas simplify sincewi

k = 1,
gi = 0 andbi is the ratio of thei � 1st andith knot interval.

With the help of symbolic computation, one can verify the
following theorem.

Theorem 1[KP, Thm 1] Let fi� 1, fi be rational cubic curves
with weightswi� 1

k , wi
k and control pointsbi� 1

k , bi
k de�ned by

(3). Then

f 0
i (0) = bi f 0

i� 1(1) ; f 00
i (0) = b2

i f 00
i� 1(1) + gi f 0

i� 1(1) :

Conversely, we can derive the control pointspi of the cu-
bic G2 spline curve from the Bézier-coef�cientsb j

k. As for
C2 splines, they are simply the intersections of lines through
bi� 1

1 ;bi� 1
2 andbi

1;bi
2 (cf. Fig. 2 and Fig.3 (a)).

Circular arcs. As illustrated in Fig.3 (a), circle arcsfi
with opening anglesa i can be represented as rational cu-
bic splines withG2 continuity: we simply degree-raise their
standard rational degree 2 representation, with end-weights
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pi

pi+ 1

pi+ 2

a i� 1a i
a i+ 1

(a) circle (b) arc-preserving design

Figure 3: Exact circle (a) de�ned from the asymmetric con-
trol polygonp j as G2 rational spline of degree 3. (b) Design
variation that preserves circle arcs exactly (thick arcs).

equal to 1 and end-pointsbi� 1
3 = bi

0 on the circle [Far88] to
obtain

fi :=
bi

0B0 + wbi
1B1 + wbi

2B2 + bi
3B3

B0 + wB1 + wB2 + B3
; (5)

w :=
1
3

+
2
3

cos
a i

2
:

This rationalG2 circle parameterization has scalars

bi =
sin ai

2

sin
ai� 1

2

; gi = 2bi
�

tana i� 1
4 + tana i

4

�
sin a i

2 :

We will use (5) repeatedly to replace cos and sin expressions.

3. Bi-cubic Rational G2 Splines

We obtain rules for a tensor-product spline surface essen-
tially by tensoring the construction in Section2. That is, we
derive control pointsbi j

rs and weightswi j
rs 2 R

d of the bi-
cubic patches in Bernstein-Bézier form on the unit square

f i j (u;v) :=
å 3

r= 0 å 3
s= 0 wi j

rsbi j
rsBr (u)Bs(v)

å 3
r= 0 å 3

s= 0 wi j
rsBr (u)Bs(v)

(6)

from a regular quadrilateral grid of (B-spline-like) control
points pi j 2 R

d with associated scalars �wi
r ; �bi ; �gi in the u-

direction and scalars ¨w j
s; b̈ j ; g̈j in thev-direction.

Bi-cubic Construction: We setwi j
rs := �wi

r ẅ
j
s and compute

the averaging quantities̈t j ; ¨̃t j ; ẍ j of (4) for one direction to
get, as shown in Fig.4, (a),

hi j
1 :=( 1� ẗ j )p

i j + ẗ jp
i; j+ 1 ; hi j

2 := ¨̃t jp
i j + ( 1� ¨̃t j )p

i; j+ 1 ;

hi j
0 :=( 1� ẍ j )h

i; j � 1
2 + ẍ jh

i j
1 ; hi; j � 1

3 := hi j
0 ; (Fig. 4 (a))

and then�ti ; �̃ti ; �xi to compute for the other direction

bi j
1s :=( 1� �ti)h

i j
s + �tih

i+ 1; j
s ; bi j

2s := �̃tih
i j
s + ( 1� �̃ti)h

i+ 1; j
s ;

bi j
0s :=( 1� �xi)b

i� 1; j
2s + �xib

i j
1s ; bi� 1; j

3s := bi j
0s: (Fig. 4 (b))

As in any tensoring procedure, the result is unchanged if we
change which direction is �rst.

pi j pi+ 1; j

pi; j+ 1

0
hi j

1

2
3

00
bi j

10

11 21

(a)p ! h (b) h ! b

Figure 4: Bi-cubic Construction

Theorem 2 The bi-cubic rational functions (6) de�ned by
the Bi-cubic Construction form aG2 spline complex.

Proof We show that

f i j
u (0;v) = �bi f i� 1; j

u (1;v) ;

f i j
uu(0;v) = �b2

i f i� 1; j
uu (1;v) + �gi f i� 1; j

u (1;v):

By the symmetric argumentf i j
v (u;0) = b̈ j f i; j � 1

v (u;1),

f i j
vv(u;0) = b̈2

j f i; j � 1
vv (u;1) + g̈j f i; j � 1

v (u;1) then follows. By

de�nition of the weights,wi j
rs := �wi

r ẅ
j
s, and therefore

3

å
r= 0

3

å
s= 0

wi j
rsBr (u)Bs(v) =

3

å
r= 0

�wi
rBr (u)

3

å
s= 0

ẅ j
sBs(v) : (7)

Let j be �xed and de�new̄k(v) := ẅ j
kBk(v)=å 3

s= 0 ẅ j
sBs(v).

Thenå 3
k= 0 w̄k(v) = 1 and

f i j (u;v) =
å 3

r= 0 �wi
r
�

å 3
s= 0 w̄s(v)bi j

rs
�
Br (u)

å 3
r= 0 �wi

rBr (u)
:

With the abbreviations

bir (v) :=
3

å
s= 0

w̄s(v)bi j
rs and pi(v) :=

3

å
s= 0

w̄s(v)pi j
s ;

f i j (u;v) =
å 3

r= 0 �wi
rbir (v)Br (u)

å 3
r= 0 �wi

rBr (u)
; (8)

bi1(v) =( 1� �ti)pi(v) + �tipi+ 1(v) ;

bi2(v) = �̃tipi(v) + ( 1� �̃ti)pi+ 1(v) ;

bi0(v) =( 1� �xi)bi� 1;2(v) + �xibi1(v);

bi� 1;3(v) = bi0(v):

The proof then follows from Theorem1.

Using (7) and following the steps of the tensoring proce-
dure, we get the following corollary.

Corollary 1 Considering one coordinate at a time, let
f fi(u)g be the rational cubic pieces of aG2 spline with con-
trol points �pi as in Theorem1; and letf g j (v)g be another
piece with control points̈p j .
(a) Then the bi-cubic functionsf i j (u;v) := fi(u)g j (v) form
a bi-cubic rationalG2 spline with control pointspi j := �pi p̈ j .
(b) If all pi j := 1 thenf i j � 1.

c 2011 The Author(s)
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3.1. Reproduction of Basic Shapes

We consider several families of basic shapes. Many of these
basic shapes have a natural trigonometric representation in
real projective 3-spaceP

3, i.e. equivalence classes of 4-
tuples of real numbers. By re-representing cos-sin-pairs as
rationalG2 cubics and applying Corollary1, we will be able
to express them asd = 4-tuples of rational, scalar-valued co-
ordinate mapsf i j

k , k = 1;2;3;4 of type (6), with coef�cients

bi j
rs;k 2 R . Since the denominators of all four splines are iden-

tical, they are cancelled when we form the rational spline in
R

3 and since allf k
i j share the sameb, g, the remark following

De�nition 1 guaranteesG2 continuity.

1. The �rst family to be reproduced has the homogeneous
parameterization(h1;h2;h3;h4) 2 P

3 where

hk := ak0 + ak1 cosu+ ak2 sinu+ ak3 cosv+ ak4 sinv+ (9)

(ak5 cosu+ ak6 sinu) cosv+ ( ak7 cosu+ ak8 sinu) sinv:

This includes the torus and cyclides. For given partitions
(opening angles)f �a ig in theu-direction andf ä jg in thev-
direction, we convert the cos-sin-pairs by (5), apply Corol-
lary 1 and gather coef�cients after scaling byaks to obtain
the 4-tuples(pi j

1 ;pi j
2 ;pi j

3 ;pi j
4 ) that the Bi-cubic Construction

converts to the standard form (6).

2. The second family includes all quadric surfaces except for
the hyperbolic paraboloid which appears in 3. In particular,
the family includes the sphere with or without composition
with Möbius transformations. ItsP 3 parameterization, for
k = 1;2;3;4, is

hk :=
3

å
s= 0

(aks0 + aks1 cosu+ aks2 sinu)vs: (10)

For given opening angles in theu-direction, we convert the
cos-sin-pairs by (5) and Corollary1 into rational cubicG2

form and set allv-direction weights to 1 so thatwi j
rs := �wi

r .
Thev-direction is treated as a spline by expressingvs as aC2

spline with knot sequencef v jg. Thenb̈ j := v j+ 1� v j
v j � v j � 1

, g̈j := 0.
We then combine with coef�cientsaks to obtain the 4-tuple
(pi j

1 ;pi j
2 ;pi j

3 ;pi j
4 ) 2 R

4 which the Bi-cubic Construction con-
verts to the standard form (6).

3. The third family has a bi-cubic homogeneous parameteri-
zation and includes the hyperbolic paraboloid. In general, we
proceed as in 2 above. As a special case, we include a non-
uniform bi-cubic polynomial spline by setting all weights
to 1, �gi := 0 = : g̈j and all scalars�bi , b̈ j to the ratio of the
lengths of consecutive knot intervals. TheG2 control mesh
is the spline control net.

4. Design WithG2 Splines

Bi-cubic rational splines (6) offer a number of scalar
and vector-valued parameters: �wi

r ; �bi ; �gi and bi j
rs. In con-

trast to the classical algebraic treatment [Boe87, GB88,

(a) designer (b) algorithm (c) designer (d) algorithm

Figure 5: Design work�ow: (a) the designer partitions, (b)
the algorithm creates the mesh and sets the parameters, (c)
the designer modi�es, (d) the algorithm creates the surface.

(a) (b) (c)

(d) (e) (f)

Figure 6: Alternative designs based on meshes of three torus
segments (red and green in (d) and (e)) and of one one-
sheeted hyperboloid (orange). The transitions are gray.

(a) (b) (c) (d)

(e) (f)

(g) (h) (i) (j)

Figure 7: Alternative designs for joining a torus with a cy-
clide. Red and green regions remain as pieces of the original
shapes; transitions are gray; (i) mean curvature of (h), (j)
highlight lines (zoomed in).

(a) (b) (c) (d)

Figure 8: Designs appreciated in particular by very young
audiences, joining a torus (red) with a sphere (green).

c 2011 The Author(s)
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Joe89, Bar93], here the designer is not expected to set
these parameters. Rather, all parameters of the 4-tuples
( f i j

1 (u;v); : : : ; f i j
4 (u;v)) are initialized to reproduce basic

shapes (including bi-cubic NURBS) and modifying them is
entirely optional. The suggested work�ow is summarized in
Fig. 5. In (a) the designer indicates a local region to work
on, in (c) the designer manipulates the spline control points
(pi j

1 ;pi j
2 ;pi j

3 ;pi j
4 ) by standard CAD tools in 3-space as

ai j :=
� pi j

1

pi j
4

;
pi j

2

pi j
4

;
pi j

3

pi j
4

�
2 R

3; Ŵi j := pi j
4 : (11)

In return, the algorithm reverses (11) to obtainpi j 2 R

4 from
ai j ;Ŵi j , applies the Bi-cubic Construction to obtain new
af�ne Bézier coef�cientsbi j

rs;k 2 R , k = 1; : : : ;4 and, since

the 4-tuple of functionsf i j
k represents a function inP

3, the
common denominator can be discarded to obtain a 4-tuple
of polynomial maps with control points

(wi j
rsbi j

rs;1;wi j
rsb

i j
rs;2;wi j

rsb
i j
rs;3;wi j

rsb
i j
rs;4) 2 R

4

that de�ne a rational bi-3 spline patch inR

3.

Examples In the following examples, parts of theG2

meshesf pi j g of several basic shapes are merged into oneG2

mesh, without adding any control points! While more subtle
transitions can potentially be designed by adding transition
layers, the examples show that even straightforward use of
the new spline representation yields satisfactory results.

Fig. 6 showsG2 design variations that merge torus pieces
with a one-sheeted hyperboloid. Fig.7showsG2 design vari-
ations that merge a cyclide with a torus. Fig.8 showsG2 de-
sign variations that merge a torus with a sphere. Note that the
cut torus piece does not meet the sphere at axially symmet-
ric points. Changing the location of the poles, by a Möbius
transformation, will be addressed in the next section.

5. Free-form Sphere-Based Design

To allow design variations, the sphere is re-represented as a
bi-cubicG2 spline patchwork where the patches surrounding
the poles form a specially constructed assembly of bi-cubic
patches with one edge collapsed to the pole. This explicit
singularity is acceptable to CAD packages and allows for
much lower degree than the construction in [BP97].

5.1. Polar Construction

As illustrated in Fig.9 (a), (b), the control mesh of our con-
struction is a regular tensor-product mesh with control points
collapsed to form a northern and a southern triangle fan,
calledpolar con�gurations[KP09]. Apart from these con-
�gurations, the algorithm of Section3.1applied to the (gray)
mesh in Fig.9 (a) yields the equatorial part of the sphere
shown in Fig.9 (c). Interpreting the carefully-set polar con-
trol points as collapsed edges and choosing the proper scalar

(a) polar mesh (b) unfolded and
poles split

(c) de�ned by
grey mesh

(d) by mesh +
poles

(e) capped
sphere

1
3

2
3

ṽ

¶2 f cap

¶2 f body

(f) C2 completion

Figure 9: Bi-cubic spline sphere. (a) and (b) Control mesh
with polar con�guration. (f) Logical diagram (layers of con-
trol points) of a C2 completion of a 3-piece polar cap.

parameters in the pole-to-pole direction (see General Con-
struction at Poles below) the algorithm yields the additional
sphere-reproducing spline rings of Fig.9 (d).

To exactly reproduce a spherical cap, we reparameterize
the inverse stereographic projections

� 1 := ( 2x;2y;1� x2 �
y2;1+ x2 + y2) 2 P

3 by (x(u;v);y(u;v)) = r (u;v)

r (u;v) :=
� 1� v

v
cosu;

1� v
v

sinu
�

: (12)

That is, we forms

� 1(r ) wherev = 0 corresponds to south
pole andv = 1 to the north pole. Multiplication byv2 clears
the common denominators of the 4-tuple to yield a rational
bi-3 G2 spline.

General Construction at PolesFor the south-to-north di-
rection parameterized byv, we pick the knot sequence
[0;v1; : : : ;vm;1], scalarsb0, bm+ 1, g0 = 0 = gm+ 1 and the
polar control points

psouth:=( 0;0;
3� 3v1 + 2v2

1
3(v1 � 1)

;1) ; b0 := 1� v1;

pnorth :=( 0;0;
2� vm+ 2v2

m

3vm
;1) ; bm+ 1 :=

1
vm

:

(13)

We construct the polar caps so that the free-formG2 bi-cubic
spline defaults to the sphere (Fig.9 (e)). A polar spline cap
is periodic inu. In v, it is partitioned into threeC2-connected
rings with the outer ones interpolating, respectively, data at
the pole and of the existing body (Fig.9 (f)). The expansion
at the pole is obtained by generalizings

� 1 to

q :=( q 1; q 2; q 3; q 4) 2 P

3; (14)

q k := qk0 + qk1x+ qk2y+ qk3(x2 + y2);

c 2011 The Author(s)
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with, as yet, undetermined coef�cientsqks and form

q (r (u;vm(1� ṽ) + ṽ)) ; ṽ 2 [0::1]: (15)

As before, we replace the sinu, cosu pairs in this expres-
sion by (5) and remove the common denominator of the 4-
tuple. This yields a bi-2 map that is expressed in our bi-cubic
form as f cap. We determine the coef�cientsqks so that the
boundary of the bi-cubic cap best matches the boundary of
the already constructed bi-cubic patchesf body of Fig. 9 (d).
Concretely, we minimize the two-norm distance of position,
�rst and second derivative, i.e. the 2-jet along the bound-
ary,¶2 f body. As a reparameterization of a quadratic, the con-
structed bi-cubic cap is in�nitely smooth at the pole, but typ-
ically does not join smoothly withf body. A simple remedy is
to trisect the cap in thev direction and have the sub-patches
adjacent tof body inherit its 2-jet (Fig.9 (f)). Then the 2-jets
of f cap and f body uniquely determine the remaining Bézier
coef�cients since we require that the patches join parametri-
cally C2 as 4-tuples in thev direction.

Since the mapq can in particular represents

� 1, the cap
construction completes a sphere if the data¶2 f body come
from a sphere.

(a) sphere (b) merged with cylinder (c) design

Figure 10: Design with poles(a) Mesh segmented to admit
(b) merging with cylinder mesh; (d) design variation.

(a) (b)

Figure 11: Design with polesTube-design.

(a) (b) (c) (d) (e)

Figure 12: Elliptic paraboloid (green) merged with a two-
sheeted hyperboloid (red) into a smooth whole. (b) and (c)
show two different viewpoints.

Fig. 11 illustrates the capping of NURBS tubes of degree

(a) (b) (c) (d) (e)

Figure 13: Morphing the sphere-torus G2 spline (a) of
Fig. 8 to a single torus (e).

(a) (b) (c) (d) (e)

Figure 14: Möbius transformation for free-form spheroids.
(a) Bi-cubic patchwork on sphere of the surface from Fig.8.
(b) polar mesh of sphere stemming from composition of M(z)
with inverse of stereographic projection. (c) corresponding
bi-cubic patchwork of sphere. (d) perturbed polar mesh. (e)
perturbed spheroid.

bi-3 with caps of degree bi-3. Note for comparison that the
algorithm in [KP09] results in a cap of degree 6 in theu-
direction. An analogous capping procedure applies to the el-
liptic paraboloid and the two-sheeted hyperboloid as shown
in Fig. 12.

While for typical design, the initial choice of scalars
�wi
r ; �bi ; �gi and ẅ j

s; b̈ j ; g̈j are de�ned to reproduce the basic
shapes in Section3.1 and need not be modi�ed, they and
the control points can be continuously changed to morph be-
tween basic shapes, as in Fig.13.

Möbius transformations Figures8 and14demonstrate the
need for controlling the placement of poles for design with
sphere-like free-form shapes: the ends of the cut torus do not
meet the sphere at opposing points. To adjust poles, we use
the Möbius transformation of the sphere, a composition of
the stereographic projections with the rational linear map-
ping M(z) := az+ b

cz+ d , z = x+
p

� 1y and the inverse stereo-

graphic projection:s � M � s

� 1. For our application, we can
restrictM(z) := z+ b

bz+ 1 , b 2 R which moves the north pole to
� 2b

1+ b2 ;0; 1� b2

1+ b2

�
and the south pole to

� 2b
1+ b2 ;0; � 1� b2

1+ b2

�
.

In general, we composeq � M � r to obtain for each coor-
dinate (hence dropping the indexk)

q := q0b2 + q1b+ q3 +
�
q1c+ q2s� 2q3

+ 2(q0c� q1 + q3c)b� (2q0 � q1c+ q2s)b2�
v

+
�
q0 � q1c� q2s+ q3 � 2(q0c� q1 + q3c)b

+ ( q0 � q1c+ q2s+ q3)b2�
v2;

c 2011 The Author(s)
c 2011 The Eurographics Association and Blackwell PublishingLtd.
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wherec := cosu, s := sinu. With the scalarsbi , gi of (13)

psouth:=( 2b;0;
(1� b2)(3� 3v1 + 2v2

1)
3(v1 � 1)

;1+ b2);

pnorth :=( 2b;0;
(1� b2)(2� vm+ 2v2

m)
3vm

;1+ b2)

(16)

generalizes (13).

(a)
saddle
mesh

(b) q (c) general (d) 4-saddle,q

Figure 15: Non-elliptic cappings of cylinder.

Saddle-like Polar Constructions Polar con�gurations are
typically used with elliptic designs. For completeness, we
consider here the hyperbolic case. The mesh in Fig.15 (a)
calls for a saddle. The construction usingq of the form (14)
results in the oscillating surface (b). This can be repaired to
obtain (c), by replacingq with a general quadratic with six
coef�cients per coordinate, at the cost of increasing the bi-
degree to 4. On the other hand,q works well for higher-order
saddles that have central points with zero curvature (d).

6. Conclusion

We created an analogue of tensor-productC2 bi-cubic
splines, the workhorse of CAD geometry processing, in or-
der to exactly reproduce parts of the classical shapes auto-
matically joined into a smooth whole. This opens up a num-
ber of applications in design, localized re-design or recon-
struction in reverse engineering (see e.g. [BMV01,AJS11]).
An analogous rational bi-2G1 spline construction general-
izesC1 bi-2 splines but yields surfaces of lower quality.

Extending the approach to more general settings such as
in Fig. 16, requires multi-sided blends that lead to splines of
higher degree than bi-3, with additional techniques outside
the scope of this presentation. Subdividing the splines can

(a) (b) re�ection lines

Figure 16: G2 multi-sided blend of degree bi-6.

be used to localize deformations, but also gives a �rst subdi-
vision algorithm able to combine basic shapes in one smooth
whole.

We focused on the use of splines to support conceptual de-
sign, starting from primary shapes that represent functional-
ity or simplicity of shape. Since portions of the basic shapes
are reproduced exactly, the spline constructions can also be
viewed as a form of interpolation.

The approach taken is novel in the way it combinesG2

continuity and projective trigonometric parameterizations.
The classical work, on rational spline curves [Boe87,GB88,
Joe89, Bar93] and surfaces [ZWL92, ZWL95], focused on
general necessary and suf�cient constraints for smoothness
but missed out on the speci�c useful constructions we pre-
sented here. Only looking for and �nding formulas such as
(4) allows combining the exact pieces smoothly – which may
explain why no such construction existed to date.
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