T-junctions in spline surfaces

Kęstutis Karčiauskas, Daniele Panozzo, Jörg Peters
Funded by NSF-CCF and DARPA TRADES

Siggraph 2018, Vancouver

T-junctions in spline surfaces

Kęstutis Karčiauskas, Daniele Panozzo, Jörg Peters
Funded by NSF-CCF and DARPA TRADES

Siggraph 2018, Vancouver

T-junctions in Spline Surfaces

"Make irregularities (T-junctions) disappear"

T-junctions in Spline Surfaces

Automatic quad meshing

strict quad-meshing [Bommes et al. 2012; Vaxman et al. 2016] complex and global

→ T-meshes [Li et al. 2006; Lai et al. 2008, Alliez et al. 2003; Marinov Kobbelt 2004, Myles et al. 2010; 2014a; Pietroni et. 2016, Zadravec et al. 2010; PengWonka 2013, Ray et al. 2006; Jakob et al. 2015] Instant field-aligned meshes

- Automatic quad meshing
- Merge separately-developed spline surfaces

Overview

- > Configurations
- Altanatives extremely short
 - Catmull-Clark subdivision?

 Cuse It) presentation?
- Construction
- > T- G-splines = merging meshes T1 T2 T3

T-G-spline surface construction: executive version

T-junctions in Spline Surfaces

Turn into smooth surface

Highlight lines

T-junctions in Spline Surfaces

uniform, parallel = good (unless feature)

(a) reflection lines

Highlight lines

reflection lines

highlight lines

T-G-spline surface construction: executive version

T-G-spline bi-4 = 5×5 Bezier

coefficients

T-junctions in Spline Surfaces

$$\begin{bmatrix} \frac{4}{16} & \frac{16}{64} & \frac{4}{16} & 0 \\ \frac{1}{16} & \frac{16}{64} & \frac{11}{2} & 0 \\ \frac{1}{2} & \frac{16}{16} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} \\ \frac{1}{2} & \frac{16}{16} & \frac{11}{2} & \frac{11}{2} \\ \frac{1}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} \\ \frac{1}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} \\ \frac{1}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} \\ \frac{1}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} \\ \frac{1}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} \\ \frac{1}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} \\ \frac{1}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} \\ \frac{1}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} \\ \frac{1}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} \\ \frac{1}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} \\ \frac{1}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} \\ \frac{1}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} \\ \frac{1}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} \\ \frac{1}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} \\ \frac{1}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} \\ \frac{1}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{2} & \frac{11}{$$

/144

Short explicit formulas (stencils)

T-G-spline bi-4 = 5x5 coefficient

stencils

T-junctions in Spline Surfaces

F# Code:

Short explicit formulas /864

Long version: Overview

- Some T-configurations
- > Alternatives
 - T-junctions → T-splines ?
 - T-junctions → Catmull-Clark subdivision ?
 - T-junctions → Geometric continuity ?
- > Construction
- > T-G-splines = merging meshes T1 T2 T3

T-junctions (Extended) Configurations T1 T2 T3

T-junctions in Spline Surfaces

Extended to regular bi-3 neighborhood

Configurations: Meshing & Surface quality

T-junctions in Spline Surfaces

Trade off between meshing work and surface construction:

Bad mesh → bad surface

T-junctions -- use with care!

T-junctions in Spline Surfaces

bad design or intended?

Long version: Overview

- Some T-configurations
- > Alternatives
 - T-junctions → T-splines ?
 - T-junctions → Catmull-Clark subdivision ?
 - T-junctions → Geometric continuity ?
- > Construction
- > T-G-splines = merging meshes T1 T2 T3

T-junctions \rightarrow T-splines ?

T-junctions in Spline Surfaces

T Sederberg, J Zheng, A Bakinov, A. Nasri 03

global local

T-junctions \rightarrow T-splines (hierarchical splines)?

T-junctions in Spline Surfaces

"cast" global

"band-aid" local

where T-splines fail

T-splines: "Rule 1"

sum of knot intervals on opposing edges of any face must be equal

- → horizontal knot intervals of the grey helical strip have 0 knot intervals
- → no smooth T-spline parameterization!

Denis Zorin et al: two different knots sets on either side of an edge

where T-splines (hierarchical splines) fail

T-junctions in Spline Surfaces

no smooth T-spline parameterization!

Hierarchical splines

[Kraft1998;Seder2003;Giannelli12;Dokken13,Kang15]

- well-suited for introducing T-junctions in quad meshes (refinement)
- not naturally suited for creating smooth surfaces from given quad meshes with T-junctions.

T-junctions → **Catmull-Clark** subdivision?

How Catmull-Clark subdivision fails

T-junctions → Geometric Continuity?

(T)-spline vs T-G-spline

T-splines (global parameterization)

Catmull-Clark (local, shape?)

T-G-splines (local)

Long version: Overview

- Some T-configurations
- > Alternatives
 - T-junctions → T-splines ?
 - T-junctions → Catmull-Clark subdivision ?
 - T-junctions → Geometric continuity ?
- > Construction
- > T-G-splines = merging meshes T1 T2 T3

T-junctions in Spline Surfaces

T1

T-junctions in Spline Surfaces

(a) \dot{T} -net layout

 q^r q^l (a) q^l (b) q^r $\mathbf{q}^{r,1}$

T-junctions in Spline Surfaces

Short explicit formulas

Short explicit formulas

T3-G-spline surface construction recommended

T3

Long version: Overview

- Some T-configurations
- > Alternatives
 - T-junctions → T-splines ?
 - T-junctions → Catmull-Clark subdivision ?
 - T-junctions → Geometric continuity ?
- Construction T1 T2 T3
- > T-G-splines

Long version: Overview

- Some T-configurations
- > Alternatives
 - T-junctions → T-splines ?
 - T-junctions → Catmull-Clark subdivision ?
 - T-junctions → Geometric continuity ?
- Construction T1 T2 T3
- > T-G-splines

Combining T-junctions with other irregularities

A truly watertight tea pot!

T3-G-spline surface construction of the *truly watertight tea pot*

T3-G-spline surface construction of the *truly watertight tea pot*

