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Diff-DEM: A Diffusion Probabilistic Approach to
Digital Elevation Model Void Filling

Kyle Shih-Huang Lo and Jorg Peters

Abstract—Digital Elevation Models (DEMs) are crucial for
modeling and analyzing terrestrial environments, but voids in
DEMs can compromise their downstream use. Diff-DEM is a
self-supervised method for filling DEM voids that leverages a
Denoising Diffusion Probabilistic Model (DDPM). Conditioned on
a void-containing DEM, the DDPM acts as a transition kernel
in the diffusion reversal, progressively reconstructing a sharp
and accurate DEM. Both qualitative and quantitative assessments
demonstrate Diff-DEM outperforms existing DEM inpainting, in-
cluding Generative Adversarial Network (GAN) methods, Inverse
Distance Weighting (IDW), Kriging, LR B-spline, and Perona-
Malik diffusion. The comparison is on Gavriil’s and on our
benchmark that expands Gavriil’s dataset from 63 to 217 full-
size (5051 X 5051) 10-meter GeoTIFF images sourced from
the Norwegian Mapping Authority; and from 50 DEMs to three
groups of 1k each of increasing void size.

Code and dataset: https://github.com/kylelo/Diff-DEM

Index Terms—Digital Elevation Model (DEM), inpainting,
denoising diffusion probabilistic model, generative model.

I. INTRODUCTION

IGITAL Elevation Models (DEMs) are crucial for a wide

range of applications, including geographic information
systems [1], terrain monitoring [2], and disaster simulation [3].
However, DEM quality is frequently compromised by data
voids. Data loss can stem from rugged terrain obstructing
the back of a mountain, disparities in image content during
stereophotogrammetry, or limitations in Light Detection and
Ranging (LiDAR) data capture. Traditional mitigation utilizes
techniques such as Inverse Distance Weighting (IDW) [4],
Kriging [5], and Spline fitting [6] to fill DEM voids. These
approaches do well when filling small voids but, due to a
lack of prior knowledge of terrain’s geometry, struggle with
large and complex voids. To address this, Delta surface-based
methods [7], [8] match and inpaint larger missing regions by
inserting auxiliary DEMs.

Recent progress in DEM void-filling has been driven by
methods based on Generative Adversarial Networks (GANs)
[9]. GANSs are based on the principle of adversarial learning,
stemming from the competition between two neural networks:
a generator and a classifier, which learn simultaneously. GANs
that are effective for producing highly realistic images have
also shown effective for image inpainting: [10], [11], [12], [13]
employ Conditional GANs (CGANs) [14] for filling voids.
These methods condition the model on void-containing DEM
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and predict the complete DEM. The studies [15], [16] addi-
tionally integrate attention mechanisms into CGANs. Shadow-
Constrained GAN (SCGAN) [17] incorporates terrain shadow
geometry into its loss function to improve restoration. Sim-
ilarly, the Topographic Knowledge-constrained Conditional
GAN (TKCGAN) [18] identifies and penalizes incorrect valley
and ridge pixel predictions in DEM.

The strong image generation capabilities of diffusion models
[19] have been summoned for the smaller-grained tasks of ter-
rain data super-resolution [20], [21], [22], [23] and denoising
[24], [25], and for support of 3D terrain generation (sketch-to-
terrain [26] and text-to-satellite [27]) as well as cloud removal
for satellite images [28], [29]. However, diffusion models have
not been used to treat regions of incompleteness, i.e. DEM
void filling.

Contributions.

o Diff-DEM is the first DEM void-filling technique based

on conditional diffusion models.
« Diff-DEM improves on GAN-based [11] and traditional
methods [4], [5], [6] for the test DEMs from [11].

« Diff-DEM is benchmarked on the entire Norway DEM
dataset [30] with diverse void sizes (easy, medium, hard),
underscoring effectiveness even with larger voids.

II. METHODOLOGY

This section introduces void filling using a conditional De-
noising Diffusion Probabilistic Model (DDPM). The first two
subsections explain the forward and reverse processes of
DDPMs. The third shows how to adapt this model to DEM
data, including specifics on training and inference.

A. Forward Diffusion Process

The forward process operates as a discrete-time Markov chain
[31] that transforms a complex data distribution into a simpler
one. Given data x;_;, the forward transition kernel perturbs
the data by injecting Gaussian noise, with a variance [,
thereby generating the data in the subsequent state, x;. The
forward transition kernel [19] is defined as

q(zi|ei1) = N(z65 /1 = Braer—1, Bed). ()
Iterating Eq. 1 transforms xy, sampled from a complex
distribution ¢(z), into xr ~ q(xg) ~ N(0,I) with
t € {0,...,T}. For efficient computation, Ho et al. [19]
demonstrate that the reparametrization trick can be applied to
directly compute x; without sequential noise injection as

@, ~ q(xi|mo) = N (@45 Vaumo, (1 — a)I),  (2)
where a@; = [['_(1 — Bs).
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B. Reverse Diffusion Process

The reverse process transforms a simple distribution back into
a complex one. Given 7 ~ N (0, I), the reverse transition
kernel g(a;—1|x:) can be used to recover xy from x7.
According to [19], the reverse transition kernel can be regarded
as a parameterized model, €y, that estimates the Gaussian noise
in the current state, x;, and then subtracts the predicted noise
from x,; to reconstruct the previous state x;_;. At present,
we can ensure that the recovered & bears similarity to data
sampled from ¢(x). To exert control over this process, [32]
shows that one can condition the model, €y, on supplementary
information y, formulated as

1 11—«
Ty — & €(xe,y,0¢) | +V1— e
o 1— oy
3)

where &;_; denotes the estimated state at time step ¢ — 1,
ay=1— P and €, ~ N (0, I).

Zy_q
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Fig. 1. Diffusion reversal in DEM void inpainting.

C. DEM Diffusion

Fig. 1 shows Diff-DEM progressively recovering missing ter-
rain details. Conditioning on the void-containing DEM ensures
that the inpainted details are coherently integrated with the
existing data.

Algorithm 1 Diff-DEM: Inference
1: Given y, m
2. e ~N(0,1I)
Zr=mQOe+y
4. fort=1T,...,0 do
5: e~N(O,I)ift>0else 0
6
7
8

S (0~ Jeeo(@ny, @) + VT e

ﬁjt—l %m@.’%t_l%*(].*m)@it
: end for

Zf}t_l <

Inference. Algorithm 1 outlines the proposed inference
method adopted from [19]. Given a void-containing DEM as a
conditional image, represented by y, and a binary void mask,
m, with pixel set to 1 for void, O otherwise, &7, the DEM
at time step 7" has voids filled with Gaussian noise, €. Then,
we repeatedly employ the trained model, €y, to estimate the
noise at time step ¢, followed by subtracting noise from &; to
generate @;_1. Line 7 recovers any non-void pixels that were
incorrectly predicted as noise and removed in line 6.

Training. Fig. 2 summarizes the proposed self-supervised
pipeline for training the reverse transition kernel, €g, and
Algorithm 2 details the training procedure. Initially, we ran-
domly sample a time step ¢, Gaussian noise €, and ground
truth DEM, xy. Then, we create a mask, denoted as m, of

y: Corrupted DEM

@+ _1: Est. Prev. State

U-Net

.’:L

o: GT DEM

x+: Current State

Fig. 2. The self-supervised pipeline for training transition kernel (U-net)
of reverse diffusion process. © denotes masking operation. ) signifies
transformation in Eq. 2, and € removes predicted noise from x; Eq. 3.

Algorithm 2 Diff-DEM: Training

1: repeat

2 t~U{L,..,TY)

3 e~N(0,I)

4 xo ~ q(xo)

5: (haw) Nu({hmina-“,hmax} X {wmin7~"7wmam})
6 (i,5)~U{L,...,H—h} x{1,....W —w})

7: m = GENERATEVOIDMASK(¢, j, w, h)

8 y=mQ® xg

9: x, =mo (Vaxo + I — age) + (1 —m) O xp
10: Take a gradient descent step on

i: Vollm © (€ — eg(r,y, 1)) |

12: until converged

size H x W the same as x(. This mask contains a rectangle
region set to 1 representing void, positioned at a random top-
left corner with coordinates (4, j) and defined by random width
w and height h. All pixels outside the void are set to O,
Amin and hp.c are the minimum and maximum void mask
heights, wpin and wpy.x the minimum and maximum widths.
The void-containing DEM, y, is synthesized by element-wise
multiplication ® between m and x,. Next, we compute x;
via Eq. 2, where m prevents injecting noise outside of void.
The gradient is computed exclusively within the void region.

Loss Function. Palette [32] demonstrates that training diffu-
sion models with L1 loss tends to result in less hallucination
compared to L2 loss, albeit with a slightly higher tendency
for mode collapse. Given that precision is paramount in DEM
inpainting, we opted for L1 loss in our training, see Line 11
of Algorithm 2.

Network Architecture. Diff-DEM uses the U-Net [33]
architecture with attention mechanisms [34] in deeper layers,
as described in Palette [32]. We process inputs as dual-channel
2 x 128 x 128 images, incorporating the DEM containing
voids, y, and the step ¢ approximation of the inpainted DEM,
;. The output, x;, is formatted as a 1 x 128 x 128 single-
channel image. Structurally, our network includes a quartet of
down-sampling and up-sampling stages, at 128 x 128, 64 x 64,
32 x 32, and 16 x 16 resolution. These stages are configured
with channel dimensions of 64, 128, 256, and 512. Each
module consists of a pair of residual blocks [35], integrating
the attention mechanism [34] at the 32 x 32 and 16 x 16
resolution stages.
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TABLE I
HEIGHT RESTORATION PERFORMANCE ON GAVRIIL’S DATASET [11].
BOLD DENOTES THE BEST.

TABLE 11
DEM RESTORATION PERFORMANCE ACROSS VARIOUS VOID SIZES ON
OUR DATASET.

Methods MAE RMSE  MS-SSIM PSNR
IDW [4] 15.556  21.363 0.822 30.739
Kriging [5] 16.332  20.995 0.851 32.536
LR B-Spline [37] 13.437 18.361 0.857 32.633
PM-Diff [36] 16.178  21.176 0.847 31.525
Gavriil et al. [11] 14477  20.229 0.819 30.691
Diff-DEM (Ours) 9.698 14.575 0.852 34.222

III. EXPERIMENTS
A. Quantitative Tests

Train and Test with Gavrill’s Dataset and Benchmark.
Diff-DEM is trained and its performance assessed using the
train split and benchmark in [11]. For benchmarking, the
pixels in ground truth DEM, identified by the void mask,
are set to zero. The goal is to reconstruct these masked
areas. Reconstruction is measured by Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE) expressed in
meters. Visual quality is measured by Multi-Scale Structural
Similarity Index Measure (SSIM) and Peak Signal-to-Noise
Ratio (PSNR) in dB. We compare to the leading GAN-
based method with accessible source code [11], Perona-Malik
diffusion (PM-Diff), a recent Digital Surface Model (DSM)
inpainting method [36], and representative DEM inpainting
techniques: Inverse Distance Weighting (IDW) [4], Kriging
[5], and Local Refined B-Spline (LR B-Spline) [37].

Table I demonstrates that our approach not only achieves the
highest accuracy in reconstruction, as indicated by the minimal
MAE, but also exhibits the least significant error, highlighted
by the minimal RMSE.

Train and Test with our Dataset and Benchmark. The
dataset [11] provides only 63 DEMs (5051 x 5051) for
training and 50 DEMs (256 x 256) for testing. We collect
a richer dataset: 218 Norway nationwide 10-meter DEMs
(5051x5051). To optimize data loading, we divided each DEM
into 512 x 512 DEMs, enabling random 256 x 256 crops for
augmentation. We split the data into 1,404 DEMs for testing
and 12,640 for training, excluding any with a uniform zero
height. For benchmarking, we randomly collect 1,000 DEMs
from test split and generated void masks with different size.
We classify difficulty based on the size of the mask: “easy”
for 64-96 pixels, “medium” for 96-128 pixels, and “hard” for
128-160 pixels, both in height and width.

We compared our method to with IDW [4], Kriging [5], and
PM-Diff [36]. Table II shows Diff-DEM surpassing the alter-
natives both in interpolation (for smaller voids) and inpainting
(for larger voids).

B. Qualitative Tests

Fig. 3 compares Diff-DEM void inpainting to Gavriil et al.
[11], LR B-spline [37], Kriging [5], IDW [4], and PM-Diff
[36]. Five examples, arranged across two rows each, show the
ground truth in the first column of the top row and the void
mask on the bottom row. From the second column onward,

Methods Easy Medium Hard
MAE RMSE MAE RMSE MAE RMSE
PM-Diff 11.357 14.692 19.243 24939 44.288 56.188
IDW 11.981 16310 16.739 22999 21.474 29.860
Kriging 13.001 16.123 16.611 21.173 20.813 26.854
Diff-DEM (Ours) 8.808 12.174 13.331 18.764 17.497 24.985
TABLE III

IMPACT OF VARING DENOISING STEPS ON INPAINTING DEM WITH
DIFFERENT VOID SIZE TESTED ON OUR DATASET.

Test Set Steps

32 64 128 256 512 1024
Easy (64-96) 48366 15.872 8407 8.678 8964  8.852
Hard (128-160) 64.440 41.419 18.106 17.852 17.450 17.414

the top row exhibits the inpainted outcome, with brighter pixel
values denoting higher altitudes. The bottom row presents the
Mean Absolute Error (MAE) in meters.

Diff-DEM exhibits superior performance compared to other
techniques across different types of terrain. In cases of exten-
sive missing areas in complex terrains, Fig 3a, 3b, 3e, and 3f,
LR B-spline [37], Kriging [5], and PM-Diff [36] tend to yield
overly smooth reconstructions. This is can be attributed to the
absence of prior knowledge about the terrain’s characteristics.
IDW generates a mosaic effect. Compared to non-learning-
based methods, the learning-based model, proposed by Gavriil
et al. [11], demonstrates an enhanced capability in restoring
complex terrains. Diff-DEM not only improves on [11] in
terms of accuracy but also exhibits reduced occurrences of
hallucination, as depicted in Fig 3c, 3d, 3i, and 3j.

C. Implementation Details

To improve training and inference speeds, we reduced the
resolution of the DEM from 256 x 256 to 128 x 128 for
model input, then linearly upscaled the output back to the
original size. The training used 8 NVIDIA Ampere A100
GPUs with a batch size of 512, completing in approximately
2 days. Variance scheduling and exponential moving average
strategies were implemented following the guidelines in [32].
The learning rate was set to 7 x 10~°, with a warm-up period
during the first 10,000 steps, starting at a 0.2 scaling factor.

D. Sampling Steps & Inference Time

We tested the necessary denoising steps on our benchmark
with easy tasks, where void sizes range from 64 to 96 pixels,
and hard tasks of 128 to 160 pixels. Table III shows that, for an
easy task, only 128 steps are required, and increasing the num-
ber of steps does not significantly enhance performance. For
the harder task, 512 steps are necessary. We determined that
performing inference with 512 steps is adequately effective for
tasks involving various void sizes. On a single NVIDIA RTX
3090 GPU, using 512 steps, inference took an average of 2.5
seconds for one DEM (128 x 128 before up-scaling).



JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

IV. LIMITATIONS

Learning-based methods are prone to hallucination, see e.g.
[11]. Future work can adjust network architecture or apply
multi-modal approaches to address this deficiency. Distillation
methods, such as [38], can be used to improve the inference
speed of the diffusion models.

V. CONCLUSIONS

Diff-DEM is the first denoising diffusion model for DEM
void inpainting. Conditioning on the void-containing DEM,
Diff-DEM progressively completes the DEM, capturing sharp
and accurate terrain features. Diff-DEM quantitatively and
qualitatively outperforms learning-based approaches, Gavriil
et al. [11], as well as prominent non-learning-based methods,
IDW [4], Kriging [5], LR B-Spline [37], and Perona-Malik
diffusion [36]. Time step and inference speed analysis has
revealed an optimal choice of inference steps that ensure
high-quality reconstruction using only the necessary denoising
steps. Lastly, we curated a complete DEM dataset to serve as
foundational benchmark for future research and includes train-
test splits, along with a categorization of voids mask based on
their sizes.
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Fig. 3. The qualitative comparison of DEM void reconstructions on benchmark [11]. Images showing less yellow or green in in the white reconstruction
window are better.
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