A sharp degree bound on G^2-refinable multi-sided surfaces

Kęstutis Karčiauskas
Vilnius University

Jörg Peters
University of Florida

SPM 2020
Motivation

Design: needs multi-sided surface "caps"

Design: needs good shape

Engineering Analysis needs flexibility increasing refinability

Key result for G^2 (curvature continuous) surfaces:

- bi-5 surfaces are not flexibly G^2-refinable
- bi-6 surfaces are flexibly G^2-refinable

= a sharp degree bound on G^2-refinable multi-sided surfaces
Motivation

Design: needs multi-sided surface "caps"
Design: needs good shape

Engineering Analysis needs flexibility increasing refinability

Key result for G^2 (curvature continuous) surfaces:
- bi-5 surfaces are not flexibly G^2-refinable
- bi-6 surfaces are flexibly G^2-refinable

= a sharp degree bound on G^2-refinable multi-sided surfaces
Motivation

Design: needs multi-sided surface "caps"
Design: needs good shape
Engineering Analysis (e.g. solving a P.D.E. on surface):
needs **flexibility increasing refinability**

= increase degrees of freedom both along boundaries and in the interior.

Key result for G^2 (curvature continuous) surfaces:
- bi-5 surfaces are not flexibly G^2-refinable
- bi-6 surfaces are flexibly G^2-refinable

A sharp degree bound on G^2-refinable multi-sided surfaces.
Motivation

Design: needs multi-sided surface "caps"
Design: needs good shape
Engineering Analysis needs **flexibility increasing refinability**

Key result for \(G^2\) (curvature continuous) surfaces:
- bi-5 surfaces are not flexibly \(G^2\)-refinable
- bi-6 surfaces are flexibly \(G^2\)-refinable

= a sharp degree bound on \(G^2\)-refinable multi-sided surfaces
Motivation

Design: needs multi-sided surface "caps"
Design: needs good shape
Engineering Analysis needs \textbf{flexibility increasing refinability}

Key result for G^2 (curvature continuous) surfaces:
- bi-5 surfaces are not flexibly G^2-refinable
- bi-6 surfaces are flexibly G^2-refinable

= a sharp degree bound on G^2-refinable multi-sided surfaces
Motivation

Design: needs multi-sided surface "caps"
Design: needs good shape

Engineering Analysis
needs flexibility increasing refinability

Key result for G^2 (curvature continuous) surfaces:
- bi-5 surfaces are not flexibly G^2-refinable
- bi-6 surfaces are flexibly G^2-refinable

= a sharp degree bound on G^2-refinable multi-sided surfaces
Motivation

Design: needs multi-sided surface "caps"
Design: needs good shape

Engineering Analysis
needs **flexibility increasing refinability**

Key result for G^2 (curvature continuous) surfaces:
- bi-5 surfaces are not flexibly G^2-refinable
- bi-6 surfaces are flexibly G^2-refinable

= a sharp degree bound on G^2-refinable multi-sided surfaces
Outline

1. Technical Toolkit

2. Lower bound: Bi-5 caps are not flexibly G^2-refinable

3. Upper bound: Bi-6 caps are flexibly G^2-refinable
1 Technical Toolkit

2 Lower bound: Bi-5 caps are not flexibly G^2-refinable

3 Upper bound: Bi-6 caps are flexibly G^2-refinable
Setup: Multi-sided surfaces in bi-cubic B-spline complex
Setup: Multi-sided surfaces in bi-cubic B-spline complex

extended CC-net

bicubic ring + tensor-border
Setup: Multi-sided surfaces in bi-cubic B-spline complex

extended CC-net

bicubic ring + tensor-border

bicubic patch: B-to-BB form conversion

tensor-border
Setup: Multi-sided surfaces in bi-cubic B-spline complex

- extended CC-net
- bicubic ring + tensor-border
- CC-net
- cap
Geometric continuity, reparameterizations

\[\tilde{t}(u, v) := t \circ \rho(u, v) \]

\[t(u, v) := t(u, 0) + \partial_v t(u, 0) v + \frac{1}{2} \partial_v^2 t(u, 0) v^2 \]

\[\rho(u, v) := (u + b(u)v + \frac{1}{2} e(u)v^2, a(u)v + \frac{1}{2} d(u)v^2) \]

for \(k = 0, 1, 2, \quad \partial^k \tilde{f} = \partial^k (f \circ \rho) \)
Geometric continuity, reparameterizations

\[\tilde{t}(u, v) := t \circ \rho(u, v) \]

\(G^2 \) constraints between two surface pieces \(\tilde{f}, f : (u, v) \in \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) along common edge \((u, 0)\):
for \(k = 0, 1, 2 \), \(\partial^k \tilde{f} = \partial^k (f \circ \rho) \)
Geometric continuity, reparameterizations

\[\tilde{t}(u, v) := t \circ \rho(u, v) \]

for \(k = 0, 1, 2 \), \(\partial^k \tilde{f} = \partial^k (f \circ \rho) \)

\[\rho(u, v) := (u + b(u)v + \frac{1}{2} e(u)v^2, a(u)v + \frac{1}{2} d(u)v^2) \]

\(G^1 \) constraints: \(\partial_v \tilde{f} = a \partial_v f + b \partial_u f \)

\(G^2 \) constraints: \(\partial_{vv} \tilde{f} = a^2 \partial_{vv} f + 2ab \partial_u \partial_v f + b^2 \partial_{uu} f + d \partial_v f + e \partial_u f \)
Geometric continuity, reparameterizations

for \(k = 0, 1, 2 \), \(\partial^k \tilde{f} = \partial^k (f \circ \rho) \)

\(\rho (u, v) := (u + b(u)v + \frac{1}{2} e(u)v^2, a(u)v + \frac{1}{2} d(u)v^2) \)

Reasonable \(G^2 \) constructions are

- diagonally symmetric (invariant under reversal of indices)
- unbiased (invariant under relabeling)
- sectors are internally \(C^k \) (as opposed to \(G^k \))

Hypothetical bi-5 many-piece sector
Geometric continuity, reparameterizations

for $k = 0, 1, 2$, \[\partial^k \tilde{f} = \partial^k (f \circ \rho) \]
\[\rho(u, v) := (u + b(u)v + \frac{1}{2} e(u)v^2, a(u)v + \frac{1}{2} d(u)v^2) \]

Reasonable G^2 constructions are

- diagonally symmetric (invariant under reversal of indices)
- unbiased (invariant under relabeling)
- sectors are internally C^k (as opposed to G^k)

Hypothetical bi-5 many-piece sector
Geometric continuity, reparameterizations

for $k = 0, 1, 2$, \[\partial^k \tilde{f} = \partial^k (f \circ \rho) \]
\[\rho(u, v) := (u + b(u)v + \frac{1}{2} e(u)v^2, a(u)v + \frac{1}{2} d(u)v^2)\]

Reasonable G^2 constructions are

- diagonally symmetric (invariant under reversal of indices)
- unbiased (invariant under relabeling)
- sectors are internally C^k (as opposed to G^k)

Hypothetical bi-5 many-piece sector
Geometric continuity, reparameterizations

for $k = 0, 1, 2$, \[\partial^k \tilde{f} = \partial^k (f \circ \rho) \]
\[\rho(u, v) := (u + b(u)v + \frac{1}{2} e(u)v^2, a(u)v + \frac{1}{2} d(u)v^2) \]

Reasonable G^2 constructions are

- diagonally symmetric (invariant under reversal of indices)
- unbiased (invariant under relabeling)
- sectors are internally C^k (as opposed to G^k)

Hypothetical bi-5 many-piece sector
Flexible G^2-refinement

The refined spline space should offer additional degrees of freedom for modeling and engineering analysis, both along boundaries and in the interior.
The refined spline space should offer additional degrees of freedom for modeling and engineering analysis, both along boundaries and in the interior.
The refined spline space should offer additional degrees of freedom for modeling and engineering analysis, *both along boundaries and in the interior.*
1. Technical Toolkit

2. Lower bound: Bi-5 caps are not flexibly G^2-refinable

3. Upper bound: Bi-6 caps are flexibly G^2-refinable
Bi-5 splines are not flexibly G^2-refinable: Technical Lemmas

across $\mathbb{C} \rightarrow \mathbb{M}$: a, b, d, e must be polynomial degree $a, b, d, e \leq 1, 2, 2, 3$.

$a \equiv 1$, $b \equiv d \equiv e \equiv 0$. (internal C^2, refinability)

$\Rightarrow \rho$ is identity

across $\mathbb{M} \rightarrow \mathbb{C}$: b polynomial and $a \equiv -1$
Bi-5 splines are not flexibly G^2-refinable: Technical Lemmas

across $c\rightarrow m$: a, b, d, e must be polynomial

degree $a, b, d, e \leq 1, 2, 2, 3$.

$a \equiv 1, b \equiv d \equiv e \equiv 0$. (internal C^2, refinability)

$\Rightarrow \rho$ is identity

across $m\rightarrow \emptyset$: b polynomial and $a \equiv -1$
Bi-5 splines are not flexibly G^2-refinable: Technical Lemmas

Across $c \rightarrow m$: a, b, d, e must be polynomial
degree $a, b, d, e \leq 1, 2, 2, 3$.

$a \equiv 1$, $b \equiv d \equiv e \equiv 0$. (internal C^2, refinability)
$\Rightarrow \rho$ is identity

Across $m \rightarrow c$: b polynomial and $a \equiv -1$
Bi-5 splines are not flexibly G^2-refinable: **Technical Lemmas**

across $c \rightarrow m$: a, b, d, e must be polynomial

degree $a, b, d, e \leq 1, 2, 2, 3.$

$a \equiv 1, b \equiv d \equiv e \equiv 0.$ (internal C^2, refinability)

$\Rightarrow \rho$ is identity

across $m \rightarrow \emptyset$: b polynomial and $a \equiv -1$
Bi-5 splines are not flexibly G^2-refinable: **Technical Lemmas**

Technical Lemmas

across $\mathbb{c} - \mathbb{m}$: a, b, d, e must be polynomial degree $a, b, d, e \leq 1, 2, 2, 3$.

$a \equiv 1$, $b \equiv d \equiv e \equiv 0$. (internal C^2, refinability)

$\Rightarrow \rho$ is identity

across $\mathbb{m} - \mathbb{f}$: b polynomial and $a \equiv -1$
Bi-5 splines are not flexibly G^2-refinable: Technical Lemmas

across $c \rightarrow m$: a, b, d, e must be polynomial

degree $a, b, d, e \leq 1, 2, 2, 3$.

$a \equiv 1$, $b \equiv d \equiv e \equiv 0$. (internal C^2, refinability)

$\Rightarrow \rho$ is identity

across $m \rightarrow \emptyset$: b polynomial and $a \equiv -1$
Lower bound: Bi-5 caps are not flexibly G^2-refinable: Proof

\[\rho(u, v) = \text{identity} \]
Lower bound: Bi-5 is not flexibly G^2-refinable: Proof

$$\rho(m) = \text{identity} \quad \rho(u, v) = (u, -v)$$
Lower bound: Bi-5 caps are not flexibly G^2-refinable: Proof

\[\rho(u, v) = \text{identity} \quad \quad \rho(u, v) = (u, -v) \]
Lower bound: **Bi-5 is not flexibly G^2-refinable: Proof**

\[\rho(m, m) = \text{identity} \quad \quad \quad \quad \rho(u, v) = (u,-v) \quad \quad \quad \quad \text{conflict at eop!} \]
1 Technical Toolkit

2 Lower bound: Bi-5 caps are not flexibly G^2-refinable

3 Upper bound: Bi-6 caps are flexibly G^2-refinable
Least upper bound Bi-6 flexibly G^2-refinable surface

layout
Upper bound: Bi-6 caps are flexibly G^2-refinable

Least upper bound Bi-6 flexibly G^2-refinable surface

layout

multi-sided surface caps
G^2-refinability between sectors

G^2 bi-6 \[\text{degree}(b(u)) = 2; \quad d(u) := 0, \quad e(u) := b(u)b'(u) \]
Conclusion

- bi-5 surfaces are not flexibly G^2-refinable
Conclusion

- bi-5 surfaces are not flexibly G^2-refinable
- bi-6 surfaces are flexibly G^2-refinable
Conclusion

- bi-5 surfaces are not flexibly G^2-refinable
- bi-6 surfaces are flexibly G^2-refinable
- Multi-sided geometry-suitable surfaces can be analysis-suitable
Conclusion

- bi-5 surfaces are not flexibly G^2-refinable
- bi-6 surfaces are flexibly G^2-refinable
- Multi-sided geometry-suitable surfaces can be analysis-suitable
- Multi-sided analysis-suitable surfaces can be geometry-suitable
Conclusion

- bi-5 surfaces are not flexibly G^2-refinable
- bi-6 surfaces are flexibly G^2-refinable
- Multi-sided geometry-suitable surfaces can be analysis-suitable
- Multi-sided analysis-suitable surfaces can be geometry-suitable

Thank you