A comparison of classical, discrete differential and isogeometric methods at irregular points

Thien Nguyen Kęstutis Karčiauskas Jörg Peters

Vilnius University University of Florida

Geometrically smooth (G^k surface) construction yield smooth (C^k) iso-geometric elements
Topics not covered ...

- **Box-Splines on Crystallographic Lattices** • SIAM Annual Meeting 2012 MS89-4.
- Refinability of splines derived from regular tessellations (hex splines are not refinable) • BIRS 2013 Algebraic and Geom. Design
- Correct resolution rendering of trimmed spline surfaces • same accuracy as ray casting, but much faster!
- Solving Poisson’s equation with Box Splines
Topics not covered ...

- **Box-Splines on Crystallographic Lattices** • SIAM Annual Meeting 2012 MS89-4.
- Refinability of splines derived from regular tessellations (hex splines are not refinable) • BIRS 2013 Algebraic and Geom. Design
- Correct resolution rendering of trimmed spline surfaces • same accuracy as ray casting, but much faster!
- Solving Poisson’s equation with Box Splines
Topics not covered ...

- **Box-Splines on Crystallographic Lattices** • SIAM Annual Meeting 2012 MS89-4.
- **Refinability of splines derived from regular tessellations** (hex splines are not refinable) • BIRS 2013 Algebraic and Geom. Design
- Correct resolution rendering of trimmed spline surfaces • same accuracy as ray casting, but much faster!
- Solving Poisson’s equation with Box Splines
Topics not covered ...

- **Box-Splines on Crystallographic Lattices** • SIAM Annual Meeting 2012 MS89-4.
- **Refinability of splines derived from regular tessellations** (hex splines are not refinable) • BIRS 2013 Algebraic and Geom. Design
- Correct resolution rendering of trimmed spline surfaces • same accuracy as ray casting, but much faster!
- Solving Poisson’s equation with Box Splines
Topics not covered ...

- **Box-Splines on Crystallographic Lattices** • SIAM Annual Meeting 2012 MS89-4.
- **Refinability of splines derived from regular tessellations** (hex splines are not refinable) • BIRS 2013 Algebraic and Geom. Design
- **Correct resolution rendering of trimmed spline surfaces** • same accuracy as ray casting, but much faster!

- Solving Poisson’s equation with Box Splines
Topics not covered ...

- **Box-Splines on Crystallographic Lattices** • SIAM Annual Meeting 2012 MS89-4.
- **Refinability of splines derived from regular tessellations** (hex splines are not refinable) • BIRS 2013 Algebraic and Geom. Design
- **Correct resolution rendering of trimmed spline surfaces** • same accuracy as ray casting, but much faster!
- Solving Poisson’s equation with Box Splines
Topics not covered ...

- **Box-Splines on Crystallographic Lattices** • SIAM Annual Meeting 2012 MS89-4.
- **Refinability of splines derived from regular tessellations** (hex splines are not refinable) • BIRS 2013 Algebraic and Geom. Design
- **Correct resolution rendering of trimmed spline surfaces** • same accuracy as ray casting, but much faster!
- Solving Poisson’s equation with Box Splines
Poisson’s equation on

- classical finite elements,
- discrete differential approach and
- four iso-geometric constructions

- IgA: singular polar parameterization; $O(h^3)$ convergence
- IgA using C^1 functions on complex domains based on G^1 constructions; $O(h^3)$ L^2 convergence, $O(h^2)$ L^∞ convergence.
Overview

Poisson’s equation on

- classical finite elements,
- discrete differential approach and
- four iso-geometric constructions

IgA: singular polar parameterization; $O(h^3)$ convergence

IgA using C^1 functions on complex domains based on G^1 constructions; $O(h^3)$ L^2 convergence, $O(h^2)$ L^∞ convergence.
Overview

Poisson’s equation on

- classical finite elements,
- discrete differential approach and
- four iso-geometric constructions

IgA: singular polar parameterization; $O(h^3)$ convergence

IgA using C^1 functions on complex domains based on G^1 constructions; • $O(h^3)$ L^2 convergence, $O(h^2)$ L^∞ convergence.
L^2 error L^∞ error
C^0 quadratic triangular elements

Linear Strain Triangle (LST) or Veubeke triangle:
$0 \leq u, v \leq 1$, $0 \leq u + v \leq 1$

$$b^\Delta(u, v) := \sum_{i+j+k=2} c_{ijk} \frac{2!}{i! j! k!} (1 - u - v)^i u^j v^k, \quad i, j, k \in \mathbb{N}_0.$$
C^1 Hsieh-Clough-Tocher Elements

b_{3i}^\triangle: nodal basis function

b_{3i+1}^\triangle: x-derivative basis function

b_{3N+k}^\triangle: mid-edge normal derivative function
The discrete differential geometry approach

cotan operator [Pinkall+Polthier,Desbrun,...]

\[\Delta_M f(v_i) := \frac{3}{A(v)} \sum_{j \in N_1(i)} \left(\frac{\cot \alpha_{ij} + \cot \beta_{ij}}{2} \right) [f(v_j) - f(v_i)] \]
The Iso-geometric approach

- IgA = iso-parametric analysis using splines both to describe the domain and the approximate PDE solution.
The Iso-parametric (iso-geometric) approach and finite elements

C^0 bi-3 element

control net and C^2 extension in BB-form

C^0 bi-3 basis function
The Iso-parametric (iso-geometric) approach and finite elements

Subdivision (Catmull-Clark) elements

Level 3

Level 7

A Catmull-Clark subdivision function

[Barendrecht 2014]

Quadrature: [Halstead, Kass, DeRose 1993]
Subdivision (Catmull-Clark) elements

Level 3
Level 7
A Catmull-Clark subdivision function

[Barendrecht 2014]
Quadrature: [Halstead, Kass, DeRose 1993]
The Iso-parametric (iso-geometric) approach and finite elements

G^1 bi-3/bi-5 elements [KP 2013]

Two G^1 bi-3/bi-5 basis functions (G^2 at eop)

G^1 bi-3/bi-5 basis function — one BB-patch lifted up
Matched G-continuity yields C-continuity

$\Omega := \text{physical domain parameterized piecewise by } n \text{ maps}$

$x_i : T \rightarrow \mathbb{R}^d$, $T := [0..1]^2$, $d \in \{2, 3\}$

$(s, t) \mapsto x_i(s, t) =: (x_i(s, t), y_i(s, t))$.

x_i and x_j join G^k along $E := x_i(s, 0) = x_j(\rho(s, 0)) = x_j(0, t)$

$\partial^k x_i(s, 0) = \partial^k x_j(\rho(s, 0))$ \quad $\rho := \mathbb{R}^2 \rightarrow \mathbb{R}^2, \partial^k = k - \text{jet}$

If also $\partial^1 u_i = \partial^1 (u_j \circ \rho)$ then C^1 continuity of $u \circ x^{-1}$ across $E \partial_\perp \cdot (e)$:

$\partial_\perp (u_i \circ x_j^{-1}) = \partial u_i \partial_\perp x_j^{-1} = \partial u_j \partial \rho (\partial \rho)^{-1} \partial_\perp x_j^{-1} = \partial_\perp (u_j \circ x_j^{-1})$.

\implies Every G construction yields a C iso-geometric construction.

\text{arXiv 1406.4229 (math.NA)}
Matched G-continuity yields C-continuity

$\Omega := $ physical domain parameterized piecewise by n maps

$x_i : T \rightarrow \mathbb{R}^d, \quad T := [0..1]^2, \quad d \in \{2, 3\},$

$(s, t) \mapsto x_i(s, t) =: (x_i(s, t), y_i(s, t))$.

x_i and x_j join G^k along $E := x_i(s, 0) = x_j(\rho(s, 0)) = x_j(0, t)$

$\partial^k x_i(s, 0) = \partial^k x_j(\rho(s, 0)) \quad \rho := \mathbb{R}^2 \rightarrow \mathbb{R}^2, \quad \partial^k = k - \text{jet}$

If also $\partial^1 u_i = \partial^1 (u_j \circ \rho)$ then C^1 continuity of $u \circ x^{-1}$ across $E \partial_{\perp} \cdot (e)$:

$\partial_{\perp} (u_i \circ x_i^{-1}) = \partial u_i \partial_{\perp} x_i^{-1} = \partial u_j \partial \rho (\partial \rho)^{-1} \partial_{\perp} x_j^{-1} = \partial_{\perp} (u_j \circ x_j^{-1})$.

\implies Every G construction yields a C iso-geometric construction.

\rightarrow arXiv 1406.4229 (math.NA)
Matched G-continuity yields C-continuity

$\Omega := \text{physical domain parameterized piecewise by } n \text{ maps}$

$x_i : T \to \mathbb{R}^d$, $T := [0..1]^2$, $d \in \{2, 3\}$,

$(s, t) \mapsto x_i(s, t) =: (x_i(s, t), y_i(s, t))$.

x_i and x_j join G^k along $E := x_i(s, 0) = x_j(\rho(s, 0)) = x_j(0, t)$

$\partial^k x_i(s, 0) = \partial^k x_j(\rho(s, 0))$ \hspace{1cm} $\rho := \mathbb{R}^2 \to \mathbb{R}^2$, $\partial^k = k - \text{jet}$

If also $\partial^1 u_i = \partial^1 (u_j \circ \rho)$ then C^1 continuity of $u \circ x^{-1}$ across E $\partial_\perp \cdot (e)$:

$$\partial_\perp (u_i \circ x^{-1}) = \partial u_i \partial_\perp x^{-1} = \partial u_j \partial \rho (\partial \rho)^{-1} \partial_\perp x_j^{-1} = \partial_\perp (u_j \circ x_j^{-1}).$$

\implies Every G construction yields a C iso-geometric construction.

\implies arXiv 1406.4229 (math.NA)
Matched G-continuity yields C-continuity

$\Omega :=$ physical domain parameterized piecewise by n maps

$x_i : T \rightarrow \mathbb{R}^d, \quad T := [0..1]^2, \quad d \in \{2, 3\},$

$(s, t) \mapsto x_i(s, t) =: (x_i(s, t), y_i(s, t)).$

x_i and x_j join G^k along $E := x_i(s, 0) = x_j(\rho(s, 0)) = x_j(0, t)$

$\partial^k x_i(s, 0) = \partial^k x_j(\rho(s, 0)) \quad \rho := \mathbb{R}^2 \rightarrow \mathbb{R}^2, \quad \partial^k = k - \text{jet}$

If also $\partial^1 u_i = \partial^1 (u_j \circ \rho)$ then C^1 continuity of $u \circ x^{-1}$ across $E \partial_{\perp} \cdot (e)$:

$\partial_{\perp} (u_i \circ x_j^{-1}) = \partial u_i \partial_{\perp} x_j^{-1} = \partial u_j \partial \rho (\partial \rho)^{-1} \partial_{\perp} x_j^{-1} = \partial_{\perp} (u_j \circ x_j^{-1}).$

\implies Every G construction yields a C iso-geometric construction.

\rightarrow arXiv 1406.4229 (math.NA)
Matched G-continuity yields C-continuity

$\Omega := \text{physical domain parameterized piecewise by } n \text{ maps}$

$x_i : T \rightarrow \mathbb{R}^d, \quad T := [0..1]^2, \quad d \in \{2, 3\},$

$(s, t) \mapsto x_i(s, t) =: (x_i(s, t), y_i(s, t)).$

x_i and x_j join G^k along $E := x_i(s, 0) = x_j(\rho(s, 0)) = x_j(0, t)$

$\partial^k x_i(s, 0) = \partial^k x_j(\rho(s, 0)) \quad \rho := \mathbb{R}^2 \rightarrow \mathbb{R}^2, \quad \partial^k = k - \text{jet}$

If also $\partial^1 u_i = \partial^1 (u_j \circ \rho)$ then C^1 continuity of $u \circ x^{-1}$ across E $\partial_\perp \cdot (e):$

$$\partial_\perp (u_i \circ x_i^{-1}) = \partial u_i \partial_\perp x_i^{-1} = \partial u_j \partial \rho (\partial \rho)^{-1} \partial_\perp x_j^{-1} = \partial_\perp (u_j \circ x_j^{-1}).$$

\implies Every G construction yields a C iso-geometric construction.

arXiv 1406.4229 (math.NA)
Matched G-continuity yields C-continuity

$\Omega := \text{physical domain parameterized piecewise by } n \text{ maps}$

$x_i : T \rightarrow \mathbb{R}^d, \quad T := [0..1]^2, \quad d \in \{2, 3\},$

$\quad (s, t) \mapsto x_i(s, t) =: (x_i(s, t), y_i(s, t)).$

x_i and x_j join G^k along $E := x_i(s, 0) = x_j(\rho(s, 0)) = x_j(0, t)$

$\partial^k x_i(s, 0) = \partial^k x_j(\rho(s, 0)) \quad \rho := \mathbb{R}^2 \rightarrow \mathbb{R}^2, \quad \partial^k = k - \text{jet}$

If also $\partial^1 u_i = \partial^1 (u_j \circ \rho)$ then C^1 continuity of $u \circ x^{-1}$ across $E \partial_\perp \cdot (e):$

$\partial_\perp (u_i \circ x_i^{-1}) = \partial u_i \partial_\perp x_i^{-1} = \partial u_j \partial \rho (\partial \rho)^{-1} \partial_\perp x_j^{-1} = \partial_\perp (u_j \circ x_j^{-1}).$

$$
\Rightarrow \quad \text{Every } G \text{ construction yields a } C \text{ iso-geometric construction.}
\Rightarrow \quad \text{arXiv 1406.4229 (math.NA)}$$
The Iso-parametric (iso-geometric) approach and finite elements

Matched G-continuity yields C-continuity

$\Omega :=$ physical domain parameterized piecewise by n maps

$x_i : T \rightarrow \mathbb{R}^d, \quad T := [0..1]^2, \quad d \in \{2, 3\},$

$(s, t) \mapsto x_i(s, t) =: (x_i(s, t), y_i(s, t)).$

x_i and x_j join G^k along $E := x_i(s, 0) = x_j(\rho(s, 0)) = x_j(0, t)$

$\partial^k x_i(s, 0) = \partial^k x_j(\rho(s, 0)) \quad \rho := \mathbb{R}^2 \rightarrow \mathbb{R}^2, \quad \partial^k = k - \text{jet}$

If also $\partial^1 u_i = \partial^1 (u_j \circ \rho)$ then C^1 continuity of $u \circ x^{-1}$ across $E \partial_{\perp} \cdot (e)$:

$$\partial_{\perp} (u_i \circ x_i^{-1}) = \partial u_i \partial_{\perp} x_i^{-1} = \partial u_j \partial \rho (\partial \rho)^{-1} \partial_{\perp} x_j^{-1} = \partial_{\perp} (u_j \circ x_j^{-1}).$$

\implies Every G construction yields a C iso-geometric construction.

\rightarrow arXiv 1406.4229 (math.NA)
Polar elements for polar configurations

Modeling with C^1 polar functions

A C^1 polar basis function
Solving Poisson’s equation

Poisson’s equation: find u such that

$$-\Delta u = f, \quad u(\partial \Omega) = 0.$$

DDG: directly as $-\Delta_M u = f$.

Other methods: solve weak form. Find $u \in H^1_0$ such that for all $v \in H^1_0$

$$\int_{\Omega} \nabla u \cdot \nabla v \, d\Omega = \int_{\Omega} fv \, d\Omega.$$

We seek an approximate solution in terms of functions $b_i : \Omega \rightarrow \mathbb{R}$ by determining the coefficients $c_i \in \mathbb{R}$ in

$$u_h := \sum_{1}^{N} c_i b_i.$$ \hspace{1cm} (1)
Solving Poisson’s equation

Using Galerkin’s method, we set \(v := b_i \) and obtain the constraints

\[
\int_{\Omega} \nabla \left(\sum_{j=1}^{N} c_j b_j \right) \cdot \nabla b_i \, d\Omega = \int_{\Omega} f b_i \, d\Omega.
\]

This yields a system of linear equations

\[
K c = f, \quad \text{where } K_{ij} := \int_{\Omega} \nabla b_i \cdot \nabla b_j \, d\Omega, \quad \text{and} \quad f_i := \int_{\Omega} f b_i \, d\Omega
\]

The vector of coefficients \(c := [c_1, \cdots, c_n]^t \) is to be determined.
Solving Poisson’s equation

For IgA: physical domain $\Omega := \cup x(\alpha, T)$,

$$K_{ij} = \int_{x(T)} \nabla (b_i \Box \circ x^{-1}) \cdot \nabla (b_j \Box \circ x^{-1}) \, d\Omega = \ldots$$

$$= \int_T (\nabla b_i \Box)^t [J^{-1}]^t J^{-1} (\nabla b_j \Box) | \det J | \, d\, T$$

$J = \text{transpose of Jacobian of } x : (s, t) \in T \rightarrow [x(s, v) \ y(s, v)]^t$.

$$J := \begin{bmatrix} x_s & y_s \\ x_t & y_t \end{bmatrix}, \quad \det J = x_s y_t - x_t y_s, \quad J^{-1} = \frac{1}{\det J} \begin{bmatrix} y_t & -y_s \\ -x_t & x_s \end{bmatrix}$$

$$[J^{-1}]^t J^{-1} | \det J | = \frac{1}{|\det J|} \begin{bmatrix} x_t^2 + y_t^2 & -x_s x_t - y_s y_t \\ -x_s x_t - y_s y_t & x_s^2 + y_s^2 \end{bmatrix}.$$

Similarly, for the right hand side term,

$$\int_{\Omega} f b_i \, d\Omega = \int_T (f \circ x) b_i \Box | \det J | \, d\, T.$$
Solving Poisson’s equation

For IgA: physical domain \(\Omega := \bigcup x_{\alpha}(T) \),

\[
K_{ij} = \int_{x(T)} \nabla(b_i \circ x^{-1}) \cdot \nabla(b_j \circ x^{-1}) \, d\Omega = \ldots
\]

\[
= \int_T (\nabla b_i)\,^t \left[J^{-1}\right]^t J^{-1} (\nabla b_j) \mid \det J \mid d\, T
\]

\(J^\top \) = transpose of Jacobian of \(x: (s, t) \in T \rightarrow [x(s, v) \, y(s, v)]^\top. \)

\[
J := \begin{bmatrix}
x_s & y_s \\
x_t & y_t
\end{bmatrix}, \quad \det J = x_s y_t - x_t y_s, \quad J^{-1} = \frac{1}{\det J} \begin{bmatrix}
y_t & -y_s \\
-x_t & x_s
\end{bmatrix}
\]

\[
\left[J^{-1}\right]^t J^{-1} \mid \det J\mid = \frac{1}{\mid \det J\mid} \begin{bmatrix}
x_t^2 + y_t^2 & -x_s x_t - y_s y_t \\
-x_s x_t - y_s y_t & x_s^2 + y_s^2
\end{bmatrix}.
\]

Similarly, for the right hand side term,

\[
\int_{\Omega} f b_i \, d\Omega = \int_T (f \circ x) b_i \, \mid \det J\mid \, d\, T.
\]
Numerical results and comparison

C^0 quadratic, HCT, DDG elements: 384, $\times 4$, $\times 16$

bi-3 C^0, CC, G^1 bi-3/bi-5 elements: 120, $\times 4$, $\times 16$

Polar C^1 elements: 100, $\times 4$, $\times 16$
Numerical results and comparison

L_2 error

![Graph showing mesh size vs. error in L_2 for different elements and datasets.]

- DDG Linear Element
- C^1 HST element
- C^0 quadratic element
- Catmull–Clark (lvl 7)
- Bi3 C^0
- Bi5 C^1
- Bi3 polar C^1

T Nguyen, K. Karčiauskas, J. Peters (UF, VU) HCT, DDG, IgA irregular $O(h^3)$ convergence
Poisson’s equation: exact - computed.

When \(f := 1 \) the exact solution is \(u := \frac{(1 - x^2 - y^2)}{4} \).
Numerical results and comparison

L^∞ error

![Graph showing L^∞ error vs mesh size for different methods: Catmull–Clark (lvl 7), Bi3 polar C^1, Bi5 C^1, Bi3 C0, quadratic element, DDG Linear Element, C1 HST element, C0 quadratic element. The graph illustrates the convergence behavior for three disks labeled as Disk 1, Disk 2, and Disk 3.](image-url)
G^1 bi-3/bi-5 elements: elastic plate with circular hole

h-refinement

Contour plots of σ_{xx}

L^2-error

L^∞-error

exact solution:

$$\sigma_{xx}(r, \theta) = T - \frac{T}{r^2} \left(\frac{3}{2} \cos(2\theta) + \cos(4\theta) \right) + \frac{T}{2r^4} \frac{3R^4}{2r^4} \cos(4\theta)$$

where

$$r(x, y) := \sqrt{x^2 + y^2}$$

and

$$\theta(x, y) := \text{atan}(y/x).$$
G^1 bi-3/bi-5 elements: Poisson’s equation on L-shape

h-refinement

Exact - Computed.

L^2-error

L^∞-error

exact solution: $u(x, y) = r^{2/3} \sin(2a/3 + \pi/3)$, where $r(x, y) := \sqrt{x^2 + y^2}$ and $a(x, y) := \text{atan}(x/y)$.

T Nguyen, K. Karčiauskas, J. Peters (UF, VU, HCT, DDG, IgA irregular $O(h^3)$ convergence
Heat equation on surfaces

(T Nguyen, K. Karčiauskas, J. Peters)
Summary

- G construction yields C isogeometric element
- G^1 construction: $O(h^3)$ L^2 convergence, $O(h^2)$ L^∞ convergence.
- useful for surfaces, biharmonic equations
- Supported by NSF CCF 1117695
Summary

- G construction yields C isogeometric element
 - G^1 construction: $O(h^3)$ L^2 convergence, $O(h^2)$ L^∞ convergence.
 - Useful for surfaces, biharmonic equations
 - Supported by NSF CCF 1117695
Summary

- G construction yields C isogeometric element
- G^1 construction: $O(h^3)$ L^2 convergence, $O(h^2)$ L^∞ convergence.

useful for surfaces, biharmonic equations

Supported by NSF CCF 1117695
Summary

- G construction yields C isogeometric element
- G^1 construction: $O(h^3)$ L^2 convergence, $O(h^2)$ L^∞ convergence.
 - useful for surfaces, biharmonic equations
 - Supported by NSF CCF 1117695
Summary

- G construction yields C isogeometric element
- G^1 construction: $O(h^3)$ L^2 convergence, $O(h^2)$ L^∞ convergence.
- useful for surfaces, biharmonic equations

Supported by NSF CCF 1117695
Summary

- G construction yields C isogeometric element
- G^1 construction: $O(h^3) L^2$ convergence, $O(h^2) L^\infty$ convergence.
- useful for surfaces, biharmonic equations

Supported by NSF CCF 1117695
Summary

- G construction yields C isogeometric element
- G^1 construction: $O(h^3)$ L^2 convergence, $O(h^2)$ L^∞ convergence.
- useful for surfaces, bihormonic equations
- Supported by NSF CCF 1117695
G^k construction yields C^k isogeometric element

Faa di Bruno’s law (chain and product rules) yields a complex combination of derivatives, but only terms up to kth order. By geometric continuity, derivatives up to kth order evaluated along e_i^{-1} agree. (e_i^{-1} is the pre-image of the edge e common to $x_i(□)$ and $x_j(□)$).

$$\partial^k (u_i \circ x_i^{-1})(e) = \partial^k (u_j \circ \rho \circ (x_j \circ \rho)^{-1})(e) = \partial^k (u_j \circ \rho \circ \rho^{-1} \circ (x_j)^{-1})(e) = \partial^k (u_j \circ x_j^{-1})(e)$$
G^k construction yields C^k isogeometric element

Faa di Bruno’s law (chain and product rules) yields a complex combination of derivatives, but only terms up to kth order. By geometric continuity, derivatives up to kth order evaluated along e_i^{-1} agree. (e_i^{-1} is the pre-image of the edge e common to $x_i(\Box)$ and $x_j(\Box)$).

\[
\partial^k(u_i \circ x_i^{-1})(e) = \partial^k(u_j \circ \rho \circ (x_j \circ \rho)^{-1})(e) = \partial^k(u_j \circ \rho \circ \rho^{-1} \circ (x_j)^{-1})(e) = \partial^k(u_j \circ x_j^{-1})(e)
\]
G^k construction yields C^k isogeometric element

Faa di Bruno’s law (chain and product rules) yields a complex combination of derivatives, but only terms up to kth order.
By geometric continuity, derivatives up to kth order evaluated along e_i^{-1} agree.
$(e_i^{-1}$ is the pre-image of the edge e common to $x_i(□)$ and $x_j(□)$).

\[
\partial^k(u_i \circ x_i^{-1})(e) = \partial^k(u_j \circ \rho \circ (x_j \circ \rho)^{-1})(e) = \partial^k(u_j \circ \rho \circ \rho^{-1} \circ (x_j)^{-1})(e) = \partial^k(u_j \circ x_j^{-1})(e)
\]
\[
G^1 \text{ construction yields } C^1 \text{ isogeometric element}
\]

\[
\rho : e_i^{-1} \rightarrow e_j^{-1} \quad \partial x_i(e_i^{-1}) = \partial (x_j \circ \rho)(e_i^{-1}) \quad \partial u_i(e_i^{-1}) = \partial (u_j \circ \rho)(e_i^{-1})
\]

\[
x^{-1} \circ x = id
\]

\[
\partial x^{-1}(x) \cdot \partial x = I \quad \implies \quad (\partial x)^{-1} = \partial x^{-1}
\]

\[
\partial \perp u_i \circ x_i^{-1}(e) = \partial u_i(e_i^{-1}) \partial \perp x_i^{-1}(e) = \partial u_i(e_i^{-1})(\partial \perp x_i(e_i^{-1}))^{-1}
\]

\[
= \partial (u_j \circ \rho)(e_i^{-1})(\partial \perp (x_j \circ \rho)(e_i^{-1}))^{-1} = \partial u_j(e_j^{-1}) \partial \rho(e_i^{-1})(\partial \perp x_j(e_j^{-1}))^{-1} \partial \rho(e_i^{-1})
\]

\[
= \partial u_j(e_j^{-1}) \partial \rho(e_i^{-1})(\partial \rho(e_i^{-1}))^{-1}(\partial \perp x_j(e_j^{-1}))^{-1} = \partial u_j(e_j^{-1})(\partial \perp x_j(e_j^{-1}))^{-1}
\]

\[
= \partial \perp u_j \circ x_j^{-1}(e)
\]
G^1 construction yields C^1 isogeometric element

$$
\rho : e_i^{-1} \to e_j^{-1} \quad \partial x_i(e_i^{-1}) = \partial(x_j \circ \rho)(e_i^{-1}) \quad \partial u_i(e_i^{-1}) = \partial(u_j \circ \rho)(e_i^{-1})
$$

$$
x^{-1} \circ x = id
$$

$$
\partial x^{-1}(x) \cdot \partial x = I \quad \implies \quad (\partial x)^{-1} = \partial x^{-1}
$$

$$
\partial \perp u_i \circ x_i^{-1}(e) = \partial u_i(e_i^{-1})\partial \perp x_i^{-1}(e) = \partial u_i(e_i^{-1})(\partial \perp x_i(e_i^{-1}))^{-1} \\
= \partial(u_j \circ \rho)(e_i^{-1})(\partial \perp (x_j \circ \rho)(e_i^{-1}))^{-1} = \partial u_j(e_j^{-1})\partial \rho(e_i^{-1})(\partial \perp x_j(e_j^{-1}))\partial \rho(e_i^{-1}) \\
= \partial u_j(e_j^{-1})\partial \rho(e_i^{-1})(\partial \rho(e_i^{-1}))^{-1}(\partial \perp x_j(e_j^{-1}))^{-1} = \partial u_j(e_j^{-1})(\partial \perp x_j(e_j^{-1}))^{-1} \\
= \partial \perp u_j \circ x_j^{-1}(e)
$$
G^1 construction yields C^1 isogeometric element

$$\rho : e_i^{-1} \rightarrow e_j^{-1} \quad \partial x_i(e_i^{-1}) = \partial(x_j \circ \rho)(e_i^{-1}) \quad \partial u_i(e_i^{-1}) = \partial(u_j \circ \rho)(e_i^{-1})$$

$$x^{-1} \circ x = id \quad \partial x^{-1}(x) \cdot \partial x = I \quad \Rightarrow \quad (\partial x)^{-1} = \partial x^{-1}$$

$$\partial \perp u_i \circ x_i^{-1}(e) = \partial u_i(e_i^{-1}) \partial \perp x_i^{-1}(e) = \partial u_i(e_i^{-1})(\partial \perp x_i(e_i^{-1}))^{-1}$$

$$= \partial(u_j \circ \rho)(e_i^{-1})(\partial \perp (x_j \circ \rho)(e_i^{-1}))^{-1} = \partial u_j(e_j^{-1}) \partial \rho(e_i^{-1})(\partial \perp x_j(e_j^{-1}))^{-1} \partial \rho(e_i^{-1})$$

$$= \partial u_j(e_j^{-1}) \partial \rho(e_i^{-1})(\partial \rho(e_i^{-1}))^{-1}(\partial \perp x_j(e_j^{-1}))^{-1} = \partial u_j(e_j^{-1})(\partial \perp x_j(e_j^{-1}))^{-1}$$

$$= \partial \perp u_j \circ x_j^{-1}(e)$$
G^1 construction yields C^1 isogeometric element

\[
\rho : e_i^{-1} \to e_j^{-1} \quad \partial x_i(e_i^{-1}) = \partial(x_j \circ \rho)(e_i^{-1}) \quad \partial u_i(e_i^{-1}) = \partial(u_j \circ \rho)(e_i^{-1})
\]

\[
x^{-1} \circ x = \text{id}
\]

\[
\partial x^{-1}(x) \cdot \partial x = I \quad \implies \quad (\partial x)^{-1} = \partial x^{-1}
\]

\[
\partial_{\perp} u_i \circ x_i^{-1}(e) = \partial u_i(e_i^{-1})\partial_{\perp} x_i^{-1}(e) = \partial u_i(e_i^{-1})(\partial_{\perp} x_i(e_i^{-1}))^{-1}
\]

\[
= \partial(u_j \circ \rho)(e_i^{-1})(\partial_{\perp} (x_j \circ \rho)(e_i^{-1}))^{-1} = \partial u_j(e_j^{-1})\partial \rho(e_i^{-1})(\partial_{\perp} x_j(e_j^{-1})\partial \rho(e_i^{-1})^{-1}
\]

\[
= \partial u_j(e_j^{-1})\partial \rho(e_i^{-1})(\partial \rho(e_i^{-1}))^{-1}(\partial_{\perp} x_j(e_j^{-1}))^{-1} = \partial u_j(e_j^{-1})(\partial_{\perp} x_j(e_j^{-1}))^{-1}
\]

\[
= \partial_{\perp} u_j \circ x_j^{-1}(e)
\]
G^1 construction yields C^1 isogeometric element

$$\rho : e_i^{-1} \rightarrow e_j^{-1}$$

$$\partial x_i(e_i^{-1}) = \partial(x_j \circ \rho)(e_i^{-1})$$

$$\partial u_i(e_i^{-1}) = \partial(u_j \circ \rho)(e_i^{-1})$$

$$x^{-1} \circ x = id$$

$$\partial x^{-1}(x) \cdot \partial x = I \implies (\partial x)^{-1} = \partial x^{-1}$$

$$\partial_{\perp} u_i \circ x_i^{-1}(e) = \partial u_i(e_i^{-1})\partial_{\perp} x_i^{-1}(e) = \partial u_i(e_i^{-1})(\partial_{\perp} x_i(e_i^{-1}))^{-1}$$

$$= \partial(u_j \circ \rho)(e_i^{-1})(\partial_{\perp}(x_j \circ \rho)(e_i^{-1}))^{-1} = \partial u_j(e_j^{-1})\partial_{\perp}(e_j^{-1})(\partial_{\perp} x_j(e_j^{-1}))^{-1}$$

$$= \partial_{\perp} u_j \circ x_j^{-1}(e)$$
\(G^1 \) construction yields \(C^1 \) isogeometric element

\[\rho : e_i^{-1} \rightarrow e_j^{-1} \quad \partial x_i(e_i^{-1}) = \partial (x_j \circ \rho)(e_i^{-1}) \quad \partial u_i(e_i^{-1}) = \partial (u_j \circ \rho)(e_i^{-1}) \]

\[x^{-1} \circ x = id \]
\[\partial x^{-1}(x) \cdot \partial x = I \quad \implies (\partial x)^{-1} = \partial x^{-1} \]

\[\partial_{\perp} u_i \circ x_i^{-1}(e) = \partial u_i(e_i^{-1})\partial_{\perp} x_i^{-1}(e) = \partial u_i(e_i^{-1})(\partial_{\perp} x_i(e_i^{-1}))^{-1} \]
\[= \partial (u_j \circ \rho)(e_i^{-1})(\partial_{\perp} (x_j \circ \rho)(e_i^{-1}))^{-1} = \partial u_j(e_j^{-1})\partial \rho(e_i^{-1})(\partial_{\perp} x_j(e_j^{-1}))^{-1} \]
\[= \partial u_j(e_j^{-1})\partial \rho(e_i^{-1})(\partial \rho(e_i^{-1}))^{-1}(\partial_{\perp} x_j(e_j^{-1}))^{-1} = \partial u_j(e_j^{-1})(\partial_{\perp} x_j(e_j^{-1}))^{-1} \]
\[= \partial_{\perp} u_j \circ x_j^{-1}(e) \]
G^1 construction yields C^1 isogeometric element

\[\rho : e_i^{-1} \to e_j^{-1} \]

\[\partial x_i(e_i^{-1}) = \partial (x_j \circ \rho)(e_i^{-1}) \quad \partial u_i(e_i^{-1}) = \partial (u_j \circ \rho)(e_i^{-1}) \]

\[x^{-1} \circ x = id \]

\[\partial x^{-1}(x) \cdot \partial x = I \quad \implies \quad (\partial x)^{-1} = \partial x^{-1} \]

\[\partial_\perp u_i \circ x_i^{-1}(e) = \partial u_i(e_i^{-1}) \partial_\perp x_i^{-1}(e) = \partial u_i(e_i^{-1})(\partial_\perp x_i(e_i^{-1}))^{-1} \]

\[= \partial (u_j \circ \rho)(e_i^{-1})(\partial_\perp (x_j \circ \rho)(e_i^{-1}))^{-1} = \partial u_j(e_j^{-1}) \partial_\perp \rho(e_i^{-1})(\partial_\perp x_j(e_j^{-1}))^{-1} \]

\[= \partial u_j(e_j^{-1}) \partial_\perp \rho(e_i^{-1})(\partial_\rho(e_i^{-1}))^{-1}(\partial_\perp x_j(e_j^{-1}))^{-1} = \partial u_j(e_j^{-1})(\partial_\perp x_j(e_j^{-1}))^{-1} \]

\[= \partial_\perp u_j \circ x_j^{-1}(e) \]
$\rho : e_i^{-1} \rightarrow e_j^{-1}$

$\partial x_i(e_i^{-1}) = \partial(x_j \circ \rho)(e_i^{-1})$

$\partial u_i(e_i^{-1}) = \partial(u_j \circ \rho)(e_i^{-1})$

$x^{-1} \circ x = id$

$\partial x^{-1}(x) \cdot \partial x = I \quad \implies (\partial x)^{-1} = \partial x^{-1}$

$\partial_{\perp} u_i \circ x_i^{-1}(e) = \partial u_i(e_i^{-1})\partial_{\perp} x_i^{-1}(e) = \partial u_i(e_i^{-1})(\partial_{\perp} x_i(e_i^{-1}))^{-1}$

$= \partial(u_j \circ \rho)(e_i^{-1})(\partial_{\perp}(x_j \circ \rho)(e_i^{-1}))^{-1} = \partial u_j(e_j^{-1})\partial \rho(e_i^{-1})(\partial_{\perp} x_j(e_j^{-1}))\partial \rho(e_i^{-1})$

$= \partial u_j(e_j^{-1})\partial \rho(e_i^{-1})(\partial \rho(e_i^{-1}))^{-1}(\partial_{\perp} x_j(e_j^{-1}))^{-1} = \partial u_j(e_j^{-1})(\partial_{\perp} x_j(e_j^{-1}))^{-1}$

$= \partial_{\perp} u_j \circ x_j^{-1}(e)$
G^1 construction yields C^1 isogeometric element

$$\rho : e_i^{-1} \rightarrow e_j^{-1} \quad \partial x_i(e_i^{-1}) = \partial(x_j \circ \rho)(e_i^{-1}) \quad \partial u_i(e_i^{-1}) = \partial(u_j \circ \rho)(e_i^{-1})$$

$$x^{-1} \circ x = id$$

$$\partial x^{-1}(x) \cdot \partial x = I \quad \implies \quad (\partial x)^{-1} = \partial x^{-1}$$

$$\partial_{\perp} u_i \circ x_i^{-1}(e) = \partial u_i(e_i^{-1})\partial_{\perp} x_i^{-1}(e) = \partial u_i(e_i^{-1})(\partial_{\perp} x_i(e_i^{-1}))^{-1} = \partial(u_j \circ \rho)(e_i^{-1})(\partial_{\perp} x_j(e_j^{-1}))^{-1} = \partial u_j(e_j^{-1})\partial \rho(e_j^{-1})(\partial_{\perp} x_j(e_j^{-1}))^{-1} = \partial u_j(e_j^{-1})(\partial_{\perp} x_j(e_j^{-1}))^{-1} = \partial_{\perp} u_j \circ x_j^{-1}(e)$$
\mathbb{G}^1 construction yields C^1 isogeometric element

\[\rho : e_i^{-1} \rightarrow e_j^{-1} \]
\[\partial x_i(e_i^{-1}) = \partial (x_j \circ \rho)(e_i^{-1}) \quad \partial u_i(e_i^{-1}) = \partial (u_j \circ \rho)(e_i^{-1}) \]

\[x^{-1} \circ x = \text{id} \]
\[\partial x^{-1}(x) \cdot \partial x = I \quad \implies \quad (\partial x)^{-1} = \partial x^{-1} \]

\[\partial_\perp u_i \circ x_i^{-1}(e) = \partial u_i(e_i^{-1})\partial_\perp x_i^{-1}(e) = \partial u_i(e_i^{-1})(\partial_\perp x_i(e_i^{-1}))^{-1} \]
\[= \partial (u_j \circ \rho)(e_i^{-1})(\partial_\perp (x_j \circ \rho)(e_i^{-1}))^{-1} = \partial u_j(e_j^{-1})\partial \rho(e_i^{-1})(\partial_\perp x_j(e_j^{-1}))\partial \rho(e_i^{-1}) \]
\[= \partial u_j(e_j^{-1})\partial \rho(e_i^{-1})(\partial \rho(e_i^{-1}))^{-1}(\partial_\perp x_j(e_j^{-1}))^{-1} = \partial u_j(e_j^{-1})(\partial_\perp x_j(e_j^{-1}))^{-1} \]
\[= \partial_\perp u_j \circ x_j^{-1}(e) \]
L_2 error – more players

![Graph showing error in L_2 for different mesh sizes and methods.](image)