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Abstract

Lower bounds, mandating a minimal number and degree of polynomial pieces,
represent a major achievement in the theory of geometrically smooth (G1) con-
structions. On one hand, they establish a floor when searching for optimal con-
structions, on the other they can be used to flag complex constructions for potential
flaws. In particular, quadrilateral meshes of arbitrary topology can not in general
be converted to G1-connected Bézier patches of bi-degree 3 with one piece per
quad or use just linear reparameterizations. This note illustrates how lower bounds
indicate otherwise difficult-to-find flaws in a complex new surface construction.

1 Introduction
For many applications, for example artistic rendering and sculpting, a few steps of re-
finement and averaging provide a pleasing rounding of the original polyhedral shape.
The simplicity of subdivision, in particular, when it has small and local stencils (re-
finement rules) is appealing and Catmull-Clark subdivision [CC78] in particular is a
staple of geometric modeling environments when creating computer graphics assets.
However Catmull-Clark surfaces have also been shown to inherently have shape de-
ficiencies, such as pinching of highlight lines, that can be traced back to its simple
stencil-based rules [KPR04, KP17].

The algorithm of [ASC17] proposes an approach to obtaining ‘C2 continuous Bi-
Cubic Bézier patches that are guaranteed to be stitched with G1 continuity regardless
of the underlying mesh topology’. This approach consists of applying not Catmull-
Clark but Doo-Sabin subdivision to an initial polyhedral input mesh. The approach
then derives quadrilateral facets and Bézier control points from the refined mesh and
constructs n bi-cubic patches for each n-sided facet.

Beyond demonstrating aesthetic rounding, [ASC17] emphasizes that the result is
a ‘smooth surface with G1 continuity’ 1. If true, this would be remarkable since this
contradicts or circumvents the restrictions on bi-cubic G1 spline complexes that were
derived in [PF09, Section 3]. Moreover, if [ASC17] were correct then the special

1G1 is typeset as G1 in several places in [ASC17].
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constructions [PS15, SP16], that were published earlier in the same conference series,
would be superfluous.

Below we show that, while the surfaces generated by the approach of [ASC17]
often appear to be smooth, in general, as predicted by the lower bounds on the required
number and degree of the polynomial pieces, they are not smooth.

Overview. Section 2 summarizes the algorithm in [ASC17] and the lower bound result
of [PF09] as it applies to bi-cubic G1 constructions. Section 3 exhibits an explicit,
minimal counterexample to the claim that the approach in [ASC17] always generates
G1 surfaces. Section 4 succinctly surveys the state of the art when constructing both
formally smooth and near-smooth bi-cubic surfaces.

2 A quick review of G1 continuity, the construction of
[ASC17] and a lower bound theorem

The construction of [ASC17] applies two steps2 of Doo-Sabin subdivision to an initial
polyhedral input meshM and then places the corners of bicubic patches at the Doo-
Sabin limit points of the facets obtained in the initial subdivision (Fig 5 of [ASC17]).
That is, every vertex and every face ofM has a corner of a bi-cubic patch associated
with it. This layout looks more general, and therefore more challenging than the one
in [HBC08] which used 2× 2 bi-cubics to per quadrilateral face of the input, but could
not guarantee G1 continuity, since it violated the lower bound on bi-cubic surfaces.

For the construction of [ASC17], denote by v and w the limit points associated with
adjacent facets ofM (see Fig. 1). SinceM is unrestricted, v and w and their tangent
planes can be freely adjusted – as is desirable for flexible modeling. The construction
in [ASC17] is therefore G1 vertex-localized in the sense that the Taylor expansion at
v is not tightly linked to that at w. It also does not matter (and it should not) whether
v is listed first or w. That is, the construction uses unbiased G1 constraints along
the boundary p(u, 0) = q(u, 0) between the two patches p,q : (u, v) → R3: for
u ∈ [0..1],

∂2p(u, 0) + ∂2q(u, 0) = α(u)∂1p(u, 0). (1)

Therefore, as indicated in Fig 8 of [ASC17], the four bicubic patches meeting at the
midpoint m of the edge v,w (see Fig. 1) join C1, the following theorem applies.

Theorem 1 ([PF09]: lower bound = two double knots per edge needed)
A vertex-localized unbiased G1 bi-cubic spline surface construction without forced
linear boundary segments, requires in general at least two internal double knots per
edge.

In other words, Theorem 1 states that to satisfy G1 constraints along v and w (and not
have straight line segments embedded in the surface) unrestricted input data require
at least three polynomial boundary segments. [ASC17] connects v and w with two
polynomial boundary segments. One might hope that the specific initialization via

2In [ASC17] there is some ambiguity as to whether two or three steps of Doo-Sabin subdivision should
be applied, but for this note the outcome is the same.
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Doo-Sabin or more refinement steps might side-step the conditions for Theorem 1 to
apply. But even then a more subtle constraint (Lemma 4 of [PF09] underlying the
proof of Theorem 1) holds: that α needs to be quadratic somewhere. The next section
therefore looks more closely at the construction of [ASC17] expecting to find an error
in the claim of G1 continuity.

Below the bicubic tensor-product polynomial surface patches p, q of bi-degree 3
are expressed in Bernstein-Bézier (BB) form, e.g.

p(u, v) :=

3∑
i=0

3∑
j=0

pijB
3
i (u)B

3
j (v), (u, v) ∈ � := [0..1]2,

where B3
k(t) :=

(
3
k

)
(1 − t)3−ktk is the kth Bernstein-Bézier (BB) polynomials of

degree 3 and pij ∈ R3 are the BB-coefficients [Far02, PBP02].

3 A Counterexample: an input mesh where [ASC17]
does not yield a G1 output

Since the algorithm of [ASC17] applies initially multiple steps of Doo-Sabin subdi-
vision, finding a simple explicit counterexample seems a formidable challenge. The
refinement means that visual inspection does not easily reveal flaws and that any flaws
that one observes under zoom could be due to rounding. However, the lower bound
encourages a detailed search and analysis.

Reducing the input data to the simplest configuration, a regular tetrahedronMwith
vertices

A :=
[−1
−1
−1

]
, B :=

[−1
1
1

]
, C :=

[
1
−1
1

]
, D :=

[
1
1
−1

]
, (2)

turned out to prove that the construction of [ASC17] as stated can not, in general,
generate G1 surfaces. This was not the first configuration tested and is surprising since
this input is combinatorially symmetric and admits a bi-cubic solution with the layout
– just not the one of [ASC17].)

Consider Fig. 1. Let m be the intersection point of the curves connecting the limit
points associated with A and B and the curves connecting v, the center of the face
B,A,D, to the center of A,C,D. We analyze G1 continuity along the edge from v to
m. To compute with integers throughout, we scaleM by 2232 · 5 · 7. Following the
algorithm of [ASC17] up to the claim ‘Our calculation of the control points guarantees
G1 continuity’, the mesh points and BB-coefficients can then be computed as integers.
Three rows of BB-coefficients determine the G1 continuity constraints (1) between the
resulting two adjacent bi-cubic patches p and q. We focus on on the BB-coefficients
of pij and qij for i = 0, 1, 2, 3 and j = 0, 1. Below ∼ indicates proportionality after
scaling the BB-coefficients to the right of ∼ to the smallest integer values:
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Figure 1: Counterexample: (left) the input mesh M is a regular tetrahedron. The
darker quad-mesh inside is the result of applying two steps of Doo-Sabin subdivision.
(right) The subnet of 12 Bernstein-Bézier control points of interest are sketched on the
refined mesh: from the 3-valent point v to the 4-valent point m, these are the BB-
coefficients of (3) that determine the G1 continuity between the two bi-cubic patches
p and q.

(after multiplication by 210)

pi1

pi0 = qi,3

qi2

∼

[
3
6
3

]
,
[
0
6
6

]
,
[

4
−2
8

]
,
[
1
1
8

]
,[

4
4
4

]
,
[
3
3
6

]
,
[

3
−3
8

]
,
[
0
0
8

]
,[

6
3
3

]
,
[
6
0
6

]
,
[

2
−4
8

]
,
[−1
−1
8

]
.

(3)

Then the coefficients of the derivatives across and along the common edge are (after
multiplication by 630)

∂2p
∂1p = ∂1q

∂2q
∼

[−1
2
−1

]
,
[−3

3
0

]
,
[
1
1
0

]
,
[
1
1
0

]
,[−1

−1
2

]
,
[

0
−6
2

]
,
[−3

3
0

]
,[−2

1
1

]
,
[−3

3
0

]
,
[
1
1
0

]
,
[
1
1
0

]
.

(4)

Taking the dot-product of (1) with ∂1p(u, 0)× ∂2q(u, 0) implies that
det |∂2p(u, 0), ∂1p(u, 0), ∂2q(u, 0)| = 0. However, for the counterexample, the scaled
BB-coefficients of the determinant polynomial of degree 3 + 2 + 3 are

det |∂2p, ∂1p, ∂2q| ∼ [0,−70,−120, 30,−4,−5, 0, 0, 0] 6= 0. (5)

Therefore the two patches do not join with G1 continuity.

4 Synopsis of alternative bi-cubic constructions in the
literature

To place lower bounds on the number and degree of piecewise polynomial construc-
tions into context, we list a number of attempts to generalize bi-cubic splines to irregu-
lar layouts. Starting with Malcolm Sabin’s technical report 50 years ago, publications
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include [Sab68], [Bez77], [Bee86], [CC78], [vW86], [Sar87], [GZ94], [Pet91], [Pet94]
to list just a few. While some of these constructions achieve G1 continuity, others, as
predicted by the lower bounds, only work in geometrically restricted settings. The
construction of [FP08] uses 3 × 3 bi-cubic patches per quad and achieves the lower
bound determined by Theorem 1. [FP08] covers multi-sided caps included in bi-cubic
T-spline constructions. [Pet00] requires more pieces and can have poor shape already
because it caps Catmull-Clark subdivision meshes. [SP16] focuses on how to restrict
input meshes to ensure that G1 bi-cubic surfaces can be built with fewer pieces.

Car styling and many other high-end outer surfaces primarily demand a good dis-
tribution of highlight lines, in addition to smoothness. However aesthetic requirements
are at present mathematically ill-defined and certainly highly non-linear. Currently the
most effective approach to obtaining bi-cubic surfaces with a good highlight line distri-
bution is to employ a guide shape (of higher polynomial degree). For example, using a
guide improves the shape of bi-cubic singularly parameterized surfaces [KP16a]. Since
the formal proof that a surface construction generates ‘fair’ surfaces is not mathemat-
ically well-posed, currently the best approach is to assess new algorithms by testing
them against an obstacle course [KP] of challenging but not unreasonable local input
meshes.

Exploring the world of ‘approximate smoothness’, the paper “Can bi-cubic surfaces
be class A?” [KP15a] emphasizes the distinction between exact G1 continuity and
acceptable shape in terms of curvature distribution and highlight lines. This distinction,
accompanied by mathematical estimates of the jump in normals, could also be useful
in the context of [ASC17].

5 Conclusion
A number of finite bi-cubic surface G1 constructions exist in the literature. However
few, currently only one, ensure good shape for a basic obstacle course of input meshes.
Testing new algorithms on the obstacle course is necessary at this time of writing since
the formal characterization of ‘good shape’ has remained illusive and may differ in
mathematics vs. practice, as well as among design stylists.

There are several constructions of degree higher than bi-cubic that satisfy the lower
bounds, use few patches and pass the obstacle course (e.g. [KP15b, KP16b]). These
constructions should be considered when least polynomial degree is not crucial. The
approach of [ASC17] rounds shapes but cannot guarantee G1 continuity.
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