Refinable C^1 spline elements for irregular quad layout

Thien Nguyen Jörg Peters

University of Florida

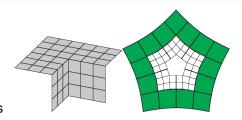
NSF CCF-0728797, NIH R01-LM011300

Outline

- Refinable, smooth, CAD compatible spline space incl. irregularities
- Algorithm
- Applications

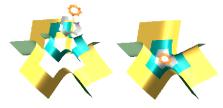
Outline

- Refinable, smooth, CAD compatible spline space incl. irregularities
- Algorithm
- Applications



multi-sided blends, irregularities

- multi-sided blends, irregularities
- subdivision surface:
 - continuous nested space



- infinite rings;
- industrial design infrastructure;
- integration rules;

- multi-sided blends, irregularities
- subdivision surface: © nested space
 - infinite rings; industrial design infrastructure; integration rules;

- ▶ G^k spline complex:
 - industrial design infrastructure

- © refinement book keeping (non-local);
- © or: not nested : problem for free-form surfaces!

- multi-sided blends, irregularities
- subdivision surface: © nested space
 infinite rings; industrial design infrastructure; integration rules;
- ► G^k spline complex: industrial design infrastructure refinement book keeping (non-local); not nested

Challenge: combine, for multi-sided configurations, splines with simple nested refinability.

- multi-sided blends, irregularities
- subdivision surface: © nested space
 infinite rings; industrial design infrastructure; integration rules;

- singularly parameterized surfacenested space,
 - industrial design infrastructure (Peters 91, Neamtu 94)
 - (Reif 97) © proves C^1 surface (projection)

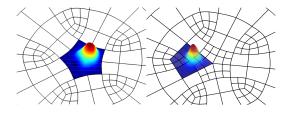
- multi-sided blends, irregularities
- subdivision surface: onested space
 infinite rings; industrial design infrastructure; integration rules;
- ▶ G^k spline complex: industrial design infrastructure
 refinement book keeping (non-local); not nested
- ▶ singularly parameterized surface nested space, industrial design infrastructure (Reif 97) proves C¹ surface (projection)
 - © fewer d.o.f. near irregularity than in regular regions

- multi-sided blends, irregularities
- subdivision surface: onested space
 infinite rings; industrial design infrastructure; integration rules;
- ▶ G^k spline complex: industrial design infrastructure
 refinement book keeping (non-local); not nested
- ▶ singularly parameterized surface nested space, industrial design infrastructure (Reif 97) proves C¹ surface (projection)
 - © fewer d.o.f. near irregularity than in regular regions
 - © d.o.f. can not be symmetrically distributed as proper control points.

- multi-sided blends, irregularities
- subdivision surface: onested space
 infinite rings; industrial design infrastructure; integration rules;
- ▶ G^k spline complex: industrial design infrastructure
 refinement book keeping (non-local); not nested
- ► singularly parameterized surface ⊕ nested space, industrial design infrastructure (Reif 97) ⊕ proves C¹ surface (projection)
 - © fewer d.o.f. near irregularity than in regular regions
 - ② d.o.f. can not be symmetrically distributed as proper control points.
 - © Surface shape is poor.

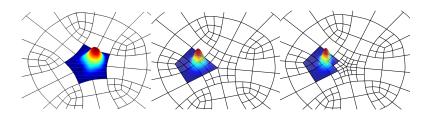
2 × 2 split construction

2 x 2 split yields uniform d.o.f.:
 regardless of vertex valences, each quad has 4 d.o.f.!



2 × 2 split construction

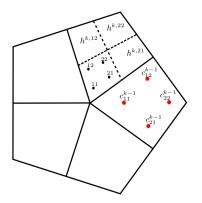
- ▶ 2 × 2 split yields uniform d.o.f.:
 - continuous regardless of vertex valences, each quad has 4 d.o.f.!
- ► C¹ bi-3 basis functions
 - ightharpoonup naturally compatible with bi-cubic PHT refinement



Outline

- Refinable, smooth, CAD compatible spline space incl. irregularities
- Algorithm
- Applications

Algorithm Input

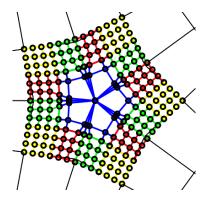


Input: B-spline-like control points c_{ij}^{ℓ}

▶ Recall: regular double-knot bi-3 B-spline coefficients are co-located with "inner" Bézier coefficients: $c_{11} \rightarrow \frac{1}{4} \frac{1}{2} b_{10}$ $\frac{2b_{01}}{4b_{11}}$

7/20

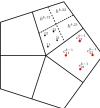
Algorithm Output



Output: Bézier points $b_{\alpha\beta}^{k,11}$ obtained by projection **P**

Algorithm: **PS***c*

▶ Conversion to BB form: copy $a^k_{ij} := \frac{c^k_{ij}}{i}$ for $i, j \in \{1, 2\}$



make C^1 except $a_{00}^k := \sum_{k=1}^n c_{11}^k / n$.

Algorithm: PSc

▶ Conversion to BB form: copy $a^k_{ij} := \frac{c^k_{ij}}{c^k_{ij}}$ for $i, j \in \{1, 2\}$

make C^1 except $a_{00}^k := \sum_{k=1}^n c_{11}^k / n$.

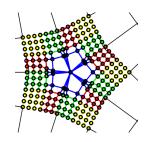
▶ Subdivide $h^{k,ij} := \mathbf{S}a^k$, $i, j \in \{1, 2\}$. When i + j > 2 then $b^{k,ij} := h^{k,ij}$.

Algorithm: **PS**c

- ► Conversion to BB form: copy $a_{ij}^k := \frac{c_{ij}^k}{c_{ij}^k}$ for $i, j \in \{1, 2\}$ make C^1 except $a_{00}^k := \sum_{k=1}^n c_{11}^k / n$.
- ▶ Subdivide $h^{k,ij} := \mathbf{S}a^k$, $i, j \in \{1, 2\}$. When i + j > 2 then $b^{k,ij} := h^{k,ij}$.
- ▶ Subpatches $h_{\alpha\beta} := h_{\alpha\beta}^{k,11}$:

$$\begin{pmatrix} b_{11} \\ b_{21} \\ b_{12} \end{pmatrix} := \mathbf{P} \ \begin{pmatrix} h_{11} \\ h_{21} \\ h_{12} \end{pmatrix}$$

For all edges make C^1 : $b_{10}^k := (b_{11}^k + b_{11}^{k+1}/2)$.



singular parameterization at irregularities.

- singular parameterization at irregularities.
- ► C¹ continuity
 (Reif 97: invertible Jacobian → exists regular reparameterization at 0)

- singular parameterization at irregularities.
- ► C¹ continuity (Reif 97: invertible Jacobian → exists regular reparameterization at 0)
- For $1 , the <math>L^p$ norms of the main curvatures are finite

- singular parameterization at irregularities.
- ► C¹ continuity (Reif 97: invertible Jacobian → exists regular reparameterization at 0)
- ▶ For $1 , the <math>L^p$ norms of the main curvatures are finite
- Refinable (nested spaces)

$$PSc \xrightarrow{S} SPSc$$

$$\downarrow_{P} \qquad \downarrow_{P} \qquad (1)$$

$$PSc \xrightarrow{S} SPSc$$

(**PSPS** = **SPS** since **S** does not change the projected function)

- singular parameterization at irregularities.
- ► C¹ continuity (Reif 97: invertible Jacobian → exists regular reparameterization at 0)
- ▶ For $1 , the <math>L^p$ norms of the main curvatures are finite
- Refinable (nested spaces)

$$PSc \xrightarrow{S} SPSc$$

$$\downarrow_{P} \qquad \downarrow_{P} \qquad (1)$$

$$PSc \xrightarrow{S} SPSc$$

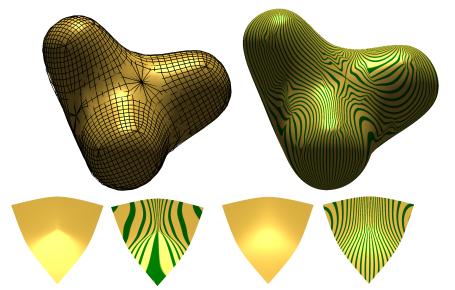
(**PSPS** = **SPS** since **S** does not change the projected function)

▶ Linear independence of f_{ii}^k associated c_{ii}^k (proof via functionals)

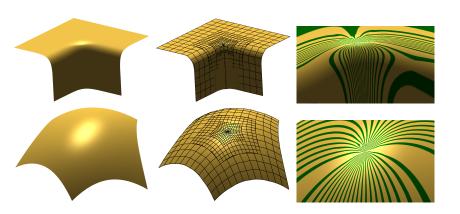
Outline

- 1 Refinable, smooth, CAD compatible spline space incl. irregularities
- Algorithm
- Applications

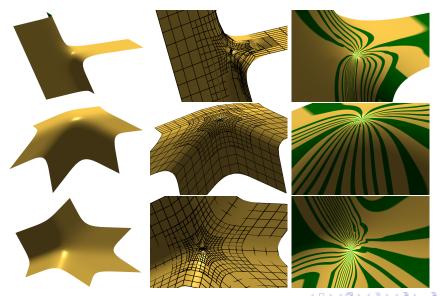
Applications: free-form surfaces



Applications: free-form surfaces

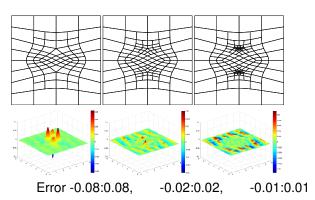


Applications: free-form surfaces



Applications: Poisson local refinement

Poisson's equation on the square $[0,6]^2$

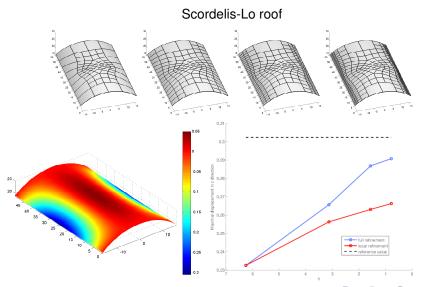


Applications: Poisson

Error and approximate convergence rate (a.c.r.): close to 2⁻⁴

ℓ	$ u-u_h _{L^2}$	a.c.r. . _{L2}	$ u-u_h _{L^{\infty}}$	a.c.r. . _{L∞}	$ u-u_h _{H^1}$	a.c.r.
1	0.0625	-	0.0826	-	0.4568	
2	0.0098	6.4	0.0194	4.3	0.1448	3
3	9.7e-04	10.1	0.0015	12.9	0.0225	6
4	7.17e-5	13.5	1.3e-4	11.5	0.0033	6
5	5.29e-06	13.56	9.87e-06	13.1	4.78e-04	6

Applications: Thin shell



▶ Irregularities in a C¹ bi-3 spline surface

- ▶ Irregularities in a C¹ bi-3 spline surface
- ► Refinable (nested)

- ► Irregularities in a C¹ bi-3 spline surface
- ► Refinable (nested)
- ▶ Degrees of freedom = as for PHT splines (C¹ bi-3 spline)

- ▶ Irregularities in a C¹ bi-3 spline surface
- ► Refinable (nested)
- ▶ Degrees of freedom = as for PHT splines (C¹ bi-3 spline)
- isogeometric analysis

- ► Irregularities in a C¹ bi-3 spline surface
- Refinable (nested)
- ▶ Degrees of freedom = as for PHT splines (C^1 bi-3 spline)
- © isogeometric analysis
- ▶ ⑤ shape

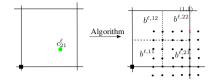
- ▶ Irregularities in a C¹ bi-3 spline surface
- Refinable (nested)
- ▶ Degrees of freedom = as for PHT splines (C¹ bi-3 spline)
- isogeometric analysis
- ▶ ⑤ shape

Thank You & Questions?

- ▶ Irregularities in a C¹ bi-3 spline surface
- ► Refinable (nested)
- ▶ Degrees of freedom = as for PHT splines (C^1 bi-3 spline)
- © isogeometric analysis
- ▶ ⊕ shape

Thank You & Questions?

linear independence



Nonzero BB coefficients \bullet of the basis function f_{21}^{ℓ} . The coefficient marked additionally with an \times is nonzero only for f_{21}^{ℓ} . It is zero for f_{12}^{k} or f_{11}^{k} , $k=0,\ldots,n-1$ and for f_{21}^{k} , $k\neq\ell$.