Generalizing bicubic splines for modelling and IGA with irregular layout

Kęstutis Karčiauskas Thien Nguyen Jörg Peters

Vilnius University University of Florida

NSF CCF-0728797
Overview

- Irregularities in a C^2 bi-3 spline surface

highlight lines
Overview

- Irregularities in a C^2 bi-3 spline surface
- G^1 completion with good distribution of highlight lines, curvature
Overview

- Irregularities in a C^2 bi-3 spline surface
- G^1 completion with good distribution of highlight lines, curvature
- Degrees of freedom = vertices of the irregular quad mesh
Overview

- Irregularities in a C^2 bi-3 spline surface
- G^1 completion with good distribution of highlight lines, curvature
- Degrees of freedom = vertices of the irregular quad mesh
- generalized isogeometric analysis (gIGA) elements
Outline

1. Setup

2. G^1 bi-4 cap construction for $n = 5, 6, 7$

3. Obstacle Course

4. Generalized Isogeometric Analysis (gIGA) elements
Outline

1. Setup

2. G^1 bi-4 cap construction for $n = 5, 6, 7$

3. Obstacle Course

4. Generalized Isogeometric Analysis (gIGA) elements
Surface cap

- Smoothly joined to form B-spline-like functions.
Surface cap

Smoothly joined to form B-spline-like functions.

Polynomial tensor-product pieces f of bi-degree 3 in BB-form

$$f(u, v) := \sum_{i=0}^{d} \sum_{j=0}^{d} f_{ij} B^d_i(u) B^d_j(v), \quad (u, v) \in \Box := [0..1]^2,$$

$B^d_k(t)$ is the kth Bernstein-Bézier polynomial of degree d.
Surface cap

- Smoothly joined to form B-spline-like functions.
- Polynomial tensor-product pieces f of bi-degree 3 in BB-form
- Geometric Continuity – G^1 constraints for abutting patches \tilde{f} and f

$$\partial_v \tilde{f}(u, 0) - a(u) \partial_v f(0, u) - b(u) \partial_u f(0, u) = 0$$
Surface cap

- Smoothly joined to form B-spline-like functions.
- Polynomial tensor-product pieces \mathbf{f} of bi-degree 3 in BB-form
- Geometric Continuity – G^1 constraints for abutting patches $\tilde{\mathbf{f}}$ and \mathbf{f}
- Minimizing distortion:
 - parameterization – minimize functionals

Characteristic parameterizations σ when $n = 6$

\[
\mathcal{F}_k \mathbf{f} := \int_0^1 \int_0^1 \sum_{i+j=k, i, j \geq 0} \frac{k!}{i!j!} (\partial_s^i f(s, t) \partial_t^j f(s, t))^2 ds dt
\]
Surface cap

- Smoothly joined to form B-spline-like functions.
- Polynomial tensor-product pieces f of bi-degree 3 in BB-form
- Geometric Continuity – G^1 constraints for abutting patches \tilde{f} and f
- **Minimizing distortion:**
 - parameterization – minimize functionals
 - geometry – sample a guide surface
Surface cap

- Smoothly joined to form B-spline-like functions.
- Polynomial tensor-product pieces f of bi-degree 3 in BB-form.
- Geometric Continuity – G^1 constraints for abutting patches \tilde{f} and f.
- Minimizing distortion:
 - parameterization – minimize functionals
 - geometry – sample a guide surface
- G^k constructions always C^k [Peters 2014, Groisser+P 2015]
Outline

1. Setup

2. G^1 bi-4 cap construction for $n = 5, 6, 7$

3. Obstacle Course

4. Generalized Isogeometric Analysis (gIGA) elements
G^1 continuity of the cap

\[
\begin{align*}
\dot{p}_{10} & := \left(1 - \frac{1}{c}\right)\dot{p}_{00} + \frac{\dot{p}_{01} + \dot{p}_{01}}{2c}; \\
\dot{p}_{20} & := \frac{(3c - 4)\dot{p}_{10} + 2(\dot{p}_{11} + \dot{p}_{11})}{3c}; \\
\dot{p}_{21} & := (2 - c)\dot{p}_{20} + c\dot{p}_{30} - \dot{p}_{21}; \\
\dot{p}_{30} & := \frac{2(\dot{p}_{31} + \dot{p}_{31}) - c\dot{p}_{40}}{4 - c}; \\
\dot{p}_{40} & := \frac{\dot{p}_{41} + \dot{p}_{41}}{2}.
\end{align*}
\]
G^1 join with the tensor-border \mathbf{b}

- Reparameterization across the boundary $\mathbf{b} \circ \beta$ of degree 4:

\begin{align*}
\mathbf{p}_{11} &:= \frac{(1 - 7c)\mathbf{b}_{00} + 3(\mathbf{b}_{10} + \mathbf{b}_{01}) + 9(1 - c)\mathbf{b}_{11}}{16(1 - c)}, \\
\mathbf{p}_{21} &:= \frac{(1 - 6c)\mathbf{b}_{10} + (1 + c)\mathbf{b}_{20} + 3\mathbf{b}_{11} + 3(1 - c)\mathbf{b}_{21}}{8(1 - c)}, \\
\mathbf{p}_{31} &:= \frac{(3 - 15c)\mathbf{b}_{20} + (1 + 2c)\mathbf{b}_{30} + 9\mathbf{b}_{21} + 3(1 - c)\mathbf{b}_{31}}{16(1 - c)}, \\
\mathbf{p}_{41} &:= \frac{(1 - 4c)\mathbf{b}_{30} + 3\mathbf{b}_{31}}{4(1 - c)},
\end{align*}
G^1 join with the tensor-border b

- Reparameterization across the boundary $b \circ \beta$ of degree 4:
- Interleaved G^1 constraints (non-linear) explicitly solved
G^1 bi-4 cap construction for $n = 5, 6, 7$

Construction via a bi-5 guide

- central quadratic from guide surface [KP15] (bi-5):

(a) $n = 8$
(b) Catmull-Clark
(c) KP15
Construction via a bi-5 guide

- central quadratic from guide surface [KP15] (bi-5):
- Why not use functionals?
Construction via a bi-5 guide

- central quadratic from guide surface [KP15] (bi-5):
- Why not use functionals?

bi-5 guide g
sampling map
Construction via a bi-5 guide

- central quadratic from guide surface [KP15] (bi-5):
- Why not use functionals?

- jets $\mathbf{J}_{s,2}^4(g \circ \sigma_5^{-1} \circ \sigma_4)$ sampled from the guide g
Outline

1. Setup

2. G^1 bi-4 cap construction for $n = 5, 6, 7$

3. Obstacle Course

4. Generalized Isogeometric Analysis (gIGA) elements
Challenge input

http://www.cise.ufl.edu/research/SurfLab/shape_gallery.shtml
Convex input net

‘deceptively simple’

(a) $n = 6$

(b) Catmull-Clark – magnified

(c) G^2 bi-7

(d) this paper – magnified
Surface from design sketch

(a) input design sketch
(b) CC-net
(c) this paper
(d) BB-net
(e) mean curvature
High valence

(a) CC-net $n = 9$
(b) $G^1 \ 2 \times 2$ cap
(c) cap magnified
Outline

1. Setup
2. G^1 bi-4 cap construction for $n = 5, 6, 7$
3. Obstacle Course
4. Generalized Isogeometric Analysis (gIGA) elements
Poisson’s equation on the disk

Matched G^k-constructions always yield C^k-continuous isogeometric elements [P14, GP 15]

L^2 convergence: higher than $O(h^3)$
L^∞ convergence: higher than $O(h^2)$.

(a) $n = 5$
(b) $n = 7$
Koiter’s shell model, 4th order PDE

Kirchhoff-Love assumptions that lines normal to the ‘middle surface’ in the original configuration.

(a) Octant of a spherical shell
(b) Scordelis-Lo roof thin shell
Summary

- Irregularities in a C^2 bi-3 spline surface
Summary

- Irregularities in a C^2 bi-3 spline surface
- G^1 completion with *good distribution of highlight lines*, curvature
Summary

- Irregularities in a C^2 bi-3 spline surface
- G^1 completion with *good distribution of highlight lines*, curvature
- Degrees of freedom = vertices of the irregular quad mesh
Summary

- Irregularities in a C^2 bi-3 spline surface
- G^1 completion with *good distribution of highlight lines*, curvature
- Degrees of freedom = vertices of the irregular quad mesh
- B-spline-like
Summary

- Irregularities in a C^2 bi-3 spline surface
- G^1 completion with *good distribution of highlight lines*, curvature
- Degrees of freedom = vertices of the irregular quad mesh
- B-spline-like
- generalized isogeometric analysis ($gIGA$) elements
Summary

- Irregularities in a C^2 bi-3 spline surface
- G^1 completion with *good distribution of highlight lines*, curvature
- Degrees of freedom = vertices of the irregular quad mesh
- B-spline-like
- generalized isogeometric analysis (gIGA) elements

Thank You & Questions?