IGA Across Irregularities

Thien Nguyen Kęstutis Karčiauskas Jörg Peters

University of Florida Vilnius University

NSF CCF-0728797 NIH R01-EB018625
Overview

- Irregularities, Geometric Continuity, Iso-geometric elements
Overview

- Irregularities, Geometric Continuity, Iso-geometric elements
- Matched G^k-constructions always yield C^k-continuous isogeometric elements
Overview

- Irregularities, Geometric Continuity, Iso-geometric elements
- Matched G^k-constructions always yield C^k-continuous isogeometric elements
- Isogeometric elements from B-spline-like functions covering irregularities
Overview

- Irregularities, Geometric Continuity, Iso-geometric elements
- Matched G^k-constructions always yield C^k-continuous isogeometric elements
- Isogeometric elements from B-spline-like functions covering irregularities
- Solving second-order and fourth-order PDEs in 2d and 3d
Irregularities, Geometric Continuity, Iso-geometric elements

2 Matched G^k-constructions always yield C^k-continuous isogeometric elements

3 Isogeometric elements from B-spline-like functions

4 Solving second-order and fourth-order PDEs in 2d and 3d
Irregularities in 2d and 3d manifolds

- **Irregularity** = not regular tensor-product spline lattice
 for example: \(n = 3 \) or \(n > 4 \) quadrilateral pieces (patches) come together

(a) input (b) surface pieces (c) capped bi-2
Irregularities in 2d and 3d manifolds

- **Irregularity** $= \text{not regular tensor-product spline lattice}$
 for example: $n = 3$ or $n > 4$ quadrilateral pieces (patches) come together
- Subdivision splines [Cirak 2000, Barendrecht 2013, Nguyen 2013]

(a) polar subdivision

(b) polar element
Irregularities in 2d and 3d manifolds

- **Irregularity** = not regular tensor-product spline lattice
 for example: \(n = 3 \) or \(n > 4 \) quadrilateral pieces (patches) come together

- Subdivision splines [Cirak 2000, Barendrecht 2013, Nguyen 2013]

- \(G^k \) constructed surfaces – compatible with the industrial NURBS exchange standard
Irregularities in 2d and 3d manifolds

- **Irregularity** = not regular tensor-product spline lattice for example: $n = 3$ or $n > 4$ quadrilateral pieces (patches) come together
- Subdivision splines [Cirak 2000, Barendrecht 2013, Nguyen 2013]
- G^k constructed surfaces – compatible with the industrial NURBS exchange standard
- G^1 filling of multi-sided holes in bi-quadratic spline complexes [KP 2014]

(a) rocker arm
(b) fan disk
(c) frog
Geometric Continuity

survey: [Handbook of Computer Aided Geometric Design: 193-229]

- G^k (geometrically continuous surface) constructions: to create surfaces that are smooth also at irregularities
Geometric Continuity

survey: [Handbook of Computer Aided Geometric Design: 193-229]

- G^k (geometrically continuous surface) constructions: to create surfaces that are smooth also at irregularities

- k-jet = $j^k_s f$ equivalence class under \sim^k_s

\[
(f_1, \mathcal{N}_1) \sim^k_s (f_2, \mathcal{N}_2) \quad \text{if} \quad \partial^i f_1(s) = \partial^i f_2(s) \quad \text{for all } i \text{ with } |i| \leq k,
\]

\mathcal{N} is an \mathbb{R}^m–open neighborhood of s and $f : \mathcal{N} \rightarrow \mathbb{R}^d$ is C^k
Geometric Continuity

survey: [Handbook of Computer Aided Geometric Design: 193-229]

- G^k (geometrically continuous surface) constructions: to create surfaces that are smooth also at irregularities
- k-jet $= j_s^k f$ equivalence class under \sim_s^k
- x_1 joins x_2 G^k with reparameterization ρ along E if for every $s \in \bar{E}_1$ we have

$$j_s^k x_1 = j_s^k (x_2 \circ \rho)$$
Matched G^k-constructions always yield C^k-continuous isogeometric elements

Outline

1. Irregularities, Geometric Continuity, Iso-geometric elements

2. Matched G^k-constructions always yield C^k-continuous isogeometric elements

3. Isogeometric elements from B-spline-like functions

4. Solving second-order and fourth-order PDEs in 2d and 3d
Matched G^k-constructions always yield C^k-continuous isogeometric elements

Iso-geometric elements

- **Isogeometric elements**: to unify the representation of geometry and of engineering analysis
Iso-geometric elements

- **Isogeometric elements**: to unify the representation of geometry and of engineering analysis
- **physical domain** tessellated into pieces $\mathbf{x}_\alpha(\Box_\alpha)$:

$$
\Omega := \bigcup_{\alpha=1}^{n_f} \mathbf{x}_\alpha(\Box_\alpha) \subset \mathbb{R}^d, \quad \mathbf{x}_\alpha : \Box_\alpha \subset \mathbb{R}^m \to \mathbb{R}^d. \quad (1)
$$
Iso-geometric elements

- **Isogeometric elements**: to unify the representation of geometry and of engineering analysis.

- **Physical domain** tessellated into pieces $\mathbf{x}_\alpha(\Box_\alpha)$:

 \[
 \Omega := \bigcup_{\alpha=1}^{nf} \mathbf{x}_\alpha(\Box_\alpha) \subset \mathbb{R}^d, \quad \mathbf{x}_\alpha : \Box_\alpha \subset \mathbb{R}^m \rightarrow \mathbb{R}^d.
 \]

- **Isogeometric element** $= u_\alpha \circ \mathbf{x}_\alpha^{-1} : \Omega \rightarrow \mathbb{R}$ where u_α and \mathbf{x}_α are tensor-product spline functions on \Box_α.

![Diagram](image)
Matched G^k-constructions always yield C^k-continuous isogeometric elements

Iso-geometric elements

- **Isogeometric elements**: to unify the representation of geometry and of engineering analysis
- **Physical domain** tessellated into pieces $x_\alpha(\square_\alpha)$:

\[
\Omega := \bigcup_{\alpha=1}^{n_f} x_\alpha(\square_\alpha) \subset \mathbb{R}^d, \quad x_\alpha : \square_\alpha \subset \mathbb{R}^m \to \mathbb{R}^d.
\]

- **Isogeometric element** $= u_\alpha \circ x_\alpha^{-1} : \Omega \to \mathbb{R}$ where u_α and x_α are tensor-product spline functions on \square_α.
Matched G^k-constructions always yield C^k-continuous isogeometric elements

Model $G^k \rightarrow C^k$ gIGA elements

- Geometrically continuous (G^k) constructions naturally yield families of finite (gIGA) elements for isogeometric analysis (IGA) that are C^k also for non-tensor-product layout (irregularities)

(a) Smoothness across irregularities
(b) Geodesics on a generalized spline surface via gIGA elements
Matched G^k-constructions always yield C^k-continuous isogeometric elements

Model $G^k \rightarrow C^k$ gIGA elements

- Geometrically continuous (G^k) constructions naturally yield families of finite (gIGA) elements for isogeometric analysis (IGA) that are C^k also for non-tensor-product layout (irregularities)

- Generalized IGA (gIGA) elements are an alternative to subdivision surface elements [Cirak 2000, Barendrecht 2013, NKP 2013] and C^0 elements (2nd order PDEs) [Scott-T-E 14, Hughes 12, Sangalli-T-V 15, Zhang 13]
Geometrically continuous (G^k) constructions naturally yield families of finite (gIGA) elements for isogeometric analysis (IGA) that are C^k also for non-tensor-product layout (irregularities)

generalized IGA (gIGA) elements are an alternative to subdivision surface elements [Cirak 2000, Barendrecht 2013, NKP 2013] and C^0 elements (2nd order PDEs) [Scott-T-E 14, Hughes 12, Sangalli-T-V 15, Zhang 13]

gIGA used computationally [NKP 2013 appeared Jan 2014]
Theory: [Pet14] talks at Curves&Surfaces, Dagstuhl, Icosahom14
Geometrically continuous (G^k) constructions naturally yield families of finite ($gIGA$) elements for isogeometric analysis (IGA) that are C^k also for non-tensor-product layout (irregularities).

Generalized IGA ($gIGA$) elements are an alternative to subdivision surface elements [Cirak 2000, Barendrecht 2013, NKP 2013] and C^0 elements (2nd order PDEs) [Scott-T-E 14, Hughes 12, Sangalli-T-V 15, Zhang 13].

$gIGA$ used computationally [NKP 2013 appeared Jan 2014].

Theory: [Pet14] talks at Curves&Surfaces, Dagstuhl, Icosahom14
Geometrically continuous \((G^k)\) constructions naturally yield families of finite \((gIGA)\) elements for isogeometric analysis (IGA) that are \(C^k\) also for non-tensor-product layout (irregularities).

gIGA elements are an alternative to subdivision surface elements [Cirak 2000, Barendrecht 2013, NKP 2013] and \(C^0\) elements (2nd order PDEs) [Scott-T-E 14, Hughes 12, Sangalli-T-V 15, Zhang 13].

gIGA used computationally [NKP 2013 appeared Jan 2014].

Theory: [Pet14] talks at Curves\&Surfaces, Dagstuhl, Icosahom14

Formal framework for isogeometric elements based on geometric continuity [Groisser and Peters CAGD March 2015]
Model $G^k \rightarrow C^k$ gIGA elements

- Geometrically continuous (G^k) constructions *naturally yield* families of finite (gIGA) elements for isogeometric analysis (IGA) that are C^k also for non-tensor-product layout (*irregularities*)

- generalized IGA (gIGA) elements are an alternative to subdivision surface elements [Cirak 2000, Barendrecht 2013, NKP 2013] and C^0 elements (2nd order PDEs) [Scott-T-E 14, Hughes 12, Sangalli-T-V 15, Zhang 13]

- gIGA used computationally [NKP 2013 appeared Jan 2014]
 Theory: [Pet14] talks at Curves&Surfaces, Dagstuhl, Icosahom14
 Formal framework for isogeometric elements based on geometric continuity [Groisser and Peters CAGD March 2015]
 planar,linear: [Bercovier-M 15], *two-patch* [Kapl-V-J 15, Colin-S-T 15]
Matched G^k-constructions always yield C^k-continuous isogeometric elements

Formal framework for gIGA

[Groisser and Peters CAGD March 2015]

- C^k atlas from G^k continuity
Matched G^k-constructions always yield C^k-continuous isogeometric elements

Formal framework for gIGA

[Groisser and Peters CAGD March 2015]

- C^k atlas from G^k continuity
- C^k map:

Theorem 1 (Matched G^k constructions yield C^k isogeometric elements)

For $i = 1, 2$, consider C^k maps $u_i : \square_i \to \mathbb{R}^N$ and $x_i : \square_i \to \mathbb{R}^d$ and assume that each x_i is injective and the images $x_1(\square_1)$, $x_2(\square_2)$ are disjoint. Assume that x_1 joins x_2 G^k along $E := x_1(E_1) = x_2(E_2)$ with reparameterization ρ (defined in (4)) and that the analysis functions u_i match the setup in that u_1 joins u_2 G^k with the same reparameterization ρ. Let $\tilde{u}_{12} : \check{X}_{12} \to \mathbb{R}^N$ (with \check{X}_{12} defined in (9)) be the piecewise isogeometric element defined by

$$
\tilde{u}_{12}(y) := \begin{cases}
 u_1 \circ x_1^{-1}(y) & \text{if } y \in x_1(\square_1), \\
 u_2 \circ x_2^{-1}(y) & \text{if } y \in x_2(\square_2 \cup E_2).
\end{cases}
$$

(15)

Then

- \tilde{u}_{12} is C^k and
- \tilde{u}_{12} is the unique function $\check{X}_{12} \to \mathbb{R}^N$ that restricts to $u_i \circ x_i^{-1}$ on $x_i(\square_i \cup E_i)$ for $i = 1, 2$.

Outline

1. Irregularities, Geometric Continuity, Iso-geometric elements

2. Matched G^k-constructions always yield C^k-continuous isogeometric elements

3. Isogeometric elements from B-spline-like functions

4. Solving second-order and fourth-order PDEs in 2d and 3d
B-spline-like Isogeometric elements

- Smooth multi-sided blending of biquadratic splines [KP 2014]: B-spline-like basis functions over irregular control nets

(a) DS-net

(b) DS-mesh
B-spline-like Isogeometric elements

- Smooth multi-sided blending of bi-quadratic splines [KP 2014]: B-spline-like basis functions over irregular control nets

(a) DS-net

(b) DS-mesh

- DS-mesh nodes = degrees of freedom
B-spline-like Isogeometric elements

- Smooth multi-sided blending of biquadratic splines [KP 2014]: B-spline-like basis functions over irregular control nets
- DS-mesh nodes = degrees of freedom
- Tabulated B-spline-like functions of low (least) polynomial degree
B-spline-like Isogeometric elements

- Smooth multi-sided blending of biquadratic splines [KP 2014]: B-spline-like basis functions over irregular control nets
- DS-mesh nodes = degrees of freedom
- Tabulated B-spline-like functions of low (least) polynomial degree
- Increased flexibility and smoothness at irregularity
B-spline-like Isogeometric elements

- Smooth multi-sided blending of \textit{biquadratic} splines [KP 2014]: B-spline-like basis functions over \textit{irregular control nets}
- DS-mesh \textit{nodes = degrees of freedom}
- Tabulated B-spline-like functions of low (least) polynomial degree

- Increased flexibility and smoothness at irregularity
- Majority of irregularities are of valence 3 and 5
 fill = patches of degree bi-3.
B-spline-like Isogeometric elements

- Smooth multi-sided blending of biquadratic splines [KP 2014]: B-spline-like basis functions over irregular control nets
- DS-mesh nodes = degrees of freedom
- Tabulated B-spline-like functions of low (least) polynomial degree
- Increased flexibility and smoothness at irregularity
- Majority of irregularities are of valence 3 and 5
 fill = patches of degree bi-3.
- A type of C^1 glGA elements
Isogeometric elements from B-spline-like functions

\[b_i(x_\alpha) := N_{\alpha,i} \circ x^{-1}_\alpha \]

(a) xy of DS-mesh-points

(b) \(n = 3 \)

(c) \(n = 3 \)

(d) \(n = 3, 5 \)

(e) \(n = 5, 3 \)

(f) \(n = 4, \text{boundary} \)
Outline

1. Irregularities, Geometric Continuity, Iso-geometric elements

2. Matched G^k-constructions always yield C^k-continuous isogeometric elements

3. Isogeometric elements from B-spline-like functions

4. Solving second-order and fourth-order PDEs in 2d and 3d
Poisson’s equation on the unit disk

- DS-mesh (to be refined by Doo-Sabin subdivision)

(a) symmetric $n = 3$

(b) $n = 3$

(c) $n = 3$ and $n = 5$
Poisson’s equation on the unit disk

- DS-mesh (to be refined by Doo-Sabin subdivision)
- Error at subdivision level $\ell = 5$
 \[\begin{align*}
 L^\infty & : O(h^3) \text{ when symmetric} \\
 L^2 & : O(h^3)
 \end{align*} \]

(a) Layout a: \(\times 10^{-6} \)
(b) Layout b: \(\times 10^{-7} \)
(c) Layout c: \(\times 10^{-6} \)
Poisson’s equation on the unit disk

- DS-mesh (to be refined by Doo-Sabin subdivision)
- Error at subdivision level $\ell = 5$
 \begin{align*}
 L^\infty : O(h^3) \text{ when symmetric} \\
 L^2 : O(h^3)
 \end{align*}

(a) Layout a: $\times 10^{-6}$
(b) Layout b: $\times 10^{-7}$
(c) Layout c: $\times 10^{-6}$

- Tensored: generalizes to trivariate cylinder.
Poisson’s equation on the volumetric turbine blade model

(a) A cross-section (b) Turbine blade (solid) (c) Computed solution
Solving second-order and fourth-order PDEs in 2d and 3d

Bi-harmonic equation on the unit disk

Requires C^1 elements

(a) Layout a: $\times 10^{-4}$

(b) Layout b: $\times 10^{-4}$

(c) Layout c: $\times 10^{-3}$

convergence $O(h^2)$ for L^2, L^∞ and H^1 error
The heat equation and geodesics on surfaces

(a) CAD model
(b) fertility figurine
(c) rockerarm
Koiter’s thin-shell analysis – 4th order PDE

- Three different layouts for the Scordelis-Lo roof

(a) Mesh 1
(b) Mesh 2
(c) Mesh 3
Koiter’s thin-shell analysis – 4th order PDE

- Three different layouts for the Scordelis-Lo roof
- glIGA convergence of the displacement

(a) Scordelis-Lo roof
(b) glIGA convergence
Summary

- generalized isogeometric analysis (gIGA) elements based on G^1 surface construction.
Summary

- generalized isogeometric analysis (gIGA) elements based on G^1 surface construction.
- solve higher-order partial differential equations where C^0 elements do not provide the correct solution space,
Summary

- generalized isogeometric analysis (gIGA) elements based on G^1 surface construction.
- solve higher-order partial differential equations where C^0 elements do not provide the correct solution space,
- apply to smooth surfaces, where C^0 elements do not provide the correct shape.
Summary

- generalized isogeometric analysis (gIGA) elements based on G^1 surface construction.
- solve higher-order partial differential equations where C^0 elements do not provide the correct solution space,
- apply to smooth surfaces, where C^0 elements do not provide the correct shape
- have B-spline-like control net that generalizes bi-quadratic splines by allowing multi-sided facets
Summary

- generalized isogeometric analysis (gIGA) elements based on G^1 surface construction.
- solve higher-order partial differential equations where C^0 elements do not provide the correct solution space,
- apply to smooth surfaces, where C^0 elements do not provide the correct shape
- have B-spline-like control net that generalizes bi-quadratic splines by allowing multi-sided facets
- degrees of freedom of the analysis are the nodes of the resulting DS-mesh
Summary

- generalized isogeometric analysis (gIGA) elements based on G^1 surface construction.
- solve higher-order partial differential equations where C^0 elements do not provide the correct solution space,
- apply to smooth surfaces, where C^0 elements do not provide the correct shape
- have B-spline-like control net that generalizes bi-quadratic splines by allowing multi-sided facets
- degrees of freedom of the analysis are the nodes of the resulting DS-mesh
- volumetric isogeometric elements
Summary

- generalized isogeometric analysis (gIGA) elements based on G^1 surface construction.
- solve higher-order partial differential equations where C^0 elements do not provide the correct solution space,
- apply to smooth surfaces, where C^0 elements do not provide the correct shape
- have B-spline-like control net that generalizes bi-quadratic splines by allowing multi-sided facets
- degrees of freedom of the analysis are the nodes of the resulting DS-mesh
- volumetric isogeometric elements

Thank You & Questions?
Solving second-order and fourth-order PDEs in 2d and 3d elastic plate with a circular hole
Poisson’s equation on a trivariate cylinder

\[L^2 : O(h^3) \]

(a) Exact solution (b) Error at \(\ell = 2, \times 10^{-4} \) (c) Error at \(\ell = 3, \times 10^{-5} \)
Analysis?

- traditional: based on flexibility.
Analysis?

- traditional: based on flexibility.
- obstacle course: “poor analysis on complex surfaces (of high quality) vs rich analysis on simple surfaces”
Analysis?

- traditional: based on **flexibility**.
- obstacle course: “poor analysis on complex surfaces (of high quality) vs rich analysis on simple surfaces”
- We know how to get arbitrary reproduction – but expensive