IGA Across Irregularities

Thien Nguyen Kestutis Karčiauskas Jörg Peters

University of Florida Vilnius University

NSF CCF-0728797 NIH R01-EB018625

▶ Irregularities, Geometric Continuity, Iso-geometric elements

- ▶ Irregularities, Geometric Continuity, Iso-geometric elements
- ▶ Matched G^k -constructions always yield C^k -continuous isogeometric elements

- ▶ Irregularities, Geometric Continuity, Iso-geometric elements
- lacktriangle Matched G^k -constructions always yield C^k -continuous isogeometric elements
- Isogeometric elements from B-spline-like functions covering irregularities

- ▶ Irregularities, Geometric Continuity, Iso-geometric elements
- lacktriangle Matched G^k -constructions always yield C^k -continuous isogeometric elements
- Isogeometric elements from B-spline-like functions covering irregularities
- Solving second-order and fourth-order PDEs in 2d and 3d

Outline

- 1 Irregularities, Geometric Continuity, Iso-geometric elements
- igotimes Matched G^k -constructions always yield C^k -continuous isogeometric elements
- 3 Isogeometric elements from B-spline-like functions
- 4 Solving second-order and fourth-order PDEs in 2d and 3d

▶ Irregularity = not regular tensor-product spline lattice for example: n = 3 or n > 4 quadrilateral pieces (patches) come together

- ▶ Irregularity = not regular tensor-product spline lattice for example: n = 3 or n > 4 quadrilateral pieces (patches) come together
- Subdivision splines [Cirak 2000, Barendrecht 2013, Nguyen 2013]

- ▶ Irregularity = not regular tensor-product spline lattice for example: n = 3 or n > 4 quadrilateral pieces (patches) come together
- Subdivision splines [Cirak 2000, Barendrecht 2013, Nguyen 2013]
- ► *G*^k constructed surfaces compatible with the industrial NURBS exchange standard

- ▶ Irregularity = not regular tensor-product spline lattice for example: n = 3 or n > 4 quadrilateral pieces (patches) come together
- ▶ Subdivision splines [Cirak 2000, Barendrecht 2013, Nguyen 2013]
- G^k constructed surfaces compatible with the industrial NURBS exchange standard
- ► G¹ filling of multi-sided holes in bi-quadratic spline complexes [KP 2014]

Geometric Continuity

survey: [Handbook of Computer Aided Geometric Design: 193-229]

 $ightharpoonup G^k$ (geometrically continuous surface) constructions: to create surfaces that are smooth also at irregularities

Geometric Continuity

survey: [Handbook of Computer Aided Geometric Design: 193-229]

- $ightharpoonup G^k$ (geometrically continuous surface) constructions: to create surfaces that are smooth also at irregularities
- k-jet = $\mathbf{j}_{\mathtt{s}}^k f$ equivalence class under $\sim_{\mathtt{s}}^k$

$$(f_1,\mathcal{N}_1)\sim_{\mathtt{s}}^k(f_2,\mathcal{N}_2) \quad \text{if} \quad \partial_{\mathbf{i}}f_1(\mathtt{s})=\partial_{\mathbf{i}}f_2(\mathtt{s}) \text{ for all } \mathbf{i} \text{ with } |\mathbf{i}|\leq k,$$

 \mathcal{N} is an \mathbb{R}^m -open neighborhood of s and $f: \mathcal{N} \to \mathbb{R}^d$ is C^k

Geometric Continuity

survey: [Handbook of Computer Aided Geometric Design: 193-229]

- ► G^k (geometrically continuous surface) constructions: to create surfaces that are smooth also at irregularities
- k-jet = $\mathbf{j}_{s}^{k} f$ equivalence class under \sim_{s}^{k}
- ▶ \mathbf{x}_1 joins \mathbf{x}_2 G^k with reparameterization ρ along E if for every $\mathbf{s} \in \breve{E}_1$ we have

$$\mathbf{j}_{\mathtt{s}}^{k}\mathbf{x}_{1}=\mathbf{j}_{\mathtt{s}}^{k}(\mathbf{x}_{2}\circ\rho)$$

Outline

- Irregularities, Geometric Continuity, Iso-geometric elements
- 2 Matched G^k -constructions always yield C^k -continuous isogeometric elements
- 3 Isogeometric elements from B-spline-like functions
- 4 Solving second-order and fourth-order PDEs in 2d and 3d

► Isogeometric elements: to unify the representation of geometry and of engineering analysis

- Isogeometric elements: to unify the representation of geometry and of engineering analysis
- ▶ physical domain tessellated into pieces $\mathbf{x}_{\alpha}(\square_{\alpha})$:

$$\Omega := \cup_{\alpha=1}^{n_f} \mathbf{x}_{\alpha}(\square_{\alpha}) \subset \mathbb{R}^d, \qquad \mathbf{x}_{\alpha} : \square_{\alpha} \subset \mathbb{R}^m \to \mathbb{R}^d.$$
 (1)

- ► Isogeometric elements: to unify the representation of geometry and of engineering analysis
- ▶ physical domain tessellated into pieces $\mathbf{x}_{\alpha}(\square_{\alpha})$:

$$\Omega := \cup_{\alpha=1}^{n_f} \mathbf{x}_{\alpha}(\square_{\alpha}) \subset \mathbb{R}^d, \qquad \mathbf{x}_{\alpha} : \square_{\alpha} \subset \mathbb{R}^m \to \mathbb{R}^d.$$
 (1)

▶ isogeometric element = $u_{\alpha} \circ \mathbf{x}_{\alpha}^{-1} : \Omega \to \mathbb{R}$ where u_{α} and \mathbf{x}_{α} are tensor-product spline functions on \square_{α} .

- ► Isogeometric elements: to unify the representation of geometry and of engineering analysis
- ▶ physical domain tessellated into pieces $\mathbf{x}_{\alpha}(\square_{\alpha})$:

$$\Omega := \cup_{\alpha=1}^{n_f} \mathbf{x}_{\alpha}(\square_{\alpha}) \subset \mathbb{R}^d, \qquad \mathbf{x}_{\alpha} : \square_{\alpha} \subset \mathbb{R}^m \to \mathbb{R}^d.$$
 (1)

▶ isogeometric element = $u_{\alpha} \circ \mathbf{x}_{\alpha}^{-1} : \Omega \to \mathbb{R}$ where u_{α} and \mathbf{x}_{α} are tensor-product spline functions on \square_{α} .

Model $G^k \to C^k$ gIGA elements

► Geometrically continuous (*G^k*) constructions *naturally yield* families of finite (glGA) elements for isogeometric analysis (IGA) that are *C^k* also for non-tensor-product layout (irregularities)

(b) Geodesics on a generalized spline surface via gIGA elements

- ► Geometrically continuous (*G^k*) constructions *naturally yield* families of finite (gIGA) elements for isogeometric analysis (IGA) that are *C^k* also for non-tensor-product layout (irregularities)
- ▶ generalized IGA (gIGA) elements are an alternative to subdivision surface elements [Cirak 2000, Barendrecht 2013, NKP 2013] and C⁰ elements (2nd order PDEs) [Scott-T-E 14, Hughes 12, Sangalli-T-V 15, Zhang 13]

- ► Geometrically continuous (*G^k*) constructions *naturally yield* families of finite (gIGA) elements for isogeometric analysis (IGA) that are *C^k* also for non-tensor-product layout (irregularities)
- generalized IGA (gIGA) elements are an alternative to subdivision surface elements [Cirak 2000, Barendrecht 2013, NKP 2013] and C⁰ elements (2nd order PDEs) [Scott-T-E 14, Hughes 12, Sangalli-T-V 15, Zhang 13]
- ▶ gIGA used computationally [NKP 2013 appeared Jan 2014]
 Theory: [Pet14] talks at Curves&Surfaces, Dagstuhl, Icosahom14

- ► Geometrically continuous (*G^k*) constructions *naturally yield* families of finite (gIGA) elements for isogeometric analysis (IGA) that are *C^k* also for non-tensor-product layout (irregularities)
- generalized IGA (gIGA) elements are an alternative to subdivision surface elements [Cirak 2000, Barendrecht 2013, NKP 2013] and C⁰ elements (2nd order PDEs) [Scott-T-E 14, Hughes 12, Sangalli-T-V 15, Zhang 13]
- ▶ gIGA used computationally [NKP 2013 appeared Jan 2014]
 Theory: [Pet14] talks at Curves&Surfaces, Dagstuhl, Icosahom14

- ► Geometrically continuous (*G^k*) constructions *naturally yield* families of finite (gIGA) elements for isogeometric analysis (IGA) that are *C^k* also for non-tensor-product layout (irregularities)
- generalized IGA (gIGA) elements are an alternative to subdivision surface elements [Cirak 2000, Barendrecht 2013, NKP 2013] and C⁰ elements (2nd order PDEs) [Scott-T-E 14, Hughes 12, Sangalli-T-V 15, Zhang 13]
- ▶ gIGA used computationally [NKP 2013 appeared Jan 2014] Theory: [Pet14] talks at Curves&Surfaces, Dagstuhl, Icosahom14 Formal framework for isogeometric elements based on geometric continuity [Groisser and Peters CAGD March 2015]

Model $G^k \to C^k$ gIGA elements

- ► Geometrically continuous (*G^k*) constructions *naturally yield* families of finite (glGA) elements for isogeometric analysis (IGA) that are *C^k* also for non-tensor-product layout (irregularities)
- generalized IGA (gIGA) elements are an alternative to subdivision surface elements [Cirak 2000, Barendrecht 2013, NKP 2013] and C⁰ elements (2nd order PDEs) [Scott-T-E 14, Hughes 12, Sangalli-T-V 15, Zhang 13]
- ▶ gIGA used computationally [NKP 2013 appeared Jan 2014]
 Theory: [Pet14] talks at Curves&Surfaces, Dagstuhl, Icosahom14
 Formal framework for isogeometric elements based on geometric continuity [Groisser and Peters CAGD March 2015]
 planar, linear: [Bercovier-M 15], two-patch [Kapl-V-J 15, Colin-S-T 15]

Formal framework for gIGA

[Groisser and Peters CAGD March 2015]

 $ightharpoonup C^k$ atlas from G^k continuity

Formal framework for gIGA

[Groisser and Peters CAGD March 2015]

- $ightharpoonup C^k$ atlas from G^k continuity
- ► *C*^{*k*} map:

Theorem 1 (Matched G^k constructions yield C^k isogeometric elements)

For i=1,2, consider C^k maps $u_i:\Box_i\to\mathbb{R}^N$ and $\mathbf{x}_i:\Box_i\to\mathbb{R}^d$ and assume that each \mathbf{x}_i is injective and the images $\mathbf{x}_1(\mathring{\Box}_1),\mathbf{x}_2(\mathring{\Box}_2)$ are disjoint. Assume that \mathbf{x}_1 joins \mathbf{x}_2 G^k along $E:=\mathbf{x}_1(E_1)=\mathbf{x}_2(E_2)$ with reparameterization ρ (defined in (4)) and that the analysis functions u_i match the setup in that u_1 joins u_2 G^k with the same reparameterization ρ . Let $\tilde{u}_{12}: \mathring{X}_{12} \to \mathbb{R}^N$ (with \mathring{X}_{12} defined in (9)) be the piecewise isogeometric element defined by

$$\tilde{u}_{12}(\mathbf{y}) := \begin{cases} u_1 \circ \mathbf{x}_1^{-1}(\mathbf{y}) & \text{if } \mathbf{y} \in \mathbf{x}_1(\mathring{\square}_1), \\ u_2 \circ \mathbf{x}_2^{-1}(\mathbf{y}) & \text{if } \mathbf{y} \in \mathbf{x}_2(\mathring{\square}_2 \cup \mathring{E}_2). \end{cases}$$
(15)

Then

- \tilde{u}_{12} is C^k and
- \tilde{u}_{12} is the unique function $\mathring{X}_{12} \to \mathbb{R}^N$ that restricts to $u_i \circ \mathbf{x}_i^{-1}$ on $\mathbf{x}_i (\mathring{\square}_i \cup \mathring{E}_i)$ for i = 1, 2.

Outline

- 1 Irregularities, Geometric Continuity, Iso-geometric elements
- igotimes Matched G^k -constructions always yield C^k -continuous isogeometric elements
- 3 Isogeometric elements from B-spline-like functions
- 4 Solving second-order and fourth-order PDEs in 2d and 3d

Smooth multi-sided blending of biquadratic splines [KP 2014]:
 B-spline-like basis functions over irregular control nets

Smooth multi-sided blending of biquadratic splines [KP 2014]:
 B-spline-like basis functions over irregular control nets

► DS-mesh nodes = degrees of freedom

- Smooth multi-sided blending of biquadratic splines [KP 2014]:
 B-spline-like basis functions over irregular control nets
- ▶ DS-mesh nodes = degrees of freedom
- tabulated B-spline-like functions of low (least) polynomial degree

- Smooth multi-sided blending of biquadratic splines [KP 2014]:
 B-spline-like basis functions over irregular control nets
- ▶ DS-mesh nodes = degrees of freedom
- tabulated B-spline-like functions of low (least) polynomial degree

increased flexibility and smoothness at irregularity

- ► Smooth multi-sided blending of biquadratic splines [KP 2014]: B-spline-like basis functions over irregular control nets
- ▶ DS-mesh nodes = degrees of freedom
- tabulated B-spline-like functions of low (least) polynomial degree

- increased flexibility and smoothness at irregularity
- majority of irregularities are of valence 3 and 5 fill = patches of degree bi-3.

- ► Smooth multi-sided blending of biquadratic splines [KP 2014]: B-spline-like basis functions over irregular control nets
- ▶ DS-mesh nodes = degrees of freedom
- tabulated B-spline-like functions of low (least) polynomial degree

- increased flexibility and smoothness at irregularity
- majority of irregularities are of valence 3 and 5 fill = patches of degree bi-3.
- ▶ a type of C^1 glGA elements

gIGA elements

$$b_i(\mathbf{x}_{\alpha}) := N_{\alpha,i} \circ \mathbf{x}_{\alpha}^{-1}$$

(a) xy of DS-meshpoints

(b) n = 3

(c) n = 3

(d) n = 3, 5

(e) n = 5, 3 (f) n = 4, boundary

Outline

- 1 Irregularities, Geometric Continuity, Iso-geometric elements
- igotimes Matched G^k -constructions always yield C^k -continuous isogeometric elements
- 3 Isogeometric elements from B-spline-like functions
- Solving second-order and fourth-order PDEs in 2d and 3d

Poisson's equation on the unit disk

DS-mesh (to be refined by Doo-Sabin subdivision)

Poisson's equation on the unit disk

- ▶ DS-mesh (to be refined by Doo-Sabin subdivision)
- ► Error at subdivision level $\ell = 5$ L^{∞} : $O(h^3)$ when symmetric $L^2 : O(h^3)$

Poisson's equation on the unit disk

- ▶ DS-mesh (to be refined by Doo-Sabin subdivision)
- ► Error at subdivision level $\ell = 5$ L^{∞} : $O(h^3)$ when symmetric $L^2 : O(h^3)$

► Tensored: generalizes to trivariate cylinder.

Poisson's equation on the volumetric turbine blade model

Bi-harmonic equation on the unit disk

Requires C^1 elements

convergence $O(h^2)$ for L^2, L^{∞} and H^1 error

The heat equation and geodesics on surfaces

Koiter's thin-shell analysis – 4th order PDE

Three different layouts for the Scordelis-Lo roof

Koiter's thin-shell analysis – 4th order PDE

- ▶ Three different layouts for the Scordelis-Lo roof
- gIGA convergence of the displacement

▶ generalized isogeometric analysis (gIGA) elements based on G¹ surface construction.

- ▶ generalized isogeometric analysis (gIGA) elements based on *G*¹ surface construction.
- ightharpoonup solve higher-order partial differential equations where C^0 elements do not provide the correct solution space,

- generalized isogeometric analysis (gIGA) elements based on G¹ surface construction.
- ▶ solve higher-order partial differential equations where *C*⁰ elements do not provide the correct solution space,
- ▶ apply to smooth surfaces, where *C*⁰ elements do not provide the correct shape

- ▶ generalized isogeometric analysis (gIGA) elements based on *G*¹ surface construction.
- ightharpoonup solve higher-order partial differential equations where C^0 elements do not provide the correct solution space,
- ightharpoonup apply to smooth surfaces, where C^0 elements do not provide the correct shape
- have B-spline-like control net that generalizes bi-quadratic splines by allowing multi-sided facets

- ▶ generalized isogeometric analysis (gIGA) elements based on *G*¹ surface construction.
- ightharpoonup solve higher-order partial differential equations where C^0 elements do not provide the correct solution space,
- ightharpoonup apply to smooth surfaces, where C^0 elements do not provide the correct shape
- have B-spline-like control net that generalizes bi-quadratic splines by allowing multi-sided facets
- degrees of freedom of the analysis are the nodes of the resulting DS-mesh

- ▶ generalized isogeometric analysis (gIGA) elements based on *G*¹ surface construction.
- ▶ solve higher-order partial differential equations where *C*⁰ elements do not provide the correct solution space,
- ightharpoonup apply to smooth surfaces, where C^0 elements do not provide the correct shape
- have B-spline-like control net that generalizes bi-quadratic splines by allowing multi-sided facets
- ▶ degrees of freedom of the analysis are the nodes of the resulting DS-mesh
- volumetric isogeometric elements

- ▶ generalized isogeometric analysis (gIGA) elements based on *G*¹ surface construction.
- ightharpoonup solve higher-order partial differential equations where C^0 elements do not provide the correct solution space,
- ightharpoonup apply to smooth surfaces, where C^0 elements do not provide the correct shape
- have B-spline-like control net that generalizes bi-quadratic splines by allowing multi-sided facets
- degrees of freedom of the analysis are the nodes of the resulting DS-mesh
- volumetric isogeometric elements

Thank You & Questions?

elastic plate with a circular hole

Poisson's equation on a trivariate cylinder

 $L^2: O(h^3)$

(a) Exact solution

(b) Error at $\ell=2,~\times 10^{-4}$

(c) Error at $\ell=3$, $\times 10^{-5}$

Analysis?

► traditional: based on flexibility.

Analysis?

- ► traditional: based on flexibility.
- ▶ obstacle course: "poor analysis on complex surfaces (of high quality) vs rich analysis on simple surfaces "

Analysis?

- ► traditional: based on flexibility.
- obstacle course: "poor analysis on complex surfaces (of high quality) vs rich analysis on simple surfaces"
- ▶ We know how to get arbitrary reproduction but expensive