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Abstract

G* (geometrically continuous surface) constructions werelbped to
create surfaces that are smooth also at irregular pointsayimea quad-mesh,
three or more than four elements come together. Isogeansddrinents were
developed to unify the representation of geometry and oineeging analy-
sis. We show how matche@* constructions for geometry and analysis auto-
matically yieldC* isogeometric elements. This provides a formal framework
for the existing and any future isogeometric elements basegeometric
continuity.

1 Introduction

Reparameterization, i.e. change of coordinates, is a key conceptyingdyoth
G* constructions of curves and surfaces and isogeometric analysis sicphy
properties. G* continuity characterizes constructions@f surfaces such that any
two abutting pieces have their derivatives match up to okdaiter reparameter-
ization (see e.g. [GH87, Boe88, Pet02]). Isogeometric elements arer-uigher
isoparametric elements of classical engineering analysis [1Z68]. lineabioa-
tions of isogeometric elements serve to approximately compute the solution of a
differential equation over bounded, often geometrically non-trivialioreg The
term isogeometric was coined in [HCBO05] to highlight the case when the region
is traced out by (shape) functions drawn from the same space as thlemron-
knowns (analysis functions, a.k.a. displacement functions). The spagacally
spanned by tensor-product splines defined on rectangular domaid2][d

Until [NKP14], the isogeometric approach has not been investigategoads
where more or fewer than four tensor-product elements remetothly (Such
points are called irregular, extraordinary or star points.) Earlier wankekam-
ple [WZXH12], has the isogeometric elements join 061y along rays emanating



from irregular points. Since the smooth joining of surface pieces at liaeguaints

is governed byG* relations, it is natural to apply the concept of geometric conti-
nuity to constructing everywhere differentiable isogeometric elements. apisrp
shows that when both the region’s parameterization and the analysis hsati®
drawn from the same space@f continuous maps then the resulting isogeometric
elements ar€*. This observation formed the background for the second author’s
presentations in early 2014 [Pet14], with the publication [NKP14] illustratireg th
approach. Already [KBLWOQ9] hinted at the use of geometric continuity oy s
gesting to uniformly stretch one of the domains of two abutting tensor-product
functions. Such stretching represents a very special cagg aontinuity, that

is calledparametric continuityto emphasize that the union of both domains can
be embedded in the plane by an affine change of variables. Howevfarnun
stretching does not provide the change of variables necessary wsadte gen-
eral challenge presented by irregular points.

The goal of the present paper is flarmally provethe statement of the title
and to thereby provide a theoretical framework @di-basedC*-elements. Such
elements can readily be constructed from the rich literature on geometracsurf
constructions or be based on new constructions in that field. For exathple,
construction in [SSE13] (see also [WNO1, Pet95]) could be used to build an iso-
geometric element rather than to just serve as a surface definition in thetconte
of the boundary element method (There, linear combinations of trivariaenar
functions are to be determined, a setup quite different from the one desturs
the present paper).

To keep the paper focused, we do not discuss the interesting and altgictic
relevant issue of polynomial reproduction near irregular points, agptpnown
under the name of ‘flexibility’ in the geometric design literature. It is only rdgen
that G? surface constructions that reproduce all quadratic modes at the reftrao
nary point have been derived (see e.g. [KP15]).

The paper also does not comment on the related but different apprbasimg
subdivision surfaces for isogeometric analysis (see e.g. [@2P and it does not
comment on methods that approximately enforce angle constraints throoglkype
functions, such as bending strips [KBHO].

Most recently, the technical report [KVJ14], posted after submissfahis
paper, follows up on the theory and computations in [Petl4, NKP14] biperp
the space of+! functions.



2 Jets, Geometric continuity and isogeometric elements

This section reviews the concepts underlying our main observation: jetenama
ifold, geometric continuity and the definition of isogeometric elements.

Jets. Jets of ordek are a precise way of capturing “all information of order:

at a point.” Thek-jet of anR%-valuedC* map defined on an open neighborhood
of a points € R™ is an equivalence class defined as follows. Fix an intégerl.
Givenm,d > 1 and a poink € R, consider the set of pairs

Fs.a = {(f,N) |Nis anR™—open neighborhood &f and (1)
f: N = RisC*y.
For eachm-tuplet := (i1,...,%,), where thei; are non-negative integers, de-
fine [f| := >_i; and letd; denote thef th-order partial-differentiation operator
( 0 )ll . ( 0 )lm. The relation~* on F; ; defined by

o0x1 O0Tm

(f1, N1 ~F (fo, No) i 8ifi(s) = Bsfa(s) forallswith 8| < &k, (2)

is an equivalence relation, and the equivalence clagsunider~* is thek-jet of f
at s, denoted? f. We write J , for the set ofk-jets of R%-valued maps a. Note
that if (f1, V1) ~% (f2,NV2) then, taking| = 0 in (2), we havefi(s) = fa(s).

If U ¢ R™, V C Rf are open, we can consider composaBtemapsf : U —
V,g:V — R% Using the chain rule it is easily seen that

if (f1,U1) ~& (f2,Ua) and (g1, V1) ~(q) (92, V2),
then(gi o f1,U1) ~F (g2 0 fo,Ua),

wheref(s) := fi(s) = f2(s) ando denotes composition. This implies that there
is a well-defined composition map: J, , x J§, — JI; satisfying

js(go f) = (59 o G51)- (3)

In particular, this applies to the case in whitk: m andg is aC* local diffeomor-
phism. This implies that jets and jet composition are well-defined vitfenR¢,
R< are replaced by'* manifolds. That isk-jets of maps from on€* manifold to
another are well-defined, and the composition law (3) holds in this largéexion

The Appendix shows that the definition of jets also carries over, essentially
changed, to half-spaces. Jets on half-spaces are used in the detihgeometric
continuity below.



Geometric continuity. Geometric continuity refers to matching geometric in-
variants. However, for practical constructions, the following pararizetéon-
based definition of matching derivatives after a change of coordinateslédy
accepted and equivalent in most relevant cases [Pet02, Sect 3privaléte geo-
metric continuity inm variables as follows.

Fix k > 1. Fori = 1,2, letd; ¢ R™ be anm-dimensional polytope, for
example a unit cube, and I8} be an(m —1)-dimensional facet dfl;, with interior
int(E;) = ﬁ (Here and below, when we refer to the interfoof aj-dimensional
polytope P, we mean the interior of as aj- dlmenS|onaI object.) Suppose that
we are given open sei§;, No € R™ contamngl,Eg respectively, and &*
diffeomorphism

p : N1 — N3 such that (cf. Fig. 1) 4)
P(ﬁl) = E, p(NM N ﬁ1) =MNo\Oo, pN1\O1) =Nan Cly.

Observe that the second line of (4) can equivalently be written as
p(EV) = Es, pNiND) =N \Ch, pN D) =NenTa.  (5)
Fori =1,2letx; : 0; ¢ R™ — R% be C* maps for which
xa2(p(s)) = x1(s) foralls € Ey; (6)

thus the images of the; join along a common interfack := x5 (FEs) = xl(El)

We say thak; joinsx, G* with reparameterizatiop alongE if for every s € E1
we have

jEx1 = jE(x2 0 p). @)

Whenm = 2, d = 3, andx; are tensor-product splines then eachis a rect-
angle andF is a boundary curve shared by the surface pieg€S]; ) andxa(Ca)
(see Fig. 1). Such pairwisgé* constructions are used to assemble surfaces where
three or more than four tensor-product splines are to be joined smoothigltuse
a point; placing the rectangular domains directly, without reparameterization,
R? to form a joint domain yields an embedding only if exactly four rectangles meet.
The mapsx; with properties (6) and (7) will be used to provide a manifold
domain. More generally, if functions; : 0; — RY satisfyj*(u1) = j¥(uz o p)
forall s bgjl, we say thati; joins us G* with reparameterizatiop.
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Figure 1: Isogeometric elements afid continuity

Isogeometric elements.  In the isoparametric approach to solving partial differ-
ential equations, maps;, : = 1,2,...,n, parameterize a region or manifald
called thephysical domainThe mapsx; are typically splines that map inf®?, i.e.

with d = 2 or d = 3 component functions. The physical domain is tessellated into
piecesx;([J;),

X :=U,x(0;) cRY, x;:0, C R™ — RY (8)

In the following we assume that eaghis injective on its domain; hen(:aei‘l isa
well-defined map from the image &f to [J;.

Whenm = 2, i.e. in two variables, thél; may be, for example, unit squares.
If m =2 andd = 2thenX is aregion of thecy-plane. Ifm = 2 andd = 3, X is
a surface embedded RY. If m = d = 3 thenX is a (solid) region irk3.

The goal of the isoparametric approach is to compute, for sdimanalysis
functionsu; : 0; — RY such thatu; o xi‘1 solves a partial differential equation
on x;(J;). The compositiony; o x{l is called (a piectof) anisogeometric
elementf the scalar component functions of both andx; are drawn from the
same function-space, typically a space of tensor-product spline fosatial;.

In the following, we can confine our attention to two maps;i2.1,2 (n = 2).

3 Smoothness of the composition

We want to show thaf* constructions yield* isogeometric elements. The proof
is an adaptation of the definition of a smooth function on a manifold. First we iden

#so-geometric degrees of freedom are typically associated with a uhjgiraesx; ([J;) of the
physical domain (8). (see e.g. [NKP14]).



tify a C* atlas on a domaitX 1, defined by joiningc; andx, with G* continuity.
With this atlas,X 12 becomes @ manifold as we will now explain in detail.

CF atlas from G* continuity. Consider injective maps;, x», p satisfying the
assumptions of (4) and (7), and such that the imagéél), xQ(ﬁg) are disjoint.
Define £ = xl(Eol) (= xQ(EOQ) by hypothesis). We exhibit &*-manifold struc-
ture on the set

X1 = int(x1(01) Uxa(0a)) i=x1 () U E Uxa (D) )

as follows. With\/; an open set containin@oi, Vi = ﬁi U N is an extension of
the interior of the domainl;. We extendxl\ﬁ to a function
1

if O
%0 ViR wy(s) = X)) TseVinbu, (10)
X2(p(S)> |fS€‘/1\E|1:N1\Dl,
and extend<2]ﬁ to an analogous function
2
if O

o Vo R Rg(s) = (20 MeelanDh, (11)

x1(p~ () ifseVo\Oy =N\ Oy,
_ ><2(s,)_1 ifsevmoﬁ% . (12)

xi1(p~'(s)) ifseVo\Oy =N\ Oy

(The equality between (11) and (12) follows from (6).) Because of thedaality
(7), the extended maps areC*. Regardingk; as a map froni/; to x;(V;), we
write i;l for the inverse of this map. Now observe that (12) and (5) imply that
-1 if 0
%) = e W) yexath), (13)
p(x1 (y)) ifyexi(p™ (N \ D)) =xi (VM NOy).

If s € Nl \ [y thenfcl(s) € Xg(p(Nl \ D1>) = XQ(NQ N ﬁg) - XQ(‘/Q N ﬁg),
implying %, ! (%1(s)) = x5 (x2(p(s))) = p(s), while if s € N7 N0, then
%1(s) = x1(s) € x1 (A7 N Oy), implying ;! (%1(s)) = p(x; * (x1(s))) = pls).
Hence

%, oxyi|n; = p, andsimilarly %! o%alp, = p ' (14)

Therefore{(Vi, % 1), (Va, %, 1)} is aC* atlas onX, as claimed.
This observation generalizes and makes more precise a similar statement for
surfaces in [Pet02, sect. 3.2].



Themain result. We are now ready to prove the main result.

Theorem 1 (Matched G* constructionsyield C* isogeometric elements)

For i = 1,2, considerC* mapsu; : 0J; = RN andx; : ; — R? and assume that
eachx; is injective and the |mage51(D1) XQ(DQ) are disjoint. Assume that;
joins xy G* along E := x1(E1) = x2(E>) with reparameterizatiop (defined in
(4)) and that the analysis functiong match the setup in that1 joins uy G* with
the samereparameterizatiomp. Letqs : X 12 — RN (with X 12 defined in(9)) be
the piecewise isogeometric element defined by

o

~ up o X7t ifyex ﬁ ,
1o (y) — 1 1_1(Y) . y 1( 5 1) (15)
ugox, (y) Iifyexa(0aUE>).

Then

e U2 isCFand

e 719 iSthe uniquefunctiori’lg — RY that restricts tOuioxi_l onxi(ﬁiuﬁi)
fori=1,2.
Proof TheG*-join condition on theu; ensures that
us(p(s)) = ui(s) foralls € E, (16)

which together with th&*-join condition on thex; implies that
up ox;H(y) =ugoxy(y) forally e B = Xl(L%l) = XQ(EOJQ).

Henceu,, agrees withu; o xl_l on xl(ﬁl) as well as orxl(ﬁl). Thereforei o
agrees withu; o x{l on xi(ﬁi U }%i) for bothi = 1 andi = 2. Uniqueness of a
function )0(12 — RN that restricts tau; o x;1 on xi(f]i U ﬁi) for bothi is clear,
since any such function satisfies the defining equation (15)for
For bothi, u;ox; ' is C* onx; (L)) andiiys | = ujox; !

Xi i X3 i

. Therefore,

to show thati; is C*, it suffices to verify thafi;» is C* at each point oE Hence

it suffices to check thag(j uz o x5 ") = jk(uy o x7") at every pointy € B
Definex, X5 as in (10) and (11). The assumed injectivity of theand dis-

jointness of the imagesl(ﬁl),xz(ﬁg) imply that (14) holds; in particular, that

%5z (vi) = P o X1z ). Applying the composition law (3) t6'* maps be-

tweenC* manifolds-with-boundary and omitting the notation indicating restriction

tox;(N7), forally € E (a subset ok; (N7)), we have



The first and last equalities above are true by the definition of jets at boiesdf
half-spaces; see the Appendix. l|

We can extend thé€'’* structure to the outer boundaries of the domainsy
strengthening the disjointness assumptiorit@d1;) N x2(C2) = E. Indeed, ifZ
is any metric space and the functiomsare continuous, then (16) is a necessary
and sufficient condition for existence and uniqueness of a continuowsida
from the larger domaix; ((J;) U x2((J2) to Z whose restriction td¥ coincides
with bothwu; o x;1|V1 andus o x2*1|v2 (whereV; are the sets defined prior to (10)).
Also, it is not hard to adapt the proof to the case wheris the image of just a
piece of the boundary of eadty.

4 Conclusion

Deriving isogeometriaC* elements fromG*-manifold constructions is natural.
The point of Theorem 1 is téormally justify this approach and to lay a foun-
dation from which to address issues of approximation, flexibility and polyromia
reproduction. For, as a consequence of Theore@fdmanifold constructions can

be used to devise smooth isogeometric elements for regular as well as irregula
layouts, in any number of variables. In particular, existi# surface construc-
tions in the literature can directly be used to solve differential equations lvoth o
surfaces and on planar regions where more or fewer than foursfded pieces
come together — with the value of each construction depending on their individ
approximation and convergence properties.
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Appendix: One-sided jets

We generalize jets by replacirfig” in (1) by a half-spacéi, for exampleR’ :=
R™~1 x [0,00). A setU is H-openif U = V N H for somem-dimensional open
setV C R™. Suppose thal is H-open andf : U — R’ is some function of/. If

s € U\ 0H, wheredH is the boundary off, an(m — 1)-dimensional hyperplane
then the definition of f is C* ats” is the same as iff were replaced by’. If

s € UNOH, fis C* ats if there exists an extensiofi of f to some domain
that includes afR”*-open neighborhood af such thatf is C* atp. We can then
consider the set

Fame = {(f,U,f)|UisanH-open neighborhood &f, f: U — R’is C¥,
andf is an extension of/ to a domain that includes an
R™-open neighborhood af},
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and the equivalence relatior’, defined by
(f1,U1, /i) ~% (f2, Uy fo)  if - Bifi(s) = B fa(s)

Denote the set of equivalence classes under this relatidigye. There is a nat-
ural one-to-one correspondendséH@ > J ¢, given by mapping the equivalence
class of( f, U, f) under~’, toj f. Thek- JetJ f is independent of whict* exten-
sion f is chosen, so we can use the notaﬂ@ﬁ without confusion. The correspon-
denceJS’?He + J¥, also makes clear that the compositionkejets of functions
defined on half- space domains is well-defined, and that (3) holds in thiexton
as well. It follows thatk-jets of maps from on&”* manifold-with-boundary to
another are well-defined, and the composition law (3) holds in this settinglhs we
Consequently we may identify’ ,, , with J¥,, and dispense with the notation
) Jf,H,z"-

i| < k.
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