
MatchedGk-constructions always yield
C

k-continuous isogeometric elements

David Groisser and J̈org Peters, University of Florida

February 03, 2015

Abstract

Gk (geometrically continuous surface) constructions were developed to
create surfaces that are smooth also at irregular points where, in a quad-mesh,
three or more than four elements come together. Isogeometric elements were
developed to unify the representation of geometry and of engineering analy-
sis. We show how matchedGk constructions for geometry and analysis auto-
matically yieldCk isogeometric elements. This provides a formal framework
for the existing and any future isogeometric elements basedon geometric
continuity.

1 Introduction

Reparameterization, i.e. change of coordinates, is a key concept underlying both
Gk constructions of curves and surfaces and isogeometric analysis of physical
properties.Gk continuity characterizes constructions ofCk surfaces such that any
two abutting pieces have their derivatives match up to orderk after reparameter-
ization (see e.g. [GH87, Boe88, Pet02]). Isogeometric elements are higher-order
isoparametric elements of classical engineering analysis [IZ68]: linear combina-
tions of isogeometric elements serve to approximately compute the solution of a
differential equation over bounded, often geometrically non-trivial, regions. The
term isogeometric was coined in [HCB05] to highlight the case when the region
is traced out by (shape) functions drawn from the same space as the problem un-
knowns (analysis functions, a.k.a. displacement functions). The spaceis typically
spanned by tensor-product splines defined on rectangular domains [dB02].

Until [NKP14], the isogeometric approach has not been investigated nearpoints
where more or fewer than four tensor-product elements meetsmoothly. (Such
points are called irregular, extraordinary or star points.) Earlier work, for exam-
ple [WZXH12], has the isogeometric elements join onlyC0 along rays emanating
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from irregular points. Since the smooth joining of surface pieces at irregular points
is governed byGk relations, it is natural to apply the concept of geometric conti-
nuity to constructing everywhere differentiable isogeometric elements. This paper
shows that when both the region’s parameterization and the analysis functions are
drawn from the same space ofGk continuous maps then the resulting isogeometric
elements areCk. This observation formed the background for the second author’s
presentations in early 2014 [Pet14], with the publication [NKP14] illustrating the
approach. Already [KBLW09] hinted at the use of geometric continuity by sug-
gesting to uniformly stretch one of the domains of two abutting tensor-product
functions. Such stretching represents a very special case ofG1 continuity, that
is calledparametric continuityto emphasize that the union of both domains can
be embedded in the plane by an affine change of variables. However, uniform
stretching does not provide the change of variables necessary to address the gen-
eral challenge presented by irregular points.

The goal of the present paper is toformally provethe statement of the title
and to thereby provide a theoretical framework forGk-basedCk-elements. Such
elements can readily be constructed from the rich literature on geometric surface
constructions or be based on new constructions in that field. For example,the
construction in [SSE+13] (see also [WN01, Pet95]) could be used to build an iso-
geometric element rather than to just serve as a surface definition in the context
of the boundary element method (There, linear combinations of trivariate Green’s
functions are to be determined, a setup quite different from the one discussed in
the present paper).

To keep the paper focused, we do not discuss the interesting and practically
relevant issue of polynomial reproduction near irregular points, a property known
under the name of ‘flexibility’ in the geometric design literature. It is only recently
thatG2 surface constructions that reproduce all quadratic modes at the extraordi-
nary point have been derived (see e.g. [KP15]).

The paper also does not comment on the related but different approachof using
subdivision surfaces for isogeometric analysis (see e.g. [CSA+02]) and it does not
comment on methods that approximately enforce angle constraints through penalty
functions, such as bending strips [KBH+10].

Most recently, the technical report [KVJ14], posted after submission of this
paper, follows up on the theory and computations in [Pet14, NKP14] by exploring
the space ofG1 functions.
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2 Jets, Geometric continuity and isogeometric elements

This section reviews the concepts underlying our main observation: jets on aman-
ifold, geometric continuity and the definition of isogeometric elements.

Jets. Jets of orderk are a precise way of capturing “all information of order≤ k

at a point.” Thek-jet of anRd-valuedCk map defined on an open neighborhood
of a points ∈ R

m is an equivalence class defined as follows. Fix an integerk ≥ 1.
Givenm, d ≥ 1 and a points ∈ R

m, consider the set of pairs

F
s,d := {(f,N ) |N is anRm−open neighborhood ofs and (1)

f : N → R

d is Ck}.

For eachm-tuple i := (i1, . . . , im), where theij are non-negative integers, de-
fine |i| :=

∑

ij and let∂
i

denote the|i|th-order partial-differentiation operator
(

∂
∂x1

)i1
. . .

(

∂
∂xm

)im
. The relation∼k

s
onF

s,d defined by

(f1,N1) ∼
k
s
(f2,N2) if ∂

i

f1(s) = ∂
i

f2(s) for all i with |i| ≤ k, (2)

is an equivalence relation, and the equivalence class off under∼k
s

is thek-jet off
at s, denotedjk

s
f . We writeJk

s,d for the set ofk-jets ofRd-valued maps ats. Note

that if (f1,N1) ∼
k
s
(f2,N2) then, taking|i| = 0 in (2), we havef1(s) = f2(s).

If U ⊂ R

m, V ⊂ R

ℓ are open, we can consider composableCk mapsf : U →
V , g : V → R

d. Using the chain rule it is easily seen that

if (f1, U1) ∼
k
s
(f2, U2) and (g1, V1) ∼

k
f(s) (g2, V2),

then(g1 ◦ f1, U1) ∼
k
s
(g2 ◦ f2, U2),

wheref(s) := f1(s) = f2(s) and◦ denotes composition. This implies that there
is a well-defined composition map◦ : Jk

f(s),d × Jk
s,ℓ → Jk

s,d satisfying

jk
s
(g ◦ f) = (jkf(s)g) ◦ (j

k
s
f). (3)

In particular, this applies to the case in whichℓ = m andg is aCk local diffeomor-
phism. This implies that jets and jet composition are well-defined whenR

m, Rℓ,
R

d are replaced byCk manifolds. That is,k-jets of maps from oneCk manifold to
another are well-defined, and the composition law (3) holds in this larger context.

The Appendix shows that the definition of jets also carries over, essentiallyun-
changed, to half-spaces. Jets on half-spaces are used in the definitionof geometric
continuity below.
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Geometric continuity. Geometric continuity refers to matching geometric in-
variants. However, for practical constructions, the following parameterization-
based definition of matching derivatives after a change of coordinates iswidely
accepted and equivalent in most relevant cases [Pet02, Sect 3]. We formulate geo-
metric continuity inm variables as follows.

Fix k ≥ 1. For i = 1, 2, let �i ⊂ R

m be anm-dimensional polytope, for
example a unit cube, and letEi be an(m−1)-dimensional facet of�i, with interior
int(Ei) =

◦
Ei. (Here and below, when we refer to the interior

◦
P of aj-dimensional

polytopeP , we mean the interior ofP as aj-dimensional object.) Suppose that
we are given open setsN1, N2 ⊂ R

m containing
◦
E1,

◦
E2 respectively, and aCk

diffeomorphism

ρ : N1 → N2 such that (cf. Fig. 1) (4)

ρ(
◦
E1) =

◦
E2, ρ(N1 ∩

◦
�1) = N2 \�2, ρ(N1 \�1) = N2 ∩

◦
�2.

Observe that the second line of (4) can equivalently be written as

ρ(
◦
E1) =

◦
E2, ρ(N1 ∩�1) = N2 \

◦
�2, ρ(N1 \

◦
�1) = N2 ∩�2. (5)

For i = 1, 2 let xi : �i ⊂ R

m → R

d beCk maps for which

x2(ρ(s)) = x1(s) for all s ∈
◦
E1; (6)

thus the images of thexi join along a common interfaceE := x2(E2) = x1(E1).
We say thatx1 joinsx2 G

k with reparameterizationρ alongE if for everys ∈
◦
E1

we have

jk
s
x1 = jk

s
(x2 ◦ ρ). (7)

Whenm = 2, d = 3, andxi are tensor-product splines then each�i is a rect-
angle andE is a boundary curve shared by the surface piecesx1(�1) andx2(�2)
(see Fig. 1). Such pairwiseGk constructions are used to assemble surfaces where
three or more than four tensor-product splines are to be joined smoothly to enclose
a point; placing the rectangular domains directly, without reparameterization,into
R

2 to form a joint domain yields an embedding only if exactly four rectangles meet.
The mapsxi with properties (6) and (7) will be used to provide a manifold

domain. More generally, if functionsui : �i → R

N satisfyjk
s
(u1) = jk

s
(u2 ◦ ρ)

for all s ∈
◦
E1, we say thatu1 joinsu2 Gk with reparameterizationρ.
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Figure 1: Isogeometric elements andGk continuity

Isogeometric elements. In the isoparametric approach to solving partial differ-
ential equations, mapsxi, i = 1, 2, . . . , n, parameterize a region or manifoldX
called thephysical domain. The mapsxi are typically splines that map intoRd, i.e.
with d = 2 or d = 3 component functions. The physical domain is tessellated into
piecesxi(�i),

X := ∪n
i=1xi(�i) ⊂ R

d, xi : �i ⊂ R

m → R

d. (8)

In the following we assume that eachxi is injective on its domain; hencex−1
i is a

well-defined map from the image ofxi to�i.
Whenm = 2, i.e. in two variables, the�i may be, for example, unit squares.

If m = 2 andd = 2 thenX is a region of thexy-plane. Ifm = 2 andd = 3, X is
a surface embedded inR3. If m = d = 3 thenX is a (solid) region inR3.

The goal of the isoparametric approach is to compute, for someN , analysis
functionsui : �i → RN such thatui ◦ x−1

i solves a partial differential equation
on xi(�i). The compositionui ◦ x−1

i is called (a piecea of) an isogeometric
elementif the scalar component functions of bothui andxi are drawn from the
same function-space, typically a space of tensor-product spline functions on�i.

In the following, we can confine our attention to two maps, i.e.i = 1, 2 (n = 2).

3 Smoothness of the composition

We want to show thatGk constructions yieldCk isogeometric elements. The proof
is an adaptation of the definition of a smooth function on a manifold. First we iden-

aIso-geometric degrees of freedom are typically associated with a union of piecesxi(�i) of the
physical domain (8). (see e.g. [NKP14]).
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tify a Ck atlas on a domain
◦
X12 defined by joiningx1 andx2 with Gk continuity.

With this atlas,
◦
X12 becomes aCk manifold as we will now explain in detail.

Ck atlas from Gk continuity. Consider injective mapsx1, x2, ρ satisfying the
assumptions of (4) and (7), and such that the imagesx1(

◦
�1),x2(

◦
�2) are disjoint.

Define
◦
E = x1(

◦
E1) (= x2(

◦
E2) by hypothesis). We exhibit aCk-manifold struc-

ture on the set

◦
X12 := int(x1(�1) ∪ x2(�2)) := x1(

◦
�1) ∪

◦
E ∪ x2(

◦
�2) (9)

as follows. WithNi an open set containing
◦
Ei, Vi :=

◦
�i ∪ Ni is an extension of

the interior of the domain�i. We extendx1|◦
�1

to a function

x̃1 : V1 → R

d, x̃1(s) :=

{

x1(s) if s ∈ V1 ∩�1 ,

x2(ρ(s)) if s ∈ V1 \�1 = N1 \�1 ,
(10)

and extendx2|◦
�2

to an analogous function

x̃2 : V2 → R

d, x̃2(s) :=

{

x2(s) if s ∈ V2 ∩�2 ,

x1(ρ
−1(s)) if s ∈ V2 \�2 = N2 \�2,

(11)

=

{

x2(s) if s ∈ V2 ∩
◦
�2 ,

x1(ρ
−1(s)) if s ∈ V2 \

◦
�2 = N2 \

◦
�2 .

(12)

(The equality between (11) and (12) follows from (6).) Because of the jet-equality
(7), the extended maps̃xi areCk. Regarding̃xi as a map fromVi to x̃i(Vi), we
write x̃−1

i for the inverse of this map. Now observe that (12) and (5) imply that

x̃−1
2 (y) =

{

x−1
2 (y) if y ∈ x2(V2 ∩

◦
�2),

ρ(x−1
1 (y)) if y ∈ x1(ρ

−1(N2 \
◦
�2)) = x1(N1 ∩�1).

(13)

If s ∈ N1 \ �1 thenx̃1(s) ∈ x2(ρ(N1 \ �1)) = x2(N2 ∩
◦
�2) ⊂ x2(V2 ∩

◦
�2),

implying x̃−1
2 (x̃1(s)) = x−1

2 (x2(ρ(s))) = ρ(s), while if s ∈ N1 ∩ �1 then
x̃1(s) = x1(s) ∈ x1(N1 ∩ �1), implying x̃−1

2 (x̃1(s)) = ρ(x−1
1 (x1(s))) = ρ(s).

Hence
x̃−1
2 ◦ x̃1|N1

= ρ, and similarly x̃−1
1 ◦ x̃2|N2

= ρ−1. (14)

Therefore{(V1, x̃
−1
1 ), (V2, x̃

−1
2 )} is aCk atlas on

◦
X12 as claimed.

This observation generalizes and makes more precise a similar statement for
surfaces in [Pet02, sect. 3.2].
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The main result. We are now ready to prove the main result.

Theorem 1 (Matched Gk constructions yield Ck isogeometric elements)
For i = 1, 2, considerCk mapsui : �i → R

N andxi : �i → R

d and assume that
eachxi is injective and the imagesx1(

◦
�1),x2(

◦
�2) are disjoint. Assume thatx1

joinsx2 G
k alongE := x1(E1) = x2(E2) with reparameterizationρ (defined in

(4)) and that the analysis functionsui match the setup in thatu1 joinsu2 Gk with
thesamereparameterizationρ. Let ũ12 :

◦
X12 → R

N (with
◦
X12 defined in(9)) be

the piecewise isogeometric element defined by

ũ12(y) :=

{

u1 ◦ x
−1
1 (y) if y ∈ x1(

◦
�1),

u2 ◦ x
−1
2 (y) if y ∈ x2(

◦
�2 ∪

◦
E2).

(15)

Then

• ũ12 is Ck and

• ũ12 is the unique function
◦
X12 → R

N that restricts toui◦x
−1
i onxi(

◦
�i∪

◦
Ei)

for i = 1, 2.

Proof TheGk-join condition on theui ensures that

u2(ρ(s)) = u1(s) for all s ∈
◦
E1, (16)

which together with theGk-join condition on thexi implies that

u1 ◦ x
−1
1 (y) = u2 ◦ x

−1
2 (y) for all y ∈

◦
E := x1(

◦
E1) = x2(

◦
E2).

Henceũ12 agrees withu1 ◦ x−1
1 onx1(

◦
E1) as well as onx1(

◦
�1). Thereforeũ12

agrees withui ◦ x−1
i on xi(

◦
�i ∪

◦
Ei) for both i = 1 andi = 2. Uniqueness of a

function
◦
X12 → R

N that restricts toui ◦ x−1
i on xi(

◦
�i ∪

◦
Ei) for both i is clear,

since any such function satisfies the defining equation (15) forũ12.
For bothi, ui◦x

−1
i isCk onxi(

◦
�i) andũ12|

xi(
◦
�i)

= ui◦x
−1
i |

xi(
◦
�i)

. Therefore,

to show that̃u12 isCk, it suffices to verify that̃u12 isCk at each point of
◦
E. Hence

it suffices to check thatjk
y
(u2 ◦ x

−1
2 ) = jk

y
(u1 ◦ x

−1
1 ) at every pointy ∈

◦
E.

Definex̃1, x̃2 as in (10) and (11). The assumed injectivity of thexi and dis-
jointness of the imagesx1(

◦
�1),x2(

◦
�2) imply that (14) holds; in particular, that

x̃−1
2 |x̃1(N1) = ρ ◦ x̃−1

1 |x̃1(N1). Applying the composition law (3) toCk maps be-
tweenCk manifolds-with-boundary and omitting the notation indicating restriction
to x̃1(N1), for all y ∈

◦
E (a subset of̃x1(N1)), we have

7



jk
y
(u2 ◦ x

−1
2 ) = jk

y
(u2 ◦ x̃

−1
2 )

= jk
y
(u2 ◦ ρ ◦ x̃

−1
1 )

=
(

jk
x̃
−1

1
(y)

(u2 ◦ ρ)
)

◦ jk
y
(x̃−1

1 )

= (jk
x̃
−1

1
(y)

u1) ◦ j
k
y
(x̃−1

1 )

= jk
y
(u1 ◦ x̃

−1
1 ) = jk

y
(u1 ◦ x

−1
1 ).

The first and last equalities above are true by the definition of jets at boundaries of
half-spaces; see the Appendix. |||

We can extend theCk structure to the outer boundaries of the domains�i by
strengthening the disjointness assumption tox1(�1) ∩ x2(�2) = E. Indeed, ifZ
is any metric space and the functionsui are continuous, then (16) is a necessary
and sufficient condition for existence and uniqueness of a continuous function ũ

from the larger domainx1(�1) ∪ x2(�2) to Z whose restriction toE coincides
with bothu1 ◦x

−1
1 |V1

andu2 ◦x
−1
2 |V2

(whereVi are the sets defined prior to (10)).
Also, it is not hard to adapt the proof to the case whereE is the image of just a
piece of the boundary of eachEi.

4 Conclusion

Deriving isogeometricCk elements fromGk-manifold constructions is natural.
The point of Theorem 1 is toformally justify this approach and to lay a foun-
dation from which to address issues of approximation, flexibility and polynomial
reproduction. For, as a consequence of Theorem 1,Gk-manifold constructions can
be used to devise smooth isogeometric elements for regular as well as irregular
layouts, in any number of variables. In particular, existingGk surface construc-
tions in the literature can directly be used to solve differential equations both on
surfaces and on planar regions where more or fewer than four four-sided pieces
come together – with the value of each construction depending on their individual
approximation and convergence properties.
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Appendix: One-sided jets

We generalize jets by replacingRm in (1) by a half-spaceH, for exampleRm
+ :=

R

m−1 × [0,∞). A setU is H-openif U = V ∩H for somem-dimensional open
setV ⊂ R

m. Suppose thatU isH-open andf : U → R

ℓ is some function onU . If
s ∈ U \∂H, where∂H is the boundary ofH, an(m− 1)-dimensional hyperplane
then the definition of “f is Ck at s” is the same as ifH were replaced byRℓ. If
s ∈ U ∩ ∂H, f is Ck at s if there exists an extensioñf of f to some domain
that includes anRm-open neighborhood ofs such thatf̃ is Ck at p. We can then
consider the set

F
s,H,ℓ := {(f, U, f̃) | U is anH-open neighborhood ofs, f : U → R

ℓ is Ck,

andf̃ is an extension ofU to a domain that includes an

R

m-open neighborhood ofs},
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and the equivalence relation∼′
s

defined by

(f1, U1, f̃1) ∼
′
s
(f2, U2, f̃2) if ∂

i

f̃1(s) = ∂
i

f̃2(s) for all i with|i| ≤ k.

Denote the set of equivalence classes under this relation byJk
s,H,ℓ. There is a nat-

ural one-to-one correspondenceJk
s,H,ℓ ↔ Jk

s,ℓ given by mapping the equivalence

class of(f, U, f̃) under∼′
s

to jk
s
f̃ . Thek-jet jkp f̃ is independent of whichCk exten-

sionf̃ is chosen, so we can use the notationjk
s
f without confusion. The correspon-

denceJk
s,H,ℓ ↔ Jk

s,ℓ also makes clear that the composition ofk-jets of functions
defined on half-space domains is well-defined, and that (3) holds in this context
as well. It follows thatk-jets of maps from oneCk manifold-with-boundary to
another are well-defined, and the composition law (3) holds in this setting as well.
Consequently we may identifyJk

s,H,ℓ with Jk
s,ℓ, and dispense with the notation

“Jk
s,H,ℓ”.
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