Smooth Multi-Sided Blending of bi-2 Splines

Kęstutis Karčiauskas Jörg Peters

Vilnius University University of Florida
Quad models converted to CAD-compatible splines

gold = C^1 bi-2 splines; red = G^1 bi-3;

- Continuity of normals often suffices (+ highlight lines well-distributed)
- Low degree preferable (fewer oscillations, lower downstream cost, ...)
- Matched G^k constructions yield C^k iso-geometric elements [P2013]
Quad models converted to CAD-compatible splines

gold = \(C^1 \) bi-2 splines; red = \(G^1 \) bi-3;

- Continuity of normals often suffices (+ highlight lines well-distributed)
- Low degree preferable (fewer oscillations, lower downstream cost, ...)
- Matched \(G^k \) constructions yield \(C^k \) iso-geometric elements [P2013]
Quad models converted to CAD-compatible splines

gold = C^1 bi-2 splines; red = G^1 bi-3;

- Continuity of normals often suffices (+ highlight lines well-distributed)
- Low degree preferable (fewer oscillations, lower downstream cost, ...)
- Matched G^k constructions yield C^k iso-geometric elements [P2013]
Quad models converted to CAD-compatible splines

\[\text{gold} = C^1 \text{ bi-2 splines}; \quad \text{red} = G^1 \text{ bi-3}; \]

(a) rocker arm
(b) fan disk

- Continuity of normals often suffices (+ highlight lines well-distributed)
- Low degree preferable (fewer oscillations, lower downstream cost, ...)
- Matched \(G^k \) constructions yield \(C^k \) iso-geometric elements \([P2013]\)
Joining and capping a collection of bi-2 spline surfaces
Joining and capping a collection of bi-2 spline surfaces
Joining and capping a collection of bi-2 spline surfaces
Joining and capping a collection of bi-2 spline surfaces
Outline

1. Why not classical 1980s, 1990s solutions?
2. Multi-sided blends: unified input, geometric continuity
3. Construction Highlights
4. Bi-3 caps when $n = 3, 5$
5. More examples and comparisons
Outline

1. Why not classical 1980s, 1990s solutions?

2. Multi-sided blends: unified input, geometric continuity

3. Construction Highlights

4. Bi-3 caps when $n = 3, 5$

5. More examples and comparisons
1980s, 1990s solutions

(a) input

(b) Doo-Sabin (DS)
1980s, 1990s solutions

(a) input
(b) Doo-Sabin (DS)
1980s, 1990s solutions

(a) input

(b) Doo-Sabin (DS)

(c) input

(d) Gregory-Zhou

(e) our cap
Why not classical 1980s, 1990s solutions?

1980s, 1990s solutions

(a) input
(b) Doo-Sabin (DS)
(c) input
(d) Gregory-Zhou
(e) our cap

singular constructions, rational (normalized) constructions, simplex splines, manifold splines, 3-sided patches, . . . not adopted by industry
New ingredients – 1990’s vs 2014: parameterization

quad mesh with nodes of valences 3,4,6,8

SMI 2014
New ingredients – 1990’s vs 2014: parameterization

quad mesh with nodes of valences 3,4,6,8

SMI 2014

1990’s
Why not classical 1980s, 1990s solutions?

New ingredients – 1990’s vs 2014: parameterization

quad mesh with nodes of valences 3,4,6,8

SMI 2014

1990’s

SMI 2014

K. Karčiauskas, J. Peters (VU, UF)
Outline

1. Why not classical 1980s, 1990s solutions?

2. Multi-sided blends: unified input, geometric continuity

3. Construction Highlights

4. Bi-3 caps when \(n = 3, 5 \)

5. More examples and comparisons
Unified Input

(a) CC-net (primal) (b) DS-net (dual)
Unified Input

(a) CC-net (primal) (b) DS-net (dual)

(c) virtual refinement (d) tensor-border \(b \)

Border = ring of position and derivative data in BB-form.
Geometric continuity

\[G^1: f_v(u, 0) + g_v(u, 0) = b(u)f_u(u, 0) \]
Geometric continuity

\[G^1: f_v(u, 0) + g_v(u, 0) = b(u)f_u(u, 0) \]

(1990’s) \(b(u) := 2 \cos \frac{2\pi}{n} (1 - u)^2 \Rightarrow \)
input Hermite data is matched directly (\(C^1 \)) \(\Rightarrow \) low quality.
Geometric continuity

\[G^1: f_v(u, 0) + g_v(u, 0) = b(u)f_u(u, 0) \]

- (1990’s) \(b(u) := 2 \cos \frac{2\pi}{n} (1 - u)^2 \Rightarrow \) input Hermite data is matched directly \((C^1) \Rightarrow \) low quality.

- bi-4 capping
 - (2014) \(b(u) := 2 \cos \frac{2\pi}{n} (1 - u) \Rightarrow \) input reparameterized to make green compatible with inter-sector.
Outline

1. Why not classical 1980s, 1990s solutions?
2. Multi-sided blends: unified input, geometric continuity
3. Construction Highlights
4. Bi-3 caps when $n = 3, 5$
5. More examples and comparisons
1. The positive effect of border reparameterization

(a) input a,b,c
(b) \(b, C^1, \text{bi-4}\)
(c) our cap
1. The positive effect of border reparameterization

(a) input a,b,c

(b) b, C^1, bi-4

(c) our cap

(d) Catmull-Clark
2. Curvature continuity at the extraordinary point

\[n = 7 \text{ CC-net} \]
2. Curvature continuity at the extraordinary point

$n = 7$ CC-net

bi-4, G^1 eop

bi-4, G^2 eop
3. Functionals – but only after careful parameterization!

\[\mathcal{F}_m f := \int_0^1 \int_0^1 \sum_{i,j \geq 0} \frac{m!}{i!j!} (\partial_s^i f \partial_t^j f)^2, \quad m\text{-jet} \]

\[\mathcal{F}_\kappa f := \int_0^1 \int_0^1 (\partial_s^\kappa f)^2 + (\partial_t^\kappa f)^2 \]
3. Functionals – but only after careful parameterization!

\[F_m f := \int_0^1 \int_0^1 \sum_{i,j \geq 0} \frac{m!}{i!j!} (\partial_s^i f \partial_t^j f)^2 , \quad \text{m-jet} \quad F_\kappa^* f := \int_0^1 \int_0^1 (\partial_s^\kappa f)^2 + (\partial_t^\kappa f)^2 \]

Fix central point then minimize. Low \(n < 7 \rightarrow F_3 \), High \(n > 6 \rightarrow F_4 \).
3. Functionals – but only after careful parameterization!

\[F_m f := \int_0^1 \int_0^1 \sum_{i,j \geq 0} \frac{m!}{i!j!} (\partial_s^i f \partial_t^j f)^2, \quad m\text{-jet} \quad F_\kappa^* f := \int_0^1 \int_0^1 (\partial_s^\kappa f)^2 + (\partial_t^\kappa f)^2 \]

Fix central point then minimize. Low \(n < 7 \rightarrow F_3 \), High \(n > 6 \rightarrow F_4 \).
Implementation via generating functions

Tabulate 4 generating functions (3 if primal)

Assemble patch covering sector s

\[
\text{patch}^s_{ij} := \sum_{k=0}^{n-1} \sum_{m=1}^{4} \text{table}^{k,m}_{ij} \text{net}^{s-k}_m.
\]
Implementation via generating functions

Tabulate 4 generating functions (3 if primal)

Assemble patch covering sector s

$$\text{patch}_{ij}^s := \sum_{k=0}^{n-1} \sum_{m=1}^{4} \text{table}_{ij}^{k,m} \text{net}_{m}^{s-k}. \quad (1)$$
Outline

1. Why not classical 1980s, 1990s solutions?
2. Multi-sided blends: unified input, geometric continuity
3. Construction Highlights
4. Bi-3 caps when $n = 3, 5$
5. More examples and comparisons
Bi-3 cap when $n = 3$

Theorem For $n = 3$ any smooth piecewise polynomial cap, satisfying symmetric G^1 constraints is **curvature continuous** at the central point.
Bi-3 cap when $n = 5$

One patch per sector!

(a) $n = 5$

(b) \mathcal{F}_3

(c) \mathcal{F}_5 to set central point

(d) $n = 5$

(e) Gregory-Zhou

(f) our cap
Outline

1. Why not classical 1980s, 1990s solutions?

2. Multi-sided blends: unified input, geometric continuity

3. Construction Highlights

4. Bi-3 caps when $n = 3, 5$

5. More examples and comparisons
Beams joining and subdivision

DS-net

DS
augmented DS

CC-net

CC
bi-4
Modeling with multi-sided patches

quad mesh, n=3,4,5,6 regular bi-2 + caps
Modeling with multi-sided patches

- quad mesh, n=3,4,5,6
- regular bi-2 + caps
- 'rotation'

K. Karčiauskas, J. Peters (VU, UF)
Modeling with multi-sided patches

quad mesh, \(n = 3, 4, 5, 6 \)
regular bi-2 + caps
'rotation'

5-sided + bi-3 surface
4-sided faces
Modeling with multi-sided patches

- quad mesh, n=3,4,5,6
- regular bi-2 + caps
- 'rotation'
- 5-sided + 4-sided faces
- bi-3 surface
- modification

K. Karčiauskas, J. Peters (VU, UF)
Multi-patch caps naturally fill a bi-2 C^1 complex

Mean curvature

$n = 5$
$n = 6$
$n = 7$
Conclusion

- G^1 with well-distributed highlight lines – sufficient for inner surfaces or mechanical parts.
- Degree bi-4 (default); bi-3 when $n = 3, 5$.
 (Alternatively bi-3 for all n using a 2×2 split.)
- Immediate boundary reparameterization!
- Curvature continuity at the extraordinary point.
- Minimize functionals – but only after careful parameterization!
- \Rightarrow cap behaves like one patch:
Conclusion

- G^1 with well-distributed highlight lines – sufficient for inner surfaces or mechanical parts.
- Degree bi-4 (default); bi-3 when $n = 3, 5$.
 (Alternatively bi-3 for all n using a 2×2 split.)
- Immediate boundary reparameterization!
- Curvature continuity at the extraordinary point.
- Minimize functionals – but only after careful parameterization!
- \Rightarrow cap behaves like one patch:
Conclusion

- G^1 with well-distributed highlight lines – sufficient for inner surfaces or mechanical parts.
- Degree bi-4 (default); bi-3 when $n = 3, 5$. (Alternatively bi-3 for all n using a 2×2 split.)
- Immediate boundary reparameterization!
- Curvature continuity at the extraordinary point.
- Minimize functionals – but only after careful parameterization!
- \Rightarrow cap behaves like one patch:
More examples and comparisons

Conclusion

- G^1 with well-distributed highlight lines – sufficient for inner surfaces or mechanical parts.
- Degree bi-4 (default); bi-3 when $n = 3, 5$.
 (Alternatively bi-3 for all n using a 2×2 split.)
- Immediate boundary reparameterization!
- Curvature continuity at the extraordinary point.
- Minimize functionals – but only after careful parameterization!
- \Rightarrow cap behaves like one patch:
Conclusion

- G^1 with well-distributed highlight lines – sufficient for inner surfaces or mechanical parts.
- Degree bi-4 (default); bi-3 when $n = 3, 5$.
 (Alternatively bi-3 for all n using a 2×2 split.)
- Immediate boundary reparameterization!
- Curvature continuity at the extraordinary point.
- Minimize functionals – but only after careful parameterization!
- \Rightarrow cap behaves like one patch:
Conclusion

- G^1 with well-distributed highlight lines – sufficient for inner surfaces or mechanical parts.
- Degree bi-4 (default); bi-3 when $n = 3, 5$. (Alternatively bi-3 for all n using a 2×2 split.)
- Immediate boundary reparameterization!
- Curvature continuity at the extraordinary point.
- Minimize functionals – but only after careful parameterization!
- \Rightarrow cap behaves like one patch:
Conclusion

- G^1 with well-distributed highlight lines – sufficient for inner surfaces or mechanical parts.
- Degree bi-4 (default); bi-3 when $n = 3, 5$.
 (Alternatively bi-3 for all n using a 2×2 split.)
- Immediate boundary reparameterization!
- Curvature continuity at the extraordinary point.
- Minimize functionals – but only after careful parameterization!
- \Rightarrow cap behaves like one patch:

Questions?