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Abstract

A curved or higher-order surface, such as spline patch or a Bézier
patch, is rendered pixel-accurate if it displays neither polyhedral ar-
tifacts nor parametric distortion. This paper shows how to set the
evaluation density for a patch just �nely enough so that paramet-
ric surfaces render pixel-accurate in the standard graphics pipeline.
The approach uses tight estimates, not of the size under screen-
projection, but of the varianceunder screen projection between
the exact surface and its triangulation. An implementation, using
the GPU tessellation engine, runs at interactive rates comparable to
standard rendering.

1 Introduction

When a model uses curved surfaces, the designer is typically called
upon to set one or several levels of tessellation for display. But in an
interactive setting, where the camera is free to zoom in or out of the
scene, no �xed set of levels can avoid faceted display or overtessel-
lation. While a number of smart heuristics are being used to adjust
the tessellation density, based on viewing and surface properties, it
is desirable to guarantee accurate rendering (and avoid overtessel-
lation). To deliver such guarantees, this paper makes precise the
notion of pixel-accurate rendering: pixels are to be controlled by
one or more non-occluded patches projecting to it (covering accu-
racy) and have correct associated domain parameters (parametric
accuracy – cf. Fig. 1a).

Deriving an algorithm for safe yet ef�cient tessellation starts with
the observation that the existing graphics pipeline is ef�cient and
accurate for polyhedral surfaces. Therefore the evaluation density
(tessellation factor) needs only guarantee that thevariancebetween
the image of the triangulation of the surface and the true surface is
not perceptible on a pixel-based screen. To be most ef�cient for the
existing graphics pipeline, the evaluation density should beminimal
– just so that the error stays below the visible (pixel) threshold.

Guaranteeing sub-pixel variance represents a different approachto
accurate rendering than micro-polygonization. Consider a uniform,
�at bicubic patch, orthogonal to the viewing direction and covering
the whole screen. Micro-polygonization recursively splits such a
patch ten times in each direction to bound the pixel-extentof the
projection. A variance-based approach need not split the patch at
all to yield pixel-accuracy.

Overview After the literature review, Section 3 de�nes pixel-
accuracy. Introducing a mechanism for setting the tessellation den-
sity requires showing on one hand that the setting guarantees ac-
curacy and, on the other, that it is not overly conservative. Sec-
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Figure 1: Visualizingparametric (in)accuracy, one of two crite-
ria for judging the rendering of curved surfaces. Green and red
pixels are inaccurate as follows. Each pixel has an associatedu; v
parameter and patchp. The pixel is colored [grey, blue, green] if
the distance of the pixel center to the screen projection ofp(u; v) is
at most[0:1; 0:5; 1] pixel widths. If it is red, the distance is greater
than 1. The enlargement shows the effect of parametric inaccuracy
on a checkered texture. The parametric distortion in (a) causes in-
correct horizontal kinks and vertical oscillations.

tion 4 explains known tight enclosures for splines and Section 5
their novel use (9) that ensures pixel-accuracy without ever comput-
ing the enclosures. Section 6 speci�es an algorithm and its DX11
implementation to measure performance on realistic data sets (Sec-
tion 7). Section 8 lays out implementation trade-offs. An accompa-
nying video shows non-instanced `killeroos' (100� 3042 patches)
pixel-accurately rendered at 150 frames-per-second and 100 non-
instanced `monster frogs' (100� 1292 patches) at 310 fps.

2 Related Literature

The variance-based approach to pixel-accurate rendering requires
tight bounds on the deviation from linearity (rather than the size of
the projected image) and a mechanism to predict the decrease of
the deviation when increasing the tessellation density. Such exact
prediction allows us to avoid recursive splitting-and-reassessment
of patch bounds.

LoD and Bounding Constructs. Setting tessellation density is re-
lated to level-of detail schemes for polyhedral models (see e.g. the
survey [Xia et al. 1997]). It faces the same trade-off of bounding
construct ef�ciency vs. tightness (cf. Fig. 2) and has to consider
the cost of initialization, modi�cation (e.g. under rotation or defor-
mation) and testing. Treatment of `popping artifacts' and choice of
simpli�cation operator [Hoppe 1996; Gross et al. 1995] however



Figure 2: Bounding constructsfor a cubic curve with a step-like
control polygon. Here less grey means better! Curve and control
polygon, min-max or axis-aligned bounding box (AABB), bounding
disk, convex hull (here equal to an 8-dop), oriented bounding box,
m = 3 -pieceslefe.

is automated by the continuous re�nement inhardware tessellation
[Drone et al. 2008]. Higher-order surfaces such as NURBS (B-
spline), B́ezier patches and subdivision surfaces, can be enclosed by
their polyhedral control net (see e.g. [Farin 1988]). The well-known
estimates of Filip et al. [Filip et al. 1986] (see also [Sheng and
Hirsch 1992; Tookey and Cripps 1997; Guthe et al. 2005]) bound
the difference of a piecewise linear interpolant at the domain cor-
ners to a smooth function piecep in terms of a sum of all mixed
second order derivatives@i

1@j
2 p, i + j = 2 . However, already for

a simple example such as Fig. 3, this bound is 10 times larger than
the more specializedslefe bounding structure de�ned in [Lutterkort
2000; Peters 2004]. We will use the estimates provided byslefes in
a novel way in Section 5, without ever constructingslefes.

Micropolygonization. In the split-and-dice phase of the Reyes ar-
chitecture [Cook et al. 1987] higher-order surfaces are recursively
partitioned and tested until they qualify for uniform partition (dic-
ing) into micro-polygons. Micro-polygons are expected to project
to no more than a quarter pixel. Split-and-dice presents a challenge
for parallel execution, both because of work load imbalance and an
a priori unknown depth of recursion. A number of recent publi-
cations have focused on micro-polygonization on the GPU using
either the min-max AABB bound or an image space edge-length
heuristic to estimate the extent of the projection. InReal-time
Reyes-style adaptive surface subdivision, Patney and Owens [Pat-
ney and Owens 2008] ported the split-and-dice stage on the GPU
using CUDA. A Data-Parallel Rasterization of Micro-polygons
[Fatahalian et al. 2009] improves micro-polygon rasterization and
[Fisher et al. 2009] improves split-and-dicing with the Diagsplit.
Figure 10 of [Fisher et al. 2009] gives a comparison of the accuracy
of splitting heuristics. [Eisenacher and Loop 2010] report micro-
polygon generation at 30-50% of the speed of standard rasteriza-
tion. RenderAntsby Kun Zhou et al. [Zhou et al. 2009] implements
the complete Reyes-pipeline based on a special GPGPU program-
ming language, called BSGP (see also [Tzeng et al. 2010]). Load-
balancing within various stages addresses some of the challenges
of split-and-dice. For supersampling and anti-aliasing, [Fatahalian
et al. 2010] point to the problem of many tiny fragments that chal-
lenge memory access and SIMD ef�ciency and suggest improving
shader ef�ciency by merging micro-polygons.

3 Pixel-accuracy

According to [Cook et al. 1987] the goal of micro-polygonization
is to generate a base representation that is natural in the sense that
uv-axis-aligned grids of micro-polygons map to surface pieces for
which no inverse perspective calculation is necessary. We make this
goal precise by distinguishing two components of pixel-accuracy:
covering accuracy and parametric accuracy. Below, a pixel, the
smallest screen unit that can be controlled, is de�ned as a half-open
square[ x

y ] + 1
2 [� 1; 1)2 centered at[ x

y ] 2 N2 , P : R3 ! R2 is the
projection to the screen andk a

b k1 := max fj aj; jbjg.

Covering accuracy requires that each pixel's output value be
controlled by one or more unoccluded pieces of patches whose pro-
jection overlaps it suf�ciently. – Here `suf�ciently' quali�es over-
lap with respect to alternative (anti-aliasing) sampling strategies,
`control' means that the pixel shader can take the unoccluded piece
into consideration when determining the output value (color), and
`one or more' accounts both for semi-transparency and for multiple
pieces' projections partially overlapping the pixel. Inaccurate cov-
ering due to triangulation and rasterization leads to non-smooth sil-
houettes (showing occluded background or controlling output with-
out overlap), false intersection lines, and incorrect depth-ordering
(where an originally curved and front-most fragment looses in the
depth-buffer comparison). In addition to incorrect display, covering
inaccuracy can result in noise or pixel dropout.

Parametric accuracy requires that for all pixels the following
holds. Let[ x

y ] be the pixel's center and letp; u; v be an associated
surfacep : R2 ! R3 and(u; v) parameter pair. Then the surface
point p(u; v) 2 R3 must project into the pixel:

kP (p(u; v)) � [ x
y ]k1 < 0:5: (1)

– Parametric accuracy makes precise the criterion stated in Reyes,
that uniform traversal of the domain results in a near-uniform
traversal of the screen-projected image. Even when the pixel is
covered by the proper surface piece, too coarse a triangulation can
lead toparametric distortion, i.e.P (p(u; v)) lies outside the pixel
associated with parameters(u; v). Since(u; v) are used for tex-
ture look-up, to evaluate surface properties such as normals and
to determine displacement and procedural shaders this can cause a
multitude of artifacts incompatible with accurate rendering. Para-
metric inaccuracy is color-encoded in Fig. 1a. The resulting texture
distortion is shown in the enlargement.

Standard processing in the graphics pipeline can be pixel-accurate.
When the screen projection of a spline patch is suf�ciently uniform
in the parameters and its depth varies suf�ciently little. Fig. 12
shows how pieces much larger than a micro-polygon can be raster-
ized without loss of pixel-accuracy.

4 Patch representation, function enclosure

To take advantage of the existing, ef�cient graphics pipeline, we
want to determine the coarsest partition that guarantees pixel-
accuracy when rasterizing. Unlike micro-polygonization, the goal
is to control thevariance of the projectionbetween exact and trian-
gulated surface, not the size of the projection. This section explains
slefes whose estimates are used in a novel way in Section 5 to en-
sure pixel-accuracy.

Parametric representation The common higher-order surface
representations are Bézier patches (glMap2 in OpenGL), NURBS
patches (gluNurbsSurfacein OpenGL) and subdivision surfaces.
Subdivision surfaces are splines with singularities [Peters and Reif
2008] and can be treated as nested rings of spline patches. NURBS
are easily converted to polynomial pieces in tensor-product Bézier-
form (5), by the well-known stable technique called `knot inser-
tion'. Below we therefore focus on B́ezier patches. Analogous
estimates apply directly to NURBS and subdivision surfaces.

A polynomialp of degreed in the variableu and with coef�cients
cj 2 R has the B́ezier-form

p : R ! R; u 7! p(u) :=
dX

j =0

cj bd
j (u); bd

j :=

 
d
j

!

(1� u)d� j uj :
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Figure 3: Theslefe-construction from [Peters 2004]. (a) The func-
tion p(t) := � b3

1(t) + b3
2(t) and its upper boundp. (b) The lower

bounda13 and the upper bounda1
3 tightly sandwiching the func-

tion a1 := � 2
3 b3

1(t) � 1
3 b3

2(t), usingm = 3 segments. Table 1
showsw = max [0 :: 1] p � p to be< 0:07. The corresponding num-
ber for [Filip et al. 1986] (not illustrated) is6

8 = 0 :75 and for the
min-max-bound2

3 .

Subdividable Linear Ef�cient Function Enclosures (short:
slefes, pronounced sleeves) [Lutterkort 2000; Peters 2004] tightly
sandwich non-linear functions, such as polynomials, splines and
subdivision surfaces, between simpler, piecewise linear, upper and
lower functions:

p � p � p:

Speci�cally, [Lutterkort 2000] shows that (cf. Fig. 3,left)

p(t) � p(t) := `(t) +
d� 1X

j =1

maxf 0; r 2
j pg ad

j

m
(t) (2)

+
d� 1X

j =1

minf 0; r 2
j pg ad

j
m

(t):

with the matching lower boundp obtained by exchangingmin and
max operators. Here

ad
j ; j = 1 ; : : : ; d � 1;

are polynomials that span the space of polynomials of degreed mi-
nus the linear functions̀(t); ad

j

m
is anm-piece upper andad

j
m

an

m-piece lower bound onad
j ; andr 2

j p := � d(cj � 1 � 2cj + cj +1 )
is a second difference of the control points. Ifp is a linear func-
tion, upper and lower bounds agree. The tightness of the bounds
is important since loose bounds result in over-tessellation. Fig. 3b
shows the min-max or AABB bound to be looser by an order of
magnitude than the widthw := max t 2 [0 :: 1] p(t) � p(t) of slefes.
The next paragraph shows thatslefes are inexpensive to compute.

t = 0 1/3 2/3 1

a3
1

3
0 -.370370.. -.296296.. 0

a3
13

-.069521.. -.439891.. -.315351.. -.008732..

Table 1: Values at breakpoints of am = 3 -pieceslefe.

Pre-computation Being piecewise linear the bounding functions
ad

j

m
and ad

j
m

in (2) are de�ned by their values at the uniformly
spaced break points. These values can be pre-computed. Ta-
ble 1 lists all numbers needed to compute Fig. 3, e.g. the values
� :370370:: and� :439891:: at t = 1 =3. This table and the tables
for higher degree can be downloaded [Wu and Peters 2002]. Due
to symmetry, for examplea3

2(1 � t) = a3
1(t), only one half of the

d � 1 tables are needed, i.e. just 1 ford = 3 .

Figure 4: slefe-tiles formed by fourslefe-boxes locally enclose the
surface (but are never explicitly computed).

p(ui ; vj )

P (p(ui � 1 ; vj ))

p(ui � 1 ; vj ) P (p(ui ; vj ))

x; y pixel size

w xij ; y
ij

xij ; yij

Figure 5: Projected slefe-boxes. The projectedslefe-boxes (red)
are enclosed by axis-aligned rectangles (blue, dashed) whose con-
vex hull (grey area) encloses the image (here ofp([ui � 1 ::u i ]; vj )).
The (square-root of the) maximal edge-length of the rectangles, in
pixel size, determines the tessellation factor� p .

Bound Improvement under Re�nement Considerui equally
spaced inU and let

w(m; U; p) := max
i =0 ;:::;m

p(ui ) � p(ui ): (3)

Restricting theU-domain from[0::1] to [u; u+ h], h << 1, reduces
the maximal second difference

jr 2pj := max
i =1 ::d � 1

jr 2ci j 2 R to h2 jr 2pj:

Comparing with (2) and De�nition (3), we see that

w(m; [u; u + h]; p) � h2 w(m; [0; 1]; p): (4)

That is, partitioning theu-domain into 1=h segments, and re-
representing the function over the smaller interval before applying
the bound, scalesw by h2 .

Tensor-product Surface patches are polynomial surface pieces
in tensor-product B́ezier-form of degreed1 ; d2 in the variables
(u; v) 2 [0::1]2 ,

p(u; v) :=
d1X

i =0

d2X

j =0

cij bd2
j (v)bd1

i (u): (5)

Appendix 10 shows how to use bounds in one variable to bound
tensor-product patches.

5 Estimates ensuring pixel-accuracy:
Bounding the Variance of Surfaces from
their Triangulations

Theslefes discussed above are for functions, i.e. one coordinate of
the image. Now we consider a patchp : R2 ! R3 with three



(a) parametric accuracy (b) covering accuracy

Figure 6: Adaptation of � p to parametrization and geometry.
(a) Both patches are �at. The left patch is uniformly parametrized,
the right non-uniformly with higher density for lowx values. To
guarantee parametric accuracy, variance-based tessellation� p is
higher for the right patch. (b) The left patch is �at, the right
curves. To guarantee covering accuracy, variance-based tessella-
tion is higher for the patch on the right where someslefe-boxes are
shown in red.

coordinates bounded by bilinear interpolants to upper and lower
values at the grid points(ui ; vj ), i; j 2 f 0; 1; : : : ; mg: for each
(ui ; vj ), p ij := p(ui ; vj ) andp ij := p(ui ; vj ), we have aslefe-
box

p(ui ; vj ) :=
p ij + p ij

2
+ [ �

1
2

::
1
2

]3(p ij � p ij ): (6)

Here [� 1
2 :: 1

2 ]3 is the 0-centered unit cube. Theslefe-box is an
axis-aligned box inR3 (see red boxes in Fig. 5 and 6b) centered at
the average of upper and lower values. Unlike exact surface points,
which yield at best an estimate of the true surface in their imme-
diate neighborhood,slefe-tiles spanned by four neighboring boxes
p(ui ; vj ), i 2 f k; k + 1 g, j 2 f `; ` + 1 g (cf. Fig. 4) tightly enclose
the patch restricted to the domain rectangle with corners(ui ; vj ),
i 2 f k; k + 1 g, j 2 f `; ` + 1 g. Theslefe-tiles are similar, but typ-
ically tighter than the convex hull of the control points (cf. Fig. 2).
The tightness of theslefe-tiles implied by the size of theslefe-boxes
will be crucial since looser bounds will force us to tessellate the
surface more �nely. However, theslefe-tiles in Fig. 4 are for expo-
sition only. We will never computeslefe-tiles, as one might do for
collision detection, because we are only interested in the difference
between the screen projection of the nonlinear patch and its linear
approximation.

Width To measure parametric accuracy, we de�ne the minimal
screen-coordinate-aligned rectangle that encloses the screen pro-
jection[ x

y ] := P(p(ui ; vj )) of to theslefe-box with indexi; j (see
the blue dashed rectangles in Fig. 5):

qij := [ xij ::xij ] � [y
ij

::yij ] ) P (p(ui ; vj )) : (7)

The maximal edge length over allqij is thewidth:

w(m; U; p) := max
i =0 ;:::;m
j =0 ;:::;m

maxf xij � xij ; yij � y
ij

g: (8)

The �rst argument of the width is the tessellation densitym, the
second the patch domain, e.g.U := [0 ::1]2 for Bézier patches,
and the third the patch. The width is a close upper bound on the
variance from linearity in the parameterization. The width shrinks
to zero when the parameterization becomes linear.

Decrease of Width with Denser Tessellation: Predicting Suf-
�cient Tessellation To guarantee parametric accuracy, we want
to uniformly partition theu; v-domain so that the width is below
pixel-size. For some smallm, saym = 3 , we estimate the width

w as in (8). To reduce the width below one pixel, we need to deter-
mine the tessellation factor� 2 R so thatw(� ; [0::1]; p) < 1. We
apply (4) to see that if each piece of them-times partitioned domain
were further partitioned1=h :=

p
w(m; [0::1]; p) times then the

predicted width of the resulting piecemeal enclosures (which we
never compute!) guarantees that the variance of the projection be-
tween exact and triangulated surface differs by less than one pixel.
In the de�nition of w(m; [0::1]; p) we have to take the maximum
of the screen-coordinatesx and y since generically neither coor-
dinate depends on just one ofu andv. ( If the GPU knew more
about the patch at this stage of the graphics pipeline we might do
better: for example if the patch was known to model a cylinder and
theu parameter maps to a straight line on the cylinder, then theu-
direction need not be partitioned at all. Of course, if the cylinder
had parameter lines at 45 degrees to the axis, unequal tessellation
and GPU-level intelligence would yield no savings.) And, since the
contributions of partitioning theu- and thev-domain are mixed in
the tensor-product, we generically need to partition theu- and the
v-direction equally, by the same factor.

Then, for any initial choicem > 0, partitioning both theu- and the
v-domain each into

� xy(m; p) := m
p

w(m; [0::1]; p) (9)

many pieces, con�nes the parameter distortion to at most one unit.
Analogously, the widthwz(m; [0; 1]; p) of the depth component
z of the projection measures �atness of theslefe-tiles and there-
fore trustworthiness of the z-buffer test for covering accuracy. To
enforce the depth tolerance tolz, we partition into� z(m; p) :=
m

p
wz(m; [0; 1]; p)=tolz pieces.

Setting the tessellation factor To guarantee that any error due
to linearization is below pixel and depth thresholds, we compute
the width for lowm, saym = 2 or 3, and then apply (9) to obtain
a safe tessellation factor of

� p := max f � xy(m; p); � z(m; p)g: (10)

Fig. 12 illustrates that, as expected, the resulting pieces are typically
much larger than micro-polygons.

6 Algorithm and Implementation

We can now guarantee pixel-accuracy by computing the tessellation
factor� p and sampling the surface accordingly.

(a) patch beyond thescreen
(lower left)

(b) withoutQ-test (c) with Q-test

Figure 7: � p depends only onQij that overlap the screen. (a)
One patch with only its two lower leftQij (of 9) overlapping the
screen (which is delineated by grey task and side bars.) (b) Tes-
sellation density based on the whole patch. (c) Tessellation density
based on the visible patch: 1/16 of (b) since the upper-right, high-
curvatureslefe-boxes do not in�uence the width.



Computing and Sharing Tessellation Factors Every time the
surface changes, e.g. due to animation, we need to re-compute the
slefe-boxesp(ui ; vj ) by (6). Every time the view changes, we need
to re-compute the projectionsqij of the slefe-boxes by (7). We
take the opportunity to also compute them � m minimal screen-
coordinate-alignedxy-rectanglesQij that each enclose the screen
projection of aslefe-tile:

Qij := [min f qkl g:: maxf qkl g] ( R 2 ; k 2f i;i +1 g;l 2f j;j +1 g :

This yields, for little cost, theQ-test, a cheap test for overlap with
the screen. Only thosexy-rectangles that overlap the screen par-
ticipate in determining the width (8). The possible reduction in� p

when only a small piece of the patch overlaps the screen is illus-
trated in Fig. 7 (see also the video). In particular, if noQij overlaps
the screen,w = 0 and hence� p = 0 . To guarantee water-tightness
along boundaries,� p is communicated to all edge-adjacent patches.

Pixel-Accurate Rendering in DX11 The Tessellation Engine
available with DX11 allows the speci�cation of both interior and
edge tessellation factors. To guarantee water-tightness, the Hull
Shader compares, for each edge of its patchp, the interior tessel-
lation factor� p with the factor� q of its edge-neighbor. The edge-
tessellation factor� p ;q for p on the boundary between patchesp
and q is then, by default, set to� p ;q := max f � p ; � q g. Only if
� p = 0 is the edge factor� p ;q set to zero. A patch outside the
viewing frustum therefore has minimal cost. Note that the default
correctly sets� q ;p = � q for � p = 0 and� q > 0.

The Domain Shader evaluates the spline pieces at the(ui ; vj ) coor-
dinates generated by the Tessellation Engine according to the fac-
tors set by the Hull Shader. Using bitwise commutative operations,
the evaluation exactly matches along the patch boundary (see e.g.
[Castano 2008]). The resulting triangles, possibly augmented by
(ui ; vj ) and the patch and object ids for more complex shaders, are
sent through the Rasterizer and thez-buffer to be rendered.

DX11 implementation Fig. 8 shows the variance-based ap-
proach mapped to the DX11 graphics pipeline. We abbreviate:
CS=Compute Shader, HS = Hull Shader, TE = Tessellation En-
gine, DS = Domain Shader, PS = Pixel Shader. We name the al-
gorithm interactive pixel-accurate shading of surfaces, iPASS for
short (since the natural abbreviation of PIXel-Accurate Rendering
is already taken).

The iPASS Algorithm

Input: Patchesp with coef�cientscij 2 R3 , slefeTable(s)
Output: Pixel-accurate rendering ofp.

Whenever triggered: Compute and distribute � p

CS (per patchp) If p changed, compute itsslefe-boxesp(ui ; vj ).
If the view changed, computeqij by (7), thexy-rectangles
Qij and� p according to (9) using theQ-test. Place the value
into the edge-slot of the edge-adjacent patches. Patches out-
side the viewing frustum receive� p = 0 .

Pixel-Accurate Rendering Pass

HS (per patchp) Set the interior tessellation factor to� p and the
edge factor to� p ;q := max f � p ; � q g. If � p = 0 , re-set the
edge factor to� p ;q = 0 .

TE Generate the(u; v) parameters according to the factors.

p
� p

� p

� p ; � p ;q

share with neighborCompute Shader CS

Pixel Shader PS

Domain Shader DS

Hull Shader HS

Tessellator TE

Rasterizer per triangle

determine� p ;q

Evaluation

(u; v) generation

Rendering

patchp (control pointscij ), slefeTable

Pixel-Accurate Rendering

Figure 8: DX11 passes used by iPASS.

DS (per parameter pair(u; v)) Evaluatep at (u; v).

PS (per pixel) Apply shaders.

END

7 Performance

We want to check that iPASS delivers pixel-accuracy ef�ciently
for generic models consisting of bi-cubic patches, such as the four
models in Fig. 12.

Size and Distribution of Pixel-accurate Triangles The right
panels of Fig. 12 show the triangle-size distribution for the mod-
els. The bar on the far right summarizes this distribution. Since any
triangle-size distribution must vary depending on the view, zoom
and the layout of the patches, we normalized each image to cover
38% of the screen. White indicates large triangles exceeding 20
pixels. Bounding the variance from the linear approximation evi-
dently results in triangles whose projection is typically much larger
than pixel-size. We observe that, generically, the number of trian-
gles projecting to fewer than 5 pixels is low and, due to their small
size, their overall percentage of screen coverage is still lower. Tri-
angles of micro-polygon size, i.e. covering half a pixel or less, are
rare (< 1%) and cluster around the silhouettes.

Tightness of � p The left panels of Fig. 12 con�rm pixel-
accuracy for the models. From the arguments in Section 5, it is
clear that we can arti�cially construct patches and views so that the
bounds are optimal and the iPASS choice of� p is minimal. To esti-
mate how tight theslefe-estimates are generically, we scaled the� p



of the four test models by numbers less than 1.0 to arti�cially lower
their tessellation density. We then analyzed pixel-accuracy by com-
paring for each pixel and its associated(u; v), the pixel position
to P(p(u; v)) . Measurement and prediction of� p are therefore
unrelated computations, as they should be. We found0:75� p still
safe for most patches, but already0:5� p unsafe for large areas (cf.
Fig. 9). For the test cases, therefore, the computed� p is close to
minimal.

(a) � p (b) 0.75� p (c) 0.5� p

Figure 9: Minimality of � p . Error (green, red) when reducing the
tessellation factor.

Performance scales linearly Our currently most ef�cient im-
plementation (cf. the accompanying video) animates 100 monster
frogs (129K patches) at 310 fps on a1440 � 900 screen without
instancing. With the same setup, 100 killeroos morphing into man
(304K patches) render at 150 fps. To measure worst-case perfor-
mance, we forced recomputation of allslefe-boxes and projections
at every time step. We measured and analyzed performance on
three architectures:N4 a NVidia GeForce GTX 480 with Intel Core
2 Quad CPU Q9450 at 2.66GHz with 4GB memory,A5 an ATI
Radeon HD 5870 with Intel Core 2 Quad CPU Q6600 at 2.40GHz
with 3GB memory, andA6 an AMD Radeon HD 6970 with Intel
Core 2 Quad CPU Q9450 at 2.66GHz with 4GB memory.
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Figure 10: Linear Scaling. (a) mspf vs number of patchesnp on
con�gurations N4 (blue), A5 (red), A6 (green) for varying screen
cover, keepingn4 and screen coveragen � constant for each line
at 20%, 40%, 60% or 80%. (b) mspf vs number of trianglesn4

keepingnp andn � constant.

As Fig. 10 shows, for a �xed architecture, screen size and display
model, run-time performance scales linearly as for standard render-
ing. The cost in milliseconds per framemspf is

mspf= k + c0np + c1n4 + c2n � ; (11)

wherek is the constant overhead of the passes,np the input size
represented by the number of patches,n4 the size of intermediate
computations represented by the number of triangles generated by
the tessellation engine andn � the output size represented by the
number of pixels that require non-trivial shading. The percentage
of the screen covered by these pixels is calledcover. To verify
the formula, we kept two of the three parameters in (11) constant

while varying the third. In Fig. 10a, the number of trianglesn4

and shaded pixelsn � (cover of 20%, 40%, 60%, 80%) are constant
for each measured graph. We vary the number of patchesnp by
splitting the original patches into four while halving the tessellation
factor to preserve the number of triangles. In Fig. 10b, the number
of patchesnp and the percentage of shaded pixelsn � are constant.
We vary the number of trianglesn4 by choosing the tessellation
factor to be�� p with � varying from 1.5 to 0.25 by steps of 0.25,
and measure also for� = 0 :1. The graphs have a linear regression,
with standard errors below one percent.

Comparison to a screen bound heuristic Recall that we guar-
antee that thevariancebetween rasterized and exact patch-piece
is less than half a pixel inx andy. The micro-polygon criterion
aims at enforcing accuracy by generating pieces ofsizeless than
half a pixel inx andy. Since safe recursive split-and-dice requires
an unknown number of multiple passes, it is a priori slower on
the GPU than our single compute shader pass. To mimic micro-
polygonization in a single pass, we set the tessellation factor to
a multiple 1

� of the maximal edge-length of the AABB bounding
box of the patch projection, aiming at a polygon size of� 2 pixels.
Setting� = 1 ; 2; 4 yields massive overtessellation and highly re-
duced fps. Reducing the tessellation factor further by setting� = 8
(typically considered suf�cient for uniform16 � 16 dicing), is still
slower than iPASS and results in the inaccuracies shown in Fig. 11a.

(a) Screen bound heuristic (b) Pixel-accurate

Figure 11: Screen bound Heuristicresults in parametric inaccu-
racy shown in red.

Compute Shader vs Pixel Shader We experimented with re-
placing the compute shader (CS) with a pixel shader (PS) pass.
Triggering a PS pass is indeed faster for our four models, the more
so the fewer the patches. When rendering more patches, e.g. 10
killeroos, however, the advantage reverses in favor of the CS. The
higher constant cost of CS-initialization amortizes better with more
work that, in our implementation, is better parallelized on the CS.
We are in the process of testing whether additional patch culling in
the CS (see e.g. [Loop et al. 2011]) pays off.

8 Discussion

Choice of m = 3 for � p The algorithm is pixel-accurate for any
initial choicem of slefe-segments. But there is a trade-off between
the tightness of the estimate and the cost of computing the initial,
low-m bound. Comparing the performance form = 2 ; 3; 4 over
the range of models, we found thatm = 3 maximizes fps for all
models.

No pixel-dropout Since the boundary tessellation factors of ad-
jacent patches agree, there are no T-joints. Boundary points are



computed by the univariate de Casteljau algorithm, i.e. repeated
pairwise averaging that is implemented as a bitwise commutative
operation. Therefore boundary points are computed bitwise consis-
tently for a patch and its neighbor.

High Zoom and Partial Patches High zoom means fewer
patches to tessellate since� p = 0 for patches outside the view-
ing frustum. Also, when a smooth patch �lls the screen under high
zoom, its local depth variation can be expected to be low since the
tangent plane is locally a good approximation. Since patch seg-
ments that project suf�ciently far outside the screen do not con-
tribute to� p , zoomed-in terrain or water surfaces can have low tes-
sellation (cf. Fig. 7). Finally, at1440� 900 resolution� max = 64
splits a screen-�lling patch into quads of size24 � 24 . Together, this
explains why we have not encountered that the maximal tessellation
factor of 64 set by graphics cards was exceeded. If the maximum is
exceeded, our preferred solution is lazy binary subdivision, replac-
ing the patch by four subpatches in the work-queue and maintaining
a link to restore the original patch when the subpatch� p s add to
less than 64.

Compatibility with shaders Integrating shaders with the Ren-
dering Pass is straightforward. We veri�ed this for defocus, motion
blur, MSAA, transparency, pixel-accurate trimming and more.

9 Conclusion

We de�ned pixel-accuracy as covering accuracy plus parametric
accuracy to display curved shape correctly and prevent paramet-
ric distortion. Of the four level-of-detail criteria considered in the
classical survey [Xia et al. 1997], silhouettes are correctly captured
by covering accuracy, increase due to gradient is captured by para-
metric accuracy, the length of the screen-space projection is not
relevant and visibility culling is performed when� = 0 .

To practically enforce pixel-accuracy, in particular within the exist-
ing graphics pipeline, we showed how to use the contraction of tight
enclosures of polynomial pieces when reducing the domain, to pre-
dict a tessellation density that guarantees that the variance between
an exact surface piece and its triangulation drops below the pixel
threshold. Due to equation (9), the underlyingslefes are never con-
structed, but only differences of afewslefe-based screen-projected
points, to establish and predict variance. This re�ects the change of
objective compared to the literature: the shift from controlling size
to controlling variance(between the projection of the exact surface
and its triangulation).

Finally, we demonstrated an implementation under DX11 that can
render 300K patches at 150 frames per second, a speed comparable
to inaccurate, moderately dense, �xed-level tessellation.
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10 Appendix: Tensor-product Bounds

The tensor-product patch (5) can be bounded by computing the up-
per values~cij ; i = 0 ; : : : ; d1 (for eachj = 0 ; : : : ; m2) of the 1-
variableslefe in thev direction and then treat the values as control
points when computing the upperslefe in theu direction:

p(u; v) �
d1X

i =0

m 2X

j =0

~cij b1
j (v)bd1

i (u) =
m 2X

j =0

d1X

i =0

~cij bd1
i (u)b1

j (v)

�
m 2X

j =0

m 1X

i =0

�cij b1
i (u)b1

j (v):

Tensoredslefes avoid the need to store and access the much larger
table of (possibly tighter) pre-computed bounds in two variables.

Let slefe(c; m) be the routine that returns them + 1 values of the
upperslefe. We compute

for i = 0 ; : : : ; d1 ;

[~ci 0 ; ~ci 1 ; : : : ; ~cim 2 ] := slefe([ci 0 ; ci 1 ; : : : ; cid 2 ]; m2)

and obtain the values�cij , i = 0 ; : : : ; m1 , j = 0 ; : : : ; m2 of the
upper bound on the tensor-product from a second application

for j = 0 ; : : : ; m2 ;

[�c0j ; �c1j ; : : : ; �cm 1 j ] := slefe([~c0j ; ~c1j ; : : : ; ~cd2 ;j ]; m1):

Lower values are computed analogously.



(a) teapot (b) frog

(c) big guy (d) killeroo

Figure 12: Pixel-accuracy and triangle distribution for 38% screen cover. left panels of (a),(b),(c),(d): blue and grey indicate pixel-
accuracy. Grey color indicates for the pixel'su; v that p(u; v) projects to less than 0.1 pixel sizes away from the pixel center. Blue means
less than 0.5. right panels: the colors indicate triangle size asblue < 5, green < 10, red < 20, white > = 20 pixels. The bar on the right
summarizes the triangle size of the non-background pixels. Grid patternsstem from the tessellation engine.


