Ef cient Pixel-Accurate Rendering of Curved Surfaces

Young In Yeo Lihan BinY Jorg Peters
University of Florida Advanced Micro Devices University of Florida
Abstract parametric accuracy texture checker texture

A curved or higher-order surface, such as spline patch czzaeB
patch, is rendered pixel-accurate if it displays neither polyhedral ar-
tifacts nor parametric distortion. This paper shows how to set the
evaluation density for a patch just nely enough so that paramet-
ric surfaces render pixel-accurate in the standard graphics pipeline.
The approach uses tight estimates, not of the size under screen-
projection, but of the varianceunder screen projection between
the exact surface and its triangulation. An implementation, using
the GPU tessellation engine, runs at interactive rates comparable to (a) uniform9 9 evaluation
standard rendering.

1 Introduction

When a model uses curved surfaces, the designer is typically called
upon to set one or several levels of tessellation for display. Butin an
interactive setting, where the camera is free to zoom in or out of the
scene, no xed set of levels can avoid faceted display or overtessel-
lation. While a number of smart heuristics are being used to adjust
the tessellation density, based on viewing and surface properties, it
is desirable to guarantee accurate rendering (and avoid overtessel- (b) pixel-accurate rendering

lation). To deliver such guarantees, this paper makes precise the

notion of pixel-accurate rendering: pixels are to be controlled by Figure 1: Visualizingparametric (in)accuracy, one of two crite-

one or more non-occluded patches projecting to it (covering accu- ria for judging the rendering of curved surfaces. Green and red
racy) and have correct associated domain parameters (parametrigixels are inaccurate as follows. Each pixel has an associated
accuracy — cf. Fig. 1a). parameter and patcp. The pixel is colored [grey, blue, green] if
the distance of the pixel center to the screen projectign(af v) is

at most{0:1; 0:5; 1] pixel widths. If it is red, the distance is greater
than 1. The enlargement shows the effect of parametric inaccuracy
on a checkered texture. The parametric distortion in (a) causes in-
correct horizontal kinks and vertical oscillations.

Deriving an algorithm for safe yet ef cient tessellation starts with
the observation that the existing graphics pipeline is ef cient and
accurate for polyhedral surfaces. Therefore the evaluation density
(tessellation factor) needs only guarantee thavdreancebetween
the image of the triangulation of the surface and the true surface is
not perceptible on a pixel-based screen. To be most ef cient for the
existing graphics pipeline, the evaluation density shoulohlsemal
— just so that the error stays below the visible (pixel) threshold. tion 4 explains known tight enclosures for splines and Section 5

. . . . their novel use (9) that ensures pixel-accuracy without ever comput-
Guaranteeing sub-pixel variance represents a different appteach juq the enclosures. Section 6 speci es an algorithm and its DX11
accurate rendering than micro-polygonization. Consider a uniform, js1ementation to measure performance on realistic data sets (Sec-
at bicubic patch, orthogonal to the viewing direction and covering o 7). Section 8 lays out implementation trade-offs. An accompa-
the whole screen. Micro-polygonization recursively splits such a nying video shows non-instanced “killeroos' (108042 patches)
patch ten times in each direction to bound the paweentof the pixel-accurately rendered at 150 frames-per-second and 100 non

project_ion. A variance-based approach need not split the patch atinstanced *monster frogs' (100292 patches) at 310 fps.
all to yield pixel-accuracy.

. . . _ 2 Rel Literatur
Overview After the literature review, Section 3 de nes pixel- elated Literature

accuracy. Introducing a mechanism for setting the tessellation den-.l_he variance-based approach to pixel-accurate rendering requires
sity requires showing on one hand that the setting guarantees ac-, PP P g req

curacy and, on the other, that it is not overly conservative. Sec- tight bo_unds on the deviation from Iln_earlty (rathe_r than the size of
the projected image) and a mechanism to predict the decrease of

e-mail: yiyeo@cise.u .edu the d_e_/iation when increas!ng the te_ssella'_[io_n density. Such exact
Ye-mail: Lihan.Bin@amd.com prediction allows us to avoid recursive splitting-and-reassessment
Ze-mail: jorg@cise.u .edu of patch bounds.

LoD and Bounding ConstructsSetting tessellation density is re-
lated to level-of detail schemes for polyhedral models (see e.g. the
survey [Xia et al. 1997]). It faces the same trade-off of bounding
construct ef ciency vs. tightness (cf. Fig. 2) and has to consider
the cost of initialization, modi cation (e.g. under rotation or defor-
mation) and testing. Treatment of “popping artifacts' and choice of
simpli cation operator [Hoppe 1996; Gross et al. 1995] however

Covering accuracy requires that each pixel's output value be
A ‘ ‘ ‘ ‘ ‘ controlled by one or more unoccluded pieces of patches whose pro-
V ‘ ‘ ‘ ‘ ‘ jection overlaps it suf ciently. — Here “suf ciently’ quali es over-

lap with respect to alternative (anti-aliasing) sampling strategies,

“control' means that the pixel shader can take the unoccluded piece
Figure 2: Bounding constructsfor a cubic curve with a step-like into consideration when determining the output value (color), and
control polygon. Here less grey means better! Curve and control “one or more' accounts both for semi-transparency and for multiple
polygon, min-max or axis-aligned bounding box (AABB), bounding pieces' projections partially overlapping the pixel. Inaccurate cov-
disk, convex hull (here equal to an 8-dop), oriented bounding box, ering due to triangulation and rasterization leads to non-smooth sil-
m = 3 -pieceslefe. houettes (showing occluded background or controlling output with-

out overlap), false intersection lines, and incorrect depth-ordering

(where an originally curved and front-most fragment looses in the

. . .) depth-buffer comparison). In addition to incorrect display, covering
is automated by the continuous re nemenhiardware tessellation jnaccuracy can result in noise or pixel dropout.

[Drone et al. 2008]. Higher-order surfaces such as NURBS (B-
spline), Bezier patches and subdivision surfaces, can be enclosed by) .) .
their polyhedral control net (see e.g. [Farin 1988]). The well-kmow Parametric accuracy requires that for all pixels the folloyvmg
estimates of Filip et al. [Filip et al. 1986] (see also [Sheng and holds. Let[y] be the pixel's center and lgt; u; v be an associated
Hirsch 1992; Tookey and Cripps 1997; Guthe et al. 2005]) bound surfacep : R* | R® and(u;v) parameter pair. Then the surface
the difference of a piecewise linear interpolant at the domain cor- pointp(u;v) 2 R* must project into the pixel:

ners to a smooth function piegein terms of a sum of all mixed) M .

second order derivative@@p, i +j = 2. However, already for kP(p(uiv)) [ylki < O5: @
a simple example such as Fig. 3, this bound is 10 times larger than_
the more specializeslefe bounding structure de ned in [Lutterkort
2000; Peters 2004]. We will use the estimates providesldfgs in

a novel way in Section 5, without ever constructiigfes.

Parametric accuracy makes precise the criterion stated in Reyes,
that uniform traversal of the domain results in a near-uniform
traversal of the screen-projected image. Even when the pixel is
covered by the proper surface piece, too coarse a triangulation can
lead toparametric distortioni.e. P (p(u;V)) lies outside the pixel
associated with parametefs;v). Since(u;v) are used for tex-

ture look-up, to evaluate surface properties such as normals and
to determine displacement and procedural shaders this can cause a
multitude of artifacts incompatible with accurate rendering. Para-
metric inaccuracy is color-encoded in Fig. 1a. The resulting texture
distortion is shown in the enlargement.

Micropolygonization In the split-and-dice phase of the Reyes ar-
chitecture [Cook et al. 1987] higher-order surfaces are realysiv
partitioned and tested until they qualify for uniform partition (dic-
ing) into micro-polygons. Micro-polygons are expected to project
to no more than a quarter pixel. Split-and-dice presents a challenge
for parallel execution, both because of work load imbalance and an
a priori unknown depth of recursion. A number of recent publi-
cations have focused on micro-polygonization on the GPU using
either the min-max AABB bound or an image space edge-length
heuristic to estimate the extent of the projection. Real-time
Reyes-style adaptive surface subdivisiBatney and Owens [Pat-
ney and Owens 2008] ported the split-and-dice stage on the GP
using CUDA. A Data-Parallel Rasterization of Micro-polygons
[Fatahalian et al. 2009] improves micro-polygon rasterization and 4 ~Patch representation, function enclosure

[Fisher et al. 2009] improves split-and-dicing with the Diagsplit.

Figure 10 of [Fisher et al. 2009] gives a comparison of the accuracy To take advantage of the existing, ef cient graphics pipeline, we
of splitting heuristics. [Eisenacher and Loop 2010] report micro- want to determine the coarsest partition that guarantees pixel-
polygon generation at 30-50% of the speed of standard rasteriza-accuracy when rasterizing. Unlike micro-polygonization, the goal
tion. RenderAntd®y Kun Zhou et al. [Zhou et al. 2009] implements s to control thevariance of the projectiobetween exact and trian-
the complete Reyes-pipeline based on a special GPGPU program-gulated surface, not the size of the projection. This section explains
ming language, called BSGP (see also [Tzeng et al. 2010]). Load- slefes whose estimates are used in a novel way in Section 5 to en-
balancing within various stages addresses some of the challengesure pixel-accuracy.

of split-and-dice. For supersampling and anti-aliasing, [Fatahalian
et al. 2010] point to the problem of many tiny fragments that chal-
lenge memory access and SIMD ef ciency and suggest improving
shader ef ciency by merging micro-polygons.

Standard processing in the graphics pipeline can be pixel-accurate.
When the screen projection of a spline patch is suf ciently uniform
in the parameters and its depth varies suf ciently little. Fig. 12
shows how pieces much larger than a micro-polygon can be raster-
yized without loss of pixel-accuracy.

Parametric representation The common higher-order surface
representations areéRier patchesg/Map2in OpenGL), NURBS
patches @luNurbsSurfacen OpenGL) and subdivision surfaces.
Subdivision surfaces are splines with singularities [Peters and Reif
3 Pixel-accuracy 2008] and can be treated as nested rings of spline patches. NURBS
are easily converted to polynomial pieces in tensor-prodécids-

. . L form (5), by the well-known stable technique called “knot inser-
According to [Cook et al. 1987] the goal of micro-polygonization ion' Below we therefore focus on &ier patches. Analogous

is to generate a base representation that is natural in the sense thalgimates apply directly to NURBS and subdivision surfaces.
uv-axis-aligned grids of micro-polygons map to surface pieces for

which no inverse perspective calculation is necessary. We make thisA polynomial p of degreed in the variableu and with coef cients
goal precise by distinguishing two components of pixel-accuracy: ¢ 2 R has the Bzier-form

covering accuracy and parametric accuracy. Below, a pixel, the 1

smallest screen unit that can be controlled, is de ned as a half-open xd d d d d
squard}y]+ L[1;1)% centered afj]2 N?,P : R® ! RZisthe p:R! Ru7!p(u):= ¢b(u); b= j 1 u” u
projection to the screen arkd ki = max fj aj; jbjg. j=0

min-max

. |
3 “ay W

control polygon

@

C1

Figure 3: Theslefe-construction from [Peters 2004]. (a) The func-
tionp(t) := Bi(t) + b3(t) and its upper boung. (b) The lower
boundas , and the upper boundz® tightly sandwiching the func-
tiona; := 2b{(t) 1b3(t), usingm = 3 segments. Table 1
showsw = max p..)p pto be< 0:07. The corresponding num-
ber for [Filip et al. 1986] (not illustrated) i&g = 0:75 and for the
min-max-bound.

Subdividable Linear Efcient Function Enclosures (short:

slefes, pronounced sleeves) [Lutterkort 2000; Peters 2004] tightly
sandwich non-linear functions, such as polynomials, splines and
subdivision surfaces, between simpler, piecewise linear, upper and

lower functions:
p P P
Speci cally, [Lutterkort 2000] shows that (cf. Fig. &ft)
%1 Cm
Py Pty = ()+ maxdor Fpgad (1) ()

j=1
’(! 2 d
+ minf0;r {pgay (t):
i=1 -
with the matching lower bounp obtained by exchangingin and
max operators. Here
a; j=1;:0d 1
are polynomials that span the space of polynomials of degjreie
—m
nus the linear functiony(t); a]d is anm-piece upper aneii’m an

m-piece lower bound oaﬁ; andr 7p:= d(g 1 2G + 1)
is a second difference of the control points.plfs a linear func-

Figure 4: slefe-tiles formed by fouslefe-boxes locally enclose the
surface (but are never explicitly computed).

Ui 1;V)) X; ’-X- ----- P(E(Ui;Vj)

ij
S O I
B 1v) X;y pixel size

Figure 5: Projected slefe-boxes. The projectedslefe-boxes (red)

are enclosed by axis-aligned rectangles (blue, dashed) whose con-
vex hull (grey area) encloses the image (here @t 1::uil;v;)).

The (square-root of the) maximal edge-length of the rectangles, in
pixel size, determines the tessellation factor

=l

Bound Improvement under Re nement
spaced irJ and let

Consideru; equally

w(m; U; p) = i=ryax p(ui) pui): 3
Restricting theJ-domain from[0::1] to [u; u+ h], h << 1, reduces

the maximal second difference
ir 2pj = max_jr ’¢j2 R to h%jr *pj:
Comparing with (2) and De nition (3), we see that
w(m; [u;u + h];p) h? w(m; [0; 1]; p):

(4)

tion, upper and lower bounds agree. The tightness of the bounds ' hat is, partitioning theu-domain into 1=h segments, and re-

is important since loose bounds result in over-tessellation. Fig.
shows the min-max or AABB bound to be looser by an order o
magnitude than the widtlv := max 2 o..1; p(t) p(t) of slefes.
The next paragraph shows thsidfes are inexpensive to compute.

t=] 0 13 213 1
@ 0 -370370.. -.296296.. 0
ai, | -069521. -439891. -.315351. -.008732..

Table 1: Values at breakpoints of i@ = 3 -pieceslefe.

Pre-computation ~ Being piecewise linear the bounding functions

a]-dm and a,-dm in (2) are de ned by their values at the uniformly

spaced break points. These values can be pre-computed. Ta-
ble 1 lists all numbers needed to compute Fig. 3, e.g. the values

:370370Q: and :439891: att = 1=3. This table and the tables

for higher degree can be downloaded [Wu and Peters 2002]. Due

to symmetry, for example3(1 t) = ai(t), only one half of the
d 1ltables are needed, i.e.just1 fbe 3.

3p representing the function over the smaller interval before applying
¢ the bound, scales by h*.

Tensor-product ~ Surface patches are polynomial surface pieces
in tensor-product Bzier-form of degreel;;d, in the variables
(u;v) 2 [0:17,

X Ko g g
p(u;v) := cj b (V)b (u):

i=0 j=0

Q)

Appendix 10 shows how to use bounds in one variable to bound
tensor-product patches.

5 Estimates ensuring pixel-accuracy:
Bounding the Variance of Surfaces from
their Triangulations

Theslefes discussed above are for functions, i.e. one coordinate of
the image. Now we consider a patph: R? I R® with three

(a) parametric accuracy (b) covering accuracy

Figure 6: Adaptation of , to parametrization and geometry.

(a) Both patches are at. The left patch is uniformly parametrized,
the right non-uniformly with higher density for low values. To
guarantee parametric accuracy, variance-based tessellatjors
higher for the right patch. (b) The left patch is at, the right
curves. To guarantee covering accuracy, variance-based tessella
tion is higher for the patch on the right where sosfefe-boxes are
shown in red.

coordinates bounded by bilinear interpolants to upper and lower
values at the grid pointgui;v;), i;j 2 f0;1;:::;mg: for each

(ui;vi), Pi = p(uisvj) andpj = p(ui;vj), we have aslefe-
box

_ Pij * Pi 1.1,

pui;v) = T*"'[531513(% i): (6)

Here[:1]® is the O-centered unit cube. Thelefe-box is an
axis-aligned box irR® (see red boxes in Fig. 5 and 6b) centered at

W as in (8). To reduce the width below one pixel, we need to deter-
mine the tessellation factor2 R so thatw(~; [0::1];p) < 1. We
apply (4) to see that if each piec& of timetimes partitioned domain
were further partitioned=h := = w(m; [0::1]; p) times then the
predicted width of the resulting piecemeal enclosures (which we
never compute!) guarantees that the variance of the projection be-
tween exact and triangulated surface differs by less than one pixel.
In the de nition of w(m; [0::1]; p) we have to take the maximum

of the screen-coordinatesandy since generically neither coor-
dinate depends on just one ofandv. (If the GPU knew more
about the patch at this stage of the graphics pipeline we might do
better: for example if the patch was known to model a cylinder and
theu parameter maps to a straight line on the cylinder, theruthe
direction need not be partitioned at all. Of course, if the cylinder
had parameter lines at 45 degrees to the axis, unequal tessellation
and GPU-level intelligence would yield no savings.) And, since the
contributions of partitioning the- and thev-domain are mixed in

the tensor-product, we generically need to partitionuhand the
v-direction equally, by the same factor.

Then, for any initial choicen > 0, partitioning both thei- and the
v-domain each into
p A1 N

Txy(m;p) = m w(m; [0:1]; p) 9
many pieces, con nes the parameter distortion to at most one unit.
Analogously, the widthw,(m; [0; 1]; p) of the depth component
z of the projection measures atness of thlefe-tiles and there-
fore trustworthiness of the z-buffer test for covering accuracy. To
enforce the depth tolerance tplwe partition into—,(m; p) :=

the average of upper and lower values. Unlike exact surface points, ’]5

which yield at best an estimate of the true surface in their imme-
diate neighborhoodslefe-tiles spanned by four neighboring boxes
p(ui;vy),i2fk;k+1g,j 2f";" +1g(cf. Fig. 4) tightly enclose
the patch restricted to the domain rectangle with corersv;),
i2fk;k+1g,j 2f";" +1g. Theslefe-tiles are similar, but typ-
ically tighter than the convex hull of the control points (cf. Fig. 2).
The tightness of thelefe-tiles implied by the size of thelefe-boxes

will be crucial since looser bounds will force us to tessellate the
surface more nely. However, thelefe-tiles in Fig. 4 are for expo-
sition only. We will never computslefe-tiles, as one might do for

m wz(m; [0; 1]; p)=tol, pieces.

Setting the tessellation factor To guarantee that any error due
to linearization is below pixel and depth thresholds, we compute
the width for lowm, saym = 2 or 3, and then apply (9) to obtain

a safe tessellation factor of

p 1= max f ~xy (m; p); ~2(m; p)g: (10)

Fig. 12 illustrates that, as expected, the resulting pieces are typically

collision detection, because we are only interested in the difference much larger than micro-polygons.

between the screen projection of the nonlinear patch and its linear

approximation.

width To measure parametric accuracy, we de ne the minimal

6 Algorithm and Implementation

We can now guarantee pixel-accuracy by computing the tessellation

screen-coordinate-aligned rectangle that encloses the screen profactor , and sampling the surface accordingly.

jection[§] = P(p(ui;v;)) of to theslefe-box with indexi;j (see
the blue dashed rectangles in Fig. 5):

G =0 X] Iy myy 1) P(E(uiiv): (1)
The maximal edge length over gjj is thewidth:
w(m;U;p):= max maxfxj X;;y; oy, 9 (8)
j=0 im

The rst argument of the width is the tessellation density the
second the patch domain, eld. := [0::1]* for Bézier patches,
and the third the patch. The width is a close upper bound on the
variance from linearity in the parameterization. The width shrinks
to zero when the parameterization becomes linear.

Decrease of Width with Denser Tessellation: Predicting Suf-

cient Tessellation To guarantee parametric accuracy, we want
to uniformly partition theu; v-domain so that the width is below
pixel-size. For some smath, saym = 3, we estimate the width

(a) patch beyond thescredh) withoutQ-test
(lower left)

(c) with Q-test

Figure 7: , depends only onQj that overlap the screen. (a)

One patch with only its two lower le@; (of 9) overlapping the
screen (which is delineated by grey task and side bars.) (b) Tes-
sellation density based on the whole patch. (c) Tessellation density
based on the visible patch: 1/16 of (b) since the upper-right, high-
curvatureslefe-boxes do not in uence the width.

Computing and Sharing Tessellation Factors Every time the

surface changes, e.g. due to animation, we need to re-compute the patchp (control pointsc;), slefeTable

slefe-boxesp(ui; v;) by (6). Every time the view changes, we need
to re-compute the projectior of the slefe-boxes by (7). We
take the opportunity to also compute tibe m minimal screen-
coordinate-aligneaty-rectanglesQ; that each enclose the screen
projection of aslefe-tile:

Qi :=[min faag:maxfaag] (R % kar i +1gi2r jj +1g°
This yields, for little cost, th&-test, a cheap test for overlap with
the screen. Only thosey-rectangles that overlap the screen par-
ticipate in determining the width (8). The possible reductionyin
when only a small piece of the patch overlaps the screen is illus-
trated in Fig. 7 (see also the video). In particular, if@p overlaps
the screenw = 0 and hence, = 0. To guarantee water-tightness

along boundaries,, is communicated to all edge-adjacent patches. :

Pixel-Accurate Rendering in DX11 The Tessellation Engine
available with DX11 allows the speci cation of both interior and

edge tessellation factors. To guarantee water-tightness, the Hull:

Shader compares, for each edge of its pgickhe interior tessel-
lation factor , with the factor 4 of its edge-neighbor. The edge-
tessellation factor,.q for p on the boundary between patches
andq is then, by default, set to,;q = maxf p; ¢qg. Only if

p = 0 is the edge factorp,q set to zero. A patch outside the
viewing frustum therefore has minimal cost. Note that the default
correctly setsq;p = g for , =0 and 4 > 0.

The Domain Shader evaluates the spline pieces dtihe;) coor-

dinates generated by the Tessellation Engine according to the fac-

tors set by the Hull Shader. Using bitwise commutative operations,

P @ @%@
& ® =
(Compute Shader % share with neighbor" @ p e
&

(Hull Shader HS)
l Py Piq

Tessellator

determine p.q

TE (u; v) generation

Y

(Domain Shader D§ Evaluation
: Rasterizer per triangle
(Pixel Shader PSD Rendering

Figure 8: DX11 passes used by iPASS.

the evaluation exactly matches along the patch boundary (see e.g.

[Castano 2008]). The resulting triangles, possibly augmented bv
(ui;v;) and the patch and object ids for more complex shaders, a
sent through the Rasterizer and thbuffer to be rendered.

DX11 implementation Fig. 8 shows the variance-based ap-
proach mapped to the DX11 graphics pipeline. We abbreviatt
CS=Compute Shader, HS = Hull Shader, TE = Tessellation En-
gine, DS = Domain Shader, PS = Pixel Shader. We name the al-
gorithminteractive pixel-accurate shading of surfac@ASS for
short (since the natural abbreviation of PIXel-Accurate Rendering
is already taken).

The iPASS Algorithm

Input: Patches with coef cientscj 2 R®, slefeTable(s)
Output: Pixel-accurate rendering pf.

Whenever triggered: Compute and distribute p
CS (per patclp) If p changed, compute itdefe-boxesp(ui;V;).
If the view changed, computa; by (7), thexy-rectangles
Qi and , according to (9) using th@-test. Place the value

DS (per parameter pafu;v)) Evaluatep at(u;v).
PS (per pixel) Apply shaders.
END

7 Performance

We want to check that iPASS delivers pixel-accuracy ef ciently
for generic models consisting of bi-cubic patches, such as the four
models in Fig. 12.

Size and Distribution of Pixel-accurate Triangles The right
panels of Fig. 12 show the triangle-size distribution for the mod-
els. The bar on the far right summarizes this distribution. Since any
triangle-size distribution must vary depending on the view, zoom
and the layout of the patches, we normalized each image to cover
38% of the screen. White indicates large triangles exceeding 20
pixels. Bounding the variance from the linear approximation evi-
dently results in triangles whose projection is typically much larger
than pixel-size. We observe that, generically, the number of trian-

into the edge-slot of the edge-adjacent patches. Patches outyles projecting to fewer than 5 pixels is low and, due to their small

side the viewing frustum receivg = 0.
Pixel-Accurate Rendering Pass

HS (per patclp) Set the interior tessellation factor tg and the
edge factor t0 p;q := maxf p; ¢0. If p = 0, re-set the
edge factor top;q = 0.

TE Generate théu;v) parameters according to the factors.

size, their overall percentage of screen coverage is still lower. Tri-
angles of micro-polygon size, i.e. covering half a pixel or less, are
rare €& 1%) and cluster around the silhouettes.

Tightness of The left panels of Fig. 12 conrm pixel-
accuracy for the models. From the arguments in Section 5, it is
clear that we can arti cially construct patches and views so that the
bounds are optimal and the iPASS choice pfs minimal. To esti-
mate how tight thalefe-estimates are generically, we scaled the

of the four test models by numbers less than 1.0 to arti cially lower
their tessellation density. We then analyzed pixel-accuracy by com-
paring for each pixel and its associat@d v), the pixel position

to P(p(u;Vv)). Measurement and prediction of are therefore
unrelated computations, as they should be. We foui8 , still

safe for most patches, but alrea@t$, unsafe for large areas (cf.
Fig. 9). For the test cases, therefore, the compugeis close to
minimal.

@ (b) 0.75, (© 05,

Figure 9: Minimality of
tessellation factor.

p . Error (green, red) when reducing the

Performance scales linearly Our currently most ef cient im-
plementation (cf. the accompanying video) animates 100 monster
frogs (129K patches) at 310 fps onld40 900 screen without
instancing. With the same setup, 100 killeroos morphing into man
(304K patches) render at 150 fps. To measure worst-case perfor
mance, we forced recomputation of sliéfe-boxes and projections

while varying the third. In Fig. 10a, the number of triangtes

and shaded pixels (cover of 20%, 40%, 60%, 80%) are constant
for each measured graph. We vary the number of patobelsy
splitting the original patches into four while halving the tessellation
factor to preserve the number of triangles. In Fig. 10b, the number
of patches, and the percentage of shaded pixelsare constant.
We vary the number of triangless by choosing the tessellation
factor to be |, with varying from 1.5 to 0.25 by steps of 0.25,
and measure also for= 0:1. The graphs have a linear regression,
with standard errors below one percent.

Comparison to a screen bound heuristic Recall that we guar-
antee that theariance between rasterized and exact patch-piece
is less than half a pixel in andy. The micro-polygon criterion
aims at enforcing accuracy by generating piecesipéless than
half a pixel inx andy. Since safe recursive split-and-dice requires
an unknown number of multiple passes, it is a priori slower on
the GPU than our single compute shader pass. To mimic micro-
polygonization in a single pass, we set the tessellation factor to
a multiple 1 of the maximal edge-length of the AABB bounding

box of the patch projection, aiming at a polygon size dfpixels.
Setting = 1;2; 4 yields massive overtessellation and highly re-
duced fps. Reducing the tessellation factor further by setting8
(typically considered suf cient for uniformi6 16 dicing), is still
slower than iPASS and results in the inaccuracies shown in Fig. 11a.

at every time step. We measured and analyzed performance on

three architecturedd4 a NVidia GeForce GTX 480 with Intel Core

2 Quad CPU Q9450 at 2.66GHz with 4GB memaoij an ATI
Radeon HD 5870 with Intel Core 2 Quad CPU Q6600 at 2.40GHz
with 3GB memory, ancA6 an AMD Radeon HD 6970 with Intel
Core 2 Quad CPU Q9450 at 2.66GHz with 4GB memory.

mspf

mspf

A5 80% ——
60% ===

40%

20%
A6 80%

50K 100K 150K 200K
Number of triangles in Pass 1

(b) mspfvsng

5‘12 2648 oOK
Number of input patches

(a) mspfvsnp

Figure 10: Linear Scaling. (a) mspf vs number of patchag on
con gurations N4 (blue), A5 (red), A6 (green) for varying screen
cover, keepingh, and screen coverage constant for each line
at 20%, 40%, 60% or 80%. (b) mspf vs number of triangles
keepingn, andn constant.

As Fig. 10 shows, for a xed architecture, screen size and display

model, run-time performance scales linearly as for standard render-

ing. The cost in milliseconds per framespfis

mspf= Kk + conp + Cins + Cn (12)
wherek is the constant overhead of the passgsthe input size
represented by the number of patches, the size of intermediate
computations represented by the number of triangles generated b
the tessellation engine amd the output size represented by the
number of pixels that require non-trivial shading. The percentage
of the screen covered by these pixels is calbeder To verify

the formula, we kept two of the three parameters in (11) constant

(a) Screen bound heuristic (b) Pixel-accurate

Figure 11: Screen bound Heuristicresults in parametric inaccu-
racy shown in red.

Compute Shader vs Pixel Shader ~ We experimented with re-
placing the compute shader (CS) with a pixel shader (PS) pass.
Triggering a PS pass is indeed faster for our four models, the more
so the fewer the patches. When rendering more patches, e.g. 10
killeroos, however, the advantage reverses in favor of the CS. The
higher constant cost of CS-initialization amortizes better with more
work that, in our implementation, is better parallelized on the CS.
We are in the process of testing whether additional patch culling in
the CS (see e.g. [Loop et al. 2011]) pays off.

8 Discussion

Choice of m =3 for , The algorithm is pixel-accurate for any
initial choicem of slefe-segments. But there is a trade-off between
the tightness of the estimate and the cost of computing the initial,
low-m bound. Comparing the performance for = 2; 3; 4 over

the range of models, we found that = 3 maximizes fps for all

Ymodels.

No pixel-dropout Since the boundary tessellation factors of ad-
jacent patches agree, there are no T-joints. Boundary points are

computed by the univariate de Casteljau algorithm, i.e. repeated Cook, R. L., CARPENTER L., AND CATMULL, E. 1987. The
pairwise averaging that is implemented as a bitwise commutative Reyes image rendering architecture. @omputer Graphics
operation. Therefore boundary points are computed bitwise consis- (SIGGRAPH '87 Proceedings\. C. Stone, Ed., 95-102.

tently for a patch and its neighbor.)
DRONE, S., LEE, M., AND ONEPPQ M., 2008. Direct3d 11

tessellation.http://www.microsoft.com/download/
High Zoom and Partial Patches High zoom means fewer en/details.aspx?id=23111 . Gamefest 2008.
patches to tessellate sincg = 0 for patches outside the view-)
ing frustum. Also, when a smooth patch lIs the screen under high E'SENACHER, C.,AND LOOR, C. 2010. Data-parallel micropoly-
zoom, its local depth variation can be expected to be low since the 90N rasterization. liurographics 2010 Annex: Short Papers
tangent plane is locally a good approximation. Since patch seg- S- Seipel and H. Lensch, Eds.
ments that project suf ciently far outside the screen do not con-
tribute to , , zoomed-in terrain or water surfaces can have low tes-
sellation (cf. Fig. 7). Finally, at440 900resolution max = 64
splits a screen- lling patch into quads of si2é 2*. Together, this FATAHALIAN , K., LUONG, E., BouLosS, S., AKELEY, K.,
explains why we have not encountered that the maximal tessellation pMark, W. R.,AND HANRAHAN, P. 2009. Data-parallel raster-
factor of 64 set by graphics cards was exceeded. If the maximumis jzation of micropolygons with defocus and motion blurHRG
exceeded, our preferred solution is lazy binary subdivision, replac- '09: Proc High Performance Graphics 2009CM, New York,
ing the patch by four subpatches in the work-queue and maintaining NY, USA, 59-68.
a link to restore the original patch when the subpaiglts add to
less than 64. FATAHALIAN , K., BouLosS, S., HEGARTY, J., AKELEY, K.,
MARK, W. R., MORETON, H., AND HANRAHAN, P. 2010. Re-
ducing shading on GPUs using quad-fragment merginddm
Compatibility with shaders Integrating shaders with the Ren- Trans. Graphics, 29(3), 2010 (Proc. ACM SIGGRAPH 2010)
dering Pass is straightforward. We veri ed this for defocus, motion vol. 29, 67:1-8.
blur, MSAA, transparency, pixel-accurate trimming and more.

FARIN, G. 1988. Curves and Surfaces for Computer Aided Geo-
metric Design: A Practical GuideAcad. Press.

FiLip, D., MAGEDSON, R., AND MARKOT, R. 1986. Surface
. algorithms using bounds on derivative€omputer Aided Geo-
9 Conclusion metric Design 34, 295-311.

FISHER, M., FATAHALIAN, K., BouLos, S., AKELEY, K.,

We de ned pixel-accuracy as covering accuracy plus parametric MARK, W. R., AND HANRAHAN, P. 2009. DiagSplit: paral-

accuracy to display curved shape correctly and prevent paramet-) : . ; ;

ric distortion. Of the four level-of-detail criteria considered in the lel, crack-free, adaptive tessellation for micropolygon rendering.
- X . ACM Transactions on Graphics 2B (Dec.), 1-8.

classical survey [Xia et al. 1997], silhouettes are correctly captured

by covering accuracy, increase due to gradient is captured by para-Gross M., GATTI, R., AND STAADT, O. 1995. Fast multiresolu-

metric accuracy, the length of the screen-space projection is not tion surface meshing?roceedings of Visualization'9335-142.
relevant and visibility culling is performed when=0.

GUTHE, M., BALAZS, A., AND KLEIN, R. 2005. GPU-based
To practically enforce pixel-accuracy, in particular within the exist- trimming and tessellation of NURBS and T-Spline surfaces.
ing graphics pipeline, we showed how to use the contraction of tight ~ ACM Transactions on Graphics 23 (July), 1016-1023.
enclosures of polynomial pieces when reducing the domain, to pre- . .
dict a tessellation density that guarantees that the variance betweerf1OPPE H. 1996. Progressive meshé&soceedings of SIGGRAPH
an exact surface piece and its triangulation drops below the pixel 96, 99-108.
threshold. Due to equation (9), the underlysigfes are never con-
structed, but only differences offawslefe-based screen-projected
points, to establish and predict variance. This re ects the change of
objective compared to the literature: the shift from controlling size
to controlling variance(between the projection of the exact surface | ytterkoORT, D. 2000. Envelopes of Nonlinear GeometriPhD
and its triangulation). thesis, Purdue University.

Loor C., NIESSNER M., AND EISENACHER, C. 2011. Effective
back-patch culling for hardware tessellation. Aroceedings of
Vision, Modeling and Visualization

Finally, we demonstrated an implementation under DX11 that can PATNEY, A., AND OWENS, J. D. 2008. Real-time Reyes-style
render 300K patches at 150 frames per second, a speed cofeparab adaptive surface subdivisioACM Trans. Graph 2,75, 143.

to inaccurate, moderately dense, xed-level tessellation. o
PETERS J.,AND REIF, U. 2008. Subdivision Surfacesol. 3 of

Geometry and Computingpringer-Verlag, New York.
Acknowledgements ~ This work was supported in part by grant . . i
NSF CCF-1117695. We gratefully acknowledge Bay Raitt's “Mon- PETERS J. 2004. Mid-structures of subdividable linear ef -

ster Frog” and “Big Guy”. The Killeroo model is courtesy of cient function enclosures linking curved and linear geometry. In
Headus Pty Ltd (http://www.headus.com/au). Procee_dlngs of SIAM conference, Seattle, Nov 20&&hboro,
M. Lucian and M. Neamtu, Eds.
References SHENG, X., AND HIRSCH, B. E. 1992. Triangulation of timmed
surfaces in parametric spaceComputer-Aided Design 248,
437-444.
CASTANO, |., 2008. Tessellation of displaced subdivision sur-
faces in dx11. http://origin-developer.nvidia. TOOKEY, R., AND CRIPPS R. 1997. Improved surface bounds
com/object/gamefest-2008-subdiv.html . Game- based on derivatives€Computer Aided Geometric Design,18}

fest 2008. 787-791.

TZENG, S., RTNEY, A., AND OWENS, J. D. 2010. Task manage-
ment for irregular-parallel workloads on the GPU.High Perf.
Gr., ACM, J. Hensley and et al., Eds., 29-37.

Wu, X., AND PETERS J., 2002. Sublime (subdividable lin-
ear maximum-norm enclosure) packagétp://surflab.
cise.ufl.edu/SubLiME.tar.gz . Accessed Jan 2011.

XiA, J. C., E-SANA, J., AND VARSHNEY, A. 1997. Adaptive
real-time level-of-detail-based rendering for polygonal models.
IEEE Trans. Vis. Comput. Graph 3, 171-183.

ZHou, K., Hou, Q., REN, Z., GONG, M., SuN, X., AND GUO,
B. 2009. Renderants: interactive Reyes rendering on GPUs.
ACM Trans. Graph 285.

10 Appendix: Tensor-product Bounds

The tensor-product patch (5) can be bounded by computing the up-
per valuessj ;i = 0;:::;dy (for eachj = 0;:::;my) of the 1-
variableslefe in thev direction and then treat the values as control
points when computing the uppsglefe in theu direction:

X: X L R
p(u; V) & b (V)" (u) = & b (u)g(v)
i=0 j=0 j=0 i=0
X2 X1
G b (u)b} (v):
j=0 i=0

Tensoredslefes avoid the need to store and access the much larger
table of (possibly tighter) pre-computed bounds in two variables.

Let slefgc; m) be the routine that returns time + 1 values of the
upperslefe. We compute

fori =0;:::; dqg;
[60;61;::%; 6m ,] = slefg[Cio;Ci1;:::;Ca,]; M2)
and obtain the values; ,i = 0;:::;my,j = 0;:::;m2 of the

Lower values are computed analogously.

(a) teapot (b) frog

(c) big guy (d) killeroo

Figure 12: Pixel-accuracy and triangle distribution for 38% screen cover. left panels of (a),(b),(c),(d): blue and/drelicate pixel-
accuracy. Grey color indicates for the pixelsv thatp(u;v) projects to less than 0.1 pixel sizes away from the pixel center. Blue means
less than 0.5. right panels: the colors indicate triangle sizélag < 5, green < 10, red < 20, white > = 20 pixels. The bar on the right
summarizes the triangle size of the non-background pixels. Grid pat&gnsfrom the tessellation engine.

