Splines on Surfaces?

Jörg Peters
University of Florida

Banff 2010
Spline-based Surface Construction

Motivation: global splines
Charts and Geometric Continuity
Necessity: G^s continuity
Rational Linear map & Spline Constructions
Summary
Charts and Geometric Continuity

ANALYTIC: differential geometry
Charts and Geometric Continuity

CONSTRUCTIVE:

\[\mathbb{R}^2 \subset \mathbb{P}^2 \]

Motivation: global splines

Charts and Geometric Continuity

Fractional linear maps

Necessity: \(G^s \) continuity

Rational Linear map & Spline Constructions

Summary
Want to construct C^s surfaces of genus $g > 0$:

$$\partial^i p(t, 0) = \partial^i (q \circ r_q \circ r_p^{-1})(t, 0), \quad i = 0, \ldots, s.$$
Want to construct C^s surfaces of genus $g > 0$:

$$\partial^i p(t, 0) = \partial^i (q \circ r_q \circ r_p^{-1})(t, 0), \quad i = 0, \ldots, s.$$

$s = 1$:
$$\partial_2 p(t, 0) + \partial_1 q(0, t) = \partial_1 p(t, 0) \partial_2 \rho[2](t, 0).$$
Want to construct C^s surfaces of genus $g > 0$:

\[
\partial^i p(t, 0) = \partial^i (q \circ r_q \circ r_p^{-1})(t, 0), \quad i = 0, \ldots, s.
\]

$s = 1$: \[
\partial_2 p(t, 0) + \partial_1 q(0, t) = \partial_1 p(t, 0) \partial_2 \rho^{[2]}(t, 0).
\]

Constraint: all constructions for general meshes must employ some non-linear $\partial_2 \rho^{[2]}(t, 0)$. [P,Fan ‘09]:
Splines on quad-only, valence-four meshes

(Periodic) spline trivial: map from grid-partitioned quad, identifying edges

eg: tensor-product splines
Splines on more general quad-only meshes

- single global domain
- affine atlas
- parametric continuity
- shift-invariant spaces
Splines on more general quad-only meshes

- Single global domain
- Affine atlas
- Parametric continuity
- Shift-invariant spaces

- Local domains
- No affine atlas
- Geometric continuity
- Shift-invariant spaces?
Chart and Geometric Continuity

Want for $i = 0, \ldots, s$

$$\partial^i p(t, 0) = \partial^i (q \circ \underbrace{r_q \circ r_p^{-1}}_{\rho})(t, 0).$$
Chart and Geometric Continuity

Want for $i = 0, \ldots, s$

\[
\partial^i p(t, 0) = \partial^i (q \circ r_q \circ r_p^{-1})(t, 0) \cdot \rho.
\]

If ρ is projective (rational) linear then q and $q(\rho)$ have the same degree.
Fractional linear maps

Try real rational linear map ρ

$$\rho(u, v) := \begin{bmatrix} \rho[1] \\ \rho[2] \end{bmatrix} (u, v) := \begin{bmatrix} a_1 + b_1 u + c_1 v \\ d_1 + e_1 u + f_1 v \\ a_2 + b_2 u + c_2 v \\ d_2 + e_2 u + f_2 v \end{bmatrix}$$

where a_i, b_i, \ldots, f_i are real scalars.
Fractional linear maps

Want for $i = 0, \ldots, s$

$\partial^i p(t, 0) = \partial^i (q \circ \rho)(t, 0)$.

$\rho := \begin{bmatrix} a_1 + b_1 u + c_1 v \\ d_1 + e_1 u + f_1 v \\ a_2 + b_2 u + c_2 v \\ d_2 + e_2 u + f_2 v \end{bmatrix}$

What are necessary and sufficient conditions for constructions using ρ?
Fractional linear maps

Want for $i = 0, \ldots, s$

$\partial^i \mathbf{p}(t, 0) = \partial^i (\mathbf{q} \circ \mathbf{\rho})(t, 0)$.

$$\mathbf{\rho} := \begin{bmatrix} a_1 + b_1 u + c_1 v \\ d_1 + e_1 u + f_1 v \\ a_2 + b_2 u + c_2 v \\ d_2 + e_2 u + f_2 v \end{bmatrix}$$

What are necessary and sufficient conditions for constructions using $\mathbf{\rho}$?

Necessary $\mathbf{\rho}$ is projective linear (i.e. in \mathbb{P}^2);
Fractional linear maps

Want for $i = 0, \ldots, s$

$$\partial^i p(t, 0) = \partial^i (q \circ \rho)(t, 0).$$

$$\rho := \begin{bmatrix} a_1 + b_1 u + c_1 v \\ d_1 + e_1 u + f_1 v \\ a_2 + b_2 u + c_2 v \\ d_2 + e_2 u + f_2 v \end{bmatrix}$$

What are necessary and sufficient conditions for constructions using ρ?

Necessary ρ is projective linear (i.e. in \mathbb{P}^2); ρ is unique.
Fractional linear maps

Want for $i = 0, \ldots, s$

$$\partial^i p(t, 0) = \partial^i (q \circ \rho)(t, 0).$$

$$\rho := \begin{bmatrix} a_1 + b_1 u + c_1 v \\ d_1 + e_1 u + f_1 v \\ a_2 + b_2 u + c_2 v \\ d_2 + e_2 u + f_2 v \end{bmatrix}$$

What are necessary and sufficient conditions for constructions using ρ?

Necessary ρ is projective linear (i.e. in \mathbb{P}^2); ρ is unique.

Sufficient for special layout of quadrilaterals.
Necessity: Constraints on the transition map for G^2 continuity

Find $\rho : \square \subset \mathbb{R}^2 \to \mathbb{R}^2 : (u, v) \to \begin{bmatrix} a_1 + b_1 u + c_1 v \\ d_1 + e_1 u + f_1 v \\ a_2 + b_2 u + c_2 v \\ d_2 + e_2 u + f_2 v \end{bmatrix}$ so that patches $p, q : \square \subset \mathbb{R}^2 \to \mathbb{R}^d$ join smoothly across the common boundary:

$q(t, 0) = p(0, t)$
Necessity: Constraints on the transition map for G^2 continuity

Find $\rho : \Box \subset \mathbb{R}^2 \rightarrow \mathbb{R}^2 : (u, v) \rightarrow \left[\begin{array}{c} a_1 + b_1 u + c_1 v \\ d_1 + e_1 u + f_1 v \\ a_2 + b_2 u + c_2 v \\ d_2 + e_2 u + f_2 v \end{array} \right]$ so that patches $p, q : \Box \subset \mathbb{R}^2 \rightarrow \mathbb{R}^d$ join smoothly across the common boundary:

$q(t, 0) = p(0, t) \implies \rho(t, 0) = (0, t) \implies a_1 = b_1 = 0, \ a_2 = e_2 = 0, \ b_2 = d_2.$

Therefore $\rho(u, v) := \left[\begin{array}{c} c_1 v \\ d_1 + e_1 u + f_1 v \\ d_2 u + c_2 v \\ d_2 + f_2 v \end{array} \right].$
To $\rho(u, v) := \begin{bmatrix} \frac{c_1 v}{d_1 + e_1 u + f_1 v} \\ \frac{d_2 u + c_2 v}{d_2 + f_2 v} \end{bmatrix}$ add the G^1 constraints

$$(\partial_2 q)(t, 0) = (\partial_2 (p \circ \rho))(t, 0)$$

$$= (\partial_1 p)(0, t) \partial_2 \rho^{[1]}(t, 0) + (\partial_2 p)(0, t) \partial_2 \rho^{[2]}(t, 0)$$

and require no bias for p over q and vice versa:

$$(\partial_2 \rho^{[1]})(t, 0) = -1$$

and $\tau := \partial_2 \rho^{[2]}(0, 0) = 2 \cos \frac{2\pi}{n}$

$$\implies e_1 = 0, d_1 = -c_1$$

and $\frac{c_2}{d_2} = \tau$.

This implies

$$\rho(u, v) := \begin{bmatrix} \frac{-d_1 v}{d_1 + f_1 v} \\ \frac{u + \tau v}{1 + vf_2/d_2} \end{bmatrix}. $$
To $\rho(u, v) := \begin{bmatrix} -d_1 v \\ d_1 + f_1 v \\ u + \tau v \\ 1 + v f_2 / d_2 \end{bmatrix}$ add the G^2 constraints

$$(\partial_2^2 q)(t, 0) = (\partial_2^2 (p \circ \rho))(t, 0)$$
$$= (\partial_1^2 p)(0, t) - 2(\partial_1 \partial_2 p)(0, t)\partial_2 \rho^{[2]}(t, 0)$$
$$+ (\partial_2^2 p)(0, t)(\partial_2 \rho^{[2]})^2(t, 0) + (\partial_1 p)(0, t)(\partial_2^2 \rho^{[1]})(t, 0) + (\partial_2 p)(0, t)(\partial_2^2 \rho^{[2]})(t, 0)$$

and since we rule out singular constructions,

$$\tau \partial_1 \partial_2 \rho^{[2]} - \partial_2^2 \rho^{[2]} = \frac{\tau}{2} \partial_2^2 \rho^{[1]}$$
Theorem

The map $\rho : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ for the G^2 construction of a C^2 surface is unique up to the values of $\tau := \partial_2 \rho^{[2]}(0, 0)$ and $\sigma := \partial_2 \rho^{[2]}(1, 0)$:

$$
\rho(u, v) := \frac{1}{1 + v(\tau - \sigma)} \begin{bmatrix} -v \\ u + \tau v \end{bmatrix}.
$$
Necessity: The projective linear reparametrization

Theorem

The map \(\rho : \mathbb{R}^2 \to \mathbb{R}^2 \) for the \(G^2 \) construction of a \(C^2 \) surface is unique up to the values of \(\tau := \partial_2 \rho^{[2]}(0, 0) \) and \(\sigma := \partial_2 \rho^{[2]}(1, 0) \):

\[
\rho(u, v) := \frac{1}{1 + v(\tau - \sigma)} \begin{bmatrix} -v \\ u + \tau v \end{bmatrix}.
\]

only assumption: \(p, q \) sufficiently smooth.

Neither valence, nor polynomiality, nor the number of boundary edges of the surface pieces matters!
The map is a root of 1: $\rho^8(\Box) = \rho \circ \ldots \circ \rho = \Box$

Euclidean projections of $\rho^i(\Box)$.
Necessity: The projective linear reparametrization

\[\rho(u, v) := \frac{1}{1 + v(\tau - \sigma)} \begin{bmatrix} -v \\ u + \tau v \end{bmatrix}. \]

\(\rho^{-1} \) is rational linear.
Necessity: The projective linear reparametrization

\[\rho(u, v) := \frac{1}{1 + v(\tau - \sigma)} \begin{bmatrix} -v \\ u + \tau v \end{bmatrix}. \]

- \(\rho^{-1} \) is rational linear.
- \(\partial_2 \rho^{[1]}(t, 0) \) and \(\partial_2 \rho^{[1]}(t, 0) \) are constant functions
- \(\partial_2 \rho^{[2]}(t, 0) \) and \(\partial_2 \rho^{[2]}(t, 0) \) are linear functions
Necessity: The projective linear reparametrization

\[\rho(u, v) := \frac{1}{1 + v(\tau - \sigma)} \begin{bmatrix} -v \\ u + \tau v \end{bmatrix}. \]

- \(\rho^{-1} \) is rational linear.
- \(\partial_2 \rho^{[1]}(t, 0) \) and \(\partial_2^2 \rho^{[1]}(t, 0) \) are constant functions
- \(\partial_2 \rho^{[2]}(t, 0) \) and \(\partial_2^2 \rho^{[2]}(t, 0) \) are linear functions
- \(\rho = r_q \circ r_p^{-1} : \eta \in \mathbb{R}, \)

\[
\begin{align*}
r_p(u, v) &:= \frac{1}{s + \eta v} \begin{bmatrix} -v \\ su + cv \end{bmatrix}, \quad c := \cos \frac{2\pi}{n}, \\
r_q(u, v) &:= \frac{1}{s - \eta v} \begin{bmatrix} v \\ su - cv \end{bmatrix}, \quad s := \sin \frac{2\pi}{n}.
\end{align*}
\]
Sufficiency: Does ρ allow for spline constructions?

Constraint Lemma 4 [P,Fan ‘09]: all constructions for general meshes must employ some non-linear $\partial_2^2 \rho(t, 0)$.
Sufficiency: Does ρ allow for spline constructions?

Constraint Lemma 4 [P,Fan ‘09]: all constructions for general meshes must employ some non-linear $\partial_2 \rho^{[2]}(t, 0)$.

Our Theorem (Necessity): $\partial_2 \rho^{[2]}(t, 0) = \tau(1 - t) + \sigma t$.
Sufficiency: Does ρ allow for spline constructions?

Constraint Lemma 4 [P,Fan ‘09]: all constructions for general meshes must employ some non-linear $\partial_2 \rho^{[2]}(t, 0)$.

Our Theorem (Necessity): $\partial_2 \rho^{[2]}(t, 0) = \tau(1 - t) + \sigma t$.

[Hahn&Gregory 1988,9], [Ye 1997], [Prautzsch 1997], [Prautzsch&Umlauf 2000], [Reif 98], [Gregory&Zhou 1999], [Peters 2002], [Loop et al 2004,8], [Karciauskas&Peters 2004,6], ... [Loop&DeRose 1995] [Grimm 1997], [Gotrina et al 2000, 2007], [Ying 2004], ...
Sufficiency: Does ρ allow for spline constructions?

Constraint on mesh: Lemma 4 [P,Fan ‘09]: all constructions for general meshes must employ some non-linear $\partial_2 \rho[2](t,0)$.

Our Theorem (Necessity): $\partial_2 \rho[2](t,0) = \tau(1 - t) + \sigma t$.

Exception: two endpoint valences agree
Sufficiency: Does ρ allow for spline constructions?

Constraint on mesh: Lemma 4 [P,Fan ‘09]: all constructions for general meshes must employ some non-linear $\partial^2 \rho(t, 0)$.

Our Theorem (Necessity): $\partial^2 \rho(t, 0) = \tau(1 - t) + \sigma t$.

Exception: two endpoint valences agree

- Are there any such quadrilateral-partitions for surfaces of genus ≥ 1?
Sufficiency: Does ρ allow for spline constructions?

Constraint on mesh: Lemma 4 [P,Fan ‘09]: all constructions for general meshes must employ some non-linear $\partial_2 \rho^{[2]}(t,0)$.

Our Theorem (Necessity): $\partial_2 \rho^{[2]}(t,0) = \tau(1 - t) + \sigma t$.

Exception: two endpoint valences agree

• Are there any such quadrilateral-partitions for surfaces of genus > 1?
• Are there corresponding spline constructions?
Restricted Connectivity
not restricted shape, not restricted topology

Not general connectivity meshes.
Restricted Connectivity
not restricted shape, not restricted topology

Not general connectivity meshes.

Rather

Not general connectivity meshes.
Euler’s formula & quad-only meshes

Euler’s formula for polyhedra

\[v - e + f = \chi = 2 - 2g \]

topological genus \(g > 0 \):
rectangular grid
except for \(-\chi = 2g - 2\)
isolated vertices of valence 8.

4-valent vertex \(\sim 1 - 4/2 + 4/4 = 0 \)
4 half-edges, 4 quarter-quads
8-valent \(\sim 1 - 8/2 + 8/4 = -1 \).
Euler’s formula & quad-only meshes

Higher-genus Surfaces (potential sampling domains). All vertices can be moved freely.
Unique lowest-degree (= only projectively linear) bi-variate reparameterization for constructing C^s manifolds of any non-zero genus.
Summary

Unique lowest-degree (= only projectively linear) bi-variate reparameterization for constructing C^s manifolds of any non-zero genus.

Analogue of a splines on non-genus-1 domains? (\mathbb{P} projective space)

$p, q \in \mathbb{P}^3, \ell \in \mathbb{P}^2, \quad \partial^i p = \partial^i (q \circ \ell)$.
Summary

Unique lowest-degree (= only projectively linear) bi-variate reparameterization for constructing \(C^s \) manifolds of any non-zero genus.

Analogue of a splines on non-genus-1 domains? (\(\mathbb{P} \) projective space)

\[
p, q \in \mathbb{P}^3, \ell \in \mathbb{P}^2, \quad \partial^i_p = \partial^i(q \circ \ell).
\]
Summary

Unique lowest-degree (\(=\) only projectively linear) bi-variate reparameterization for constructing \(C^s\) manifolds of any non-zero genus.

Analogue of a splines on non-genus-1 domains? (\(\mathbb{P}\) projective space)
\[p, q \in \mathbb{P}^3, \ell \in \mathbb{P}^2, \quad \partial^i p = \partial^i (q \circ \ell). \]

Thank you
Summary

Unique lowest-degree (= only projectively linear) bi-variate reparameterization for constructing C^s manifolds of any non-zero genus.

Analogue of a splines on non-genus-1 domains? (\mathbb{P} projective space)

$\mathbb{P}, q \in \mathbb{P}^3, \ell \in \mathbb{P}^2, \quad \partial^i|_{\mathbb{P}} = \partial^i(q \circ \ell).$

Thank you

Triangulations: Theorem and Lemmas apply unchanged!
Summary

Unique lowest-degree (= only projectively linear) bi-variate reparameterization for constructing C^s manifolds of any non-zero genus.

Analogue of a splines on non-genus-1 domains? (\mathbb{P} projective space)

$p, q \in \mathbb{P}^3, \ell \in \mathbb{P}^2, \quad \partial_i^p = \partial_i^{q \circ \ell}$.

Thank you

Triangulations: Theorem and Lemmas apply unchanged!

Genus 0: $n = 3$ and $\tau := -1$ ($\sigma_1 = \sigma_2 = \sigma_3$ must hold)
Summary

Unique lowest-degree (= only projectively linear) bi-variate reparameterization for constructing C^s manifolds of any non-zero genus.

Analogue of a splines on non-genus-1 domains? (P projective space)

\[p, q \in \mathbb{P}^3, \ell \in \mathbb{P}^2, \quad \partial^i_p = \partial^i(q \circ \ell). \]

Thank you

Triangulations: Theorem and Lemmas apply unchanged!

Genus 0: $n = 3$ and $\tau := -1$ ($\sigma_1 = \sigma_2 = \sigma_3$ must hold)