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Abstract

This course provides an introduction to Approximate Suisthw Surfaces, an overview of the most recent
theoretical results and their implementations on the ciir@ed next-generation GPUs, and a demonstration of
these techniques and their applications in the game andenmalustries.



1 Fundamentals of efficient substitutes for Catmull-Clark subdivision surfaces
(Jorg Peters)

As real time graphics aspire to movie-quality renderinigther-order, smooth surface representatidake center
stage. Besides tensor-product splines, Catmull-Clarkligigion has become a widely accepted standard — whose
advantages we now want to replicate in real-time envirorimen

Recently, efficient substitutes for recursive subdividiawe been embraced by the industry. These notes discuss the
theory justifying the use of efficient substitutes for resivee subdivision. (Three other sections discuss theirectrr
and future support in the graphics pipeline, in the moviapotion pipeline and for gaming implementations.)

Below we therefore explore the motivation and the propetiiat surfaces and representations should satisfy to be
used alongside or in place of Catmull-Clark subdivision.

1.1 Why do we want smooth surfaces?

The ability to have continuously changing normals (commetad by
creases where we choose to have them) is important bothicattis and
to avoid errors in downstream algorithms.

Artistic shape considerations require the ability to aeestnooth surfaces
and transitions: sharp turns and sharply changing nornzate®tmatch our

experience of, say, faces and limbs. On the other hand, whemurvature

is high compared to the surroundings, smoothedmasesre often crucial

to bring to life an object or an animation character.

Downstream algorithms convey realism via lighting, silettes, and various  Figure 1: Smoothness and creases
forms of texturing. In particular, the diffuse and specaamponents of the  (from [PKO9).

lighting computation rely on well-defined directions (n@ls) n associated

with pointsv of the object. This is evident in the OpenGL lighting modeDownstream algorithms relying am
andv include (click on thehyperrefsif you have the electronic version of the notes) are for examp

— Gouraud shadinéhttp://en.wikipedia.org/wiki/Gouraudhading)

Phong shadinghttp://en.wikipedia.org/wiki/Phonghading)

Bump mappinghttp://en.wikipedia.org/wiki/Bumpmapping)

higher resultion near thalhouette(http://en.wikipedia.org/wiki/Silhouette)

Normal mappindhttp://en.wikipedia.org/wiki/Normamapping)
— Displacement mappinghttp://en.wikipedia.org/wiki/Displacememhapping)

The red, green or blue intensity of OpenGL lighting is

intensity :=emission, + ambient - ambient,

1 . .
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1.2 Surface smoothness

Surfaces that can locally be parameterized over their téngane are called reguldr! surfaces (or manifolds).
Such surfaces provide a unique normaadt every point computable as the cross product of two inddgratidirec-
tionst; andt, in the tangent planen||t; x to. To characterize smoothness of piecewise surfaces, a®tuoey
in graphics applications, the areagdfometric modelinghttp://www.siam.org/activity/gd) has developed theioot
of ‘geometric continuity’. Essentially, two patchasandb join G to form a part of aC'! surface if their (partial)

derivatives match along a common cueféer a change of variables

Formally (see e.gHet07), the patches andb map a subsefl of R? to R3. Thatisa,b : 0 C R? — R3. Letp be

a map that suitably connects the domains, i.e. changes tiabdhss. We call such aa (regular) reparameterization
p:R? - R% LetE = [0..1] x 0 be an edge df] andZ the non-negative integers and telenote composition, i.e.
the image of the function on its right provides the paransetéthe function to its left.

Patches andb join G* if there exists a (regular) reparameterizatjoso that for the parameter restrictedfo

fori,jeZ,i+j <k,

810 aop=0 b, (1)

Smooth surfaces must in particular satigfy continuity, i.e. () for £ = 1. That is the surfaces need continuity
along the common curve and matching transversal deriga(aeross the edge):

ao p(E) = b(E),

& aop(E) =8 b(E).

(2)

(Matching derivatives along the boundary curza{é,a o p(E) = 8{ b(E) already follow froma o p(E) = b(E).)
Proofs are therefore usually concerned with establislithg o p(E) = 9 b(E) for patches with a common
boundary curve (segment).) Wharandb are polynomial patches2amounts to enforcing linear equations on the

coefficientswhenp has been selected

To join n patchesG* at a vertex, two additional constraints come into play: fi@vertex enclosure constraimust
hold for the normal component of the boundary curves; anth@ojeparameterizationsmust satisfy aonsistency
constraint Both constraints arise from the periodicity when visitthg patches, respectively the reparameterizations
surrounding a vertex. For a detailed explanation of thesstcaints and an in-depth look at geometric continuity

see for exampleH{et03].

A complex of G'-connected patches admitsCd manifold structure.G*!
constructions differ from the approach of classical ddfdgial geometry in
that they do not require fully defined chart§!! continuity only regulates
differential quantities along an interface, whereas a@duire overlapping
domains.

1.3 Filling the normal channel

The separation of the position and the normal channel in taphics
pipeline makes it possible to substitute for the true norfiedd of the sur-
face, a field not necessarily orthogonal to the surface. Tiklg of direc-
tions’ can be used, as in bump mapping, to make a surfacertesstis or to
make it appear smoother (under lighting but not its silh@)ahan it truly
is.

Of course, the geometry and the shape implied by lighting thié ‘field of
directions’ declared to be the ‘normal field” will be (slig§jtinconsistent.
But we may hope that this does not attract attention (see iBhgtes and
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Figure 2: Normal channel de-
fined separate from the geometry
(from [VPBMO1]). Linear inter-
polation of the normals at the end-
points ¢op) ignores inflections in
the curve while the quadratic nor-
mal constructionifottom) can pick
up such shape variations.
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(a) interpolation (b) approximation

Figure 3: Which polygon represents the circle better?

ACC patches below). The visual impact of the ‘field of diren8’ in the
normal channel may be so good that a careful designer wik haxcheck
surface quality partly by examining silhouettes.

For polyhedral models, determining vertex normals is aremcwhstrained

problem and various heuristics, such as averaging faceaisyoan be used

to fill the normal channel (for a comparison see eJg\/J05]). Figure 2 illustrates that some level of consistency
of the normal channel with the true surface geometry is ingmdr Substitutes of subdivision surfaces (Secfid)
therefore typically use more sophisticated approached tbdinormal channel.

1.4 Evaluation or approximation?

Due to the pixel resolution, we ultimately render an avedadi@earizedapproximationof surfaces. As Figur8
illustrates, exact evaluation followed by piecewise line@ampletion need not be superior to any other approximation
where no point lies exactly on the circle. For another exanipRD consider the U-shape:= 2 for z € [—1..1].
The line segment that conne¢ts1, y(—1)) to (1,y(1)) is based on exact evaluation at the parametdrand1 but
is @ much poorer approximation (in the max-norm) to the paleapiece than the line segmenrt1,1/2) to (1,1/2).

On a philosophical level, if one ultimately renders a trigiagion of the surface, there is no reason to believe that
a triangulation with exact values at the vertices is a ‘bapproximation to the true surface. All we know is that
the maximal error does not occur at the vertices but in theximt of the approximating triangles. The error in the
interior of the triangle may be far more than the distanceben a control point and the surface or a control triangle
and the surface.

So, while ‘exact’ evaluation may sound better than ‘apprate’ evaluation, there is often no reason to prefer one
to the other. In fact, if we stay with the control net of a sogaather than projecting it to the limit, we preserve the
full information of the spline or subdivision represerati

One attempt at quantifying and minimizing this error an@l-structuresof Subdividable Linear Efficient Func-
tion Enclosures (slefesj’Et04. Mid-structures link the curved geometry of the surface tiwo-sided (sandwich-
ing) piecewise linear approximation. For a subclass ofas@d$ the approximation is optimal in tiheax-norm
(http://en.wikipedia.org/wiki/Supremumorm).

The main justification for positioning points as exactly asgble on a surface is that, when two abutting patches
are tessellated independently, it is good to agree on a haleyields the same point iR? so that the resulting
surface has no holes, i.e.ugtertight Mandating the point to be exactly on the surface (and beargfal in its
computation) is an easy-to-agree-on strategy for a cemiset of points. Of course, any other well-known rule of
approximation would do as well.
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1.5 Polynomial patches of degree bi-3 and bi-cubic splines
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Figure 4: Univariate uniform cubic spline (from [Myl08]). (A) Control pointsq := [1, 3, 1,2, —1] (red) and knots

t :=[-1,0,1,2,3,4,5,6,7] define a cubic spline(t) as the sum of uniform B-spline bas¢s scaled by their
respective control pointblue, green, magenta, cyan(B) An equivalent definition of the spline is as the limit of
iterative control polygon refinement (subdivision).

Figure 5: Commutativity ofensor-product spline subdivision(from [MKPO07]). Bi-3 spline subdivision (A) in
one direction followed by (B) the other, or (C) simultaneoefinement as in Catmull-Clark.

If we want to avoid linearization, we need to use quadratichpes at a minimum. Quadratics offer a rich source of
shapes — after all’? surfaces can locally be well-approximated by them) but shigatitching pieces together is
generally only possible for regular partitions. MoreowsforcingG'! continuity can force flat spots for higher-order
saddles, such asmonkey saddI¢http://en.wikipedia.org/wiki/Monkeysaddle). PR9q lists all classes of quadratic
shapes.

Many curved objects are therefore modeled with cubic split{e) := >, ¢¢f,(t) as illustrated in Figurd. Cubic
spline curves in B-spline form are available in OpenGlghsiNur bsCur ve. By tracing out cubic splines in two
independent variableg:, v), we obtain a tensor-product spline available in OpenGglasNur bsSur f ace. We
call the tensor of cubic splinds-3 splineor bi-cubic spline:

3 3
S aiifiu)fi(v). 3)

i=0 j=0

Bi-3 splines inB-spline formcan be evaluated efficiently, for example dby Boor’s algorithm
(http://en.wikipedia.org/wiki/DeBoor_algorithm).
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Figure 7: Control point structure oleft) a polynomial bi-3 patch andi¢ht) a Gregory patch.

Just as for curves, each tensor-product spline can be sitts parts by averaging control points. This is &
bicubic subdivision as illustrated in Figusewvhose limit is the bi-3 spline patch.

An alternative representation of a polynomial piece is Begnstein-Bezier fornor,
shorter,BB-form 2. Cubic spline curves in B-spline form are available in Opkres 433
gl Mapl. It, too, can be tensored

3 3 31 b33
Z Z bijhi(u)hj(v), hi(t) := m(l )Rk, (4)

i=0 j=0 b

(=]
o~
[e=]

Bi-3 splines in BB-form are available in OpenGLglsMap?2. Every surface in B-spline
form can be represented in BB-form using one patch in BB-ffmmnevery quadrilateral 400
of the B-spline control net. Due to combinatorial symmetnthie positions, there are
three types of formulas in B-form to BB-form conversion:

q10 420

Figure 6: Bi-3 con-
version from B-spline
(5) coefficientsg;; to BB-

9011 :=4q11 + 2 +2 + qo2, .
11 qi1 + 2(qi2 + 2¢21) + g2z coefficientsh;;

12b1o := 4(q11 + q21) + q10 + q20 + q12 + q22,
36000 := 16q11 + 4(g21 + q12 + go1 + q10) + g22 + Go2 + oo + g20-

Conversely, if patches in BB-form are arranged in checkardbdorm, they can be represented in B-spline form.
To obtain the simplest representation, we remove knots evtiex surface is sufficiently smooth. (If we do this
locally and carefully keep track of where we removed knotsawive at T-splines{ZBN03). That is, the B-spline
form and the BB-form are equally powerful, but one may chd®ssplines to have fewer coefficients and built-in
smoothness, while the BB-form provides interpolation at¢brners.

Additionally, the BB-form can be generalized to two var@lso that the natural domain is a triangle, i.e. to
total degree BB-forni. Polynomials in BB-form can be evaluateddey Casteljau’s algorithrgnttp://en.wikipedia.org/wiki/
As a byproduct of evaluation, De Casteljau’s algorithm pies the derivatives at the evaluation point from which
the normal direction can be obtained by a simple cross pto#ac a detailed exposition of these useful representa-
tions see the textbooks§r97 PBP0O].

There are a number of classic bi-3 surface constructiars {7 VW86, Pet9], but, due to fundamental lower
bounds, they work in general only if we split facets into sal/polynomial pieces.

The C! bi-3 Gregory patcGre74 BG79 is a rational surface patck : [0..1]2 — R? such that),0,x # 9,0,x

can hold at the corners. This allows separate definition stfdider derivatives along the two edges emanating from
a corner point; this can be viewed as splitting certain @drgoints into two (see Figuré). The resulting lack of
higher-order smoothness contributed to it not being widskyd in geometric design but should not be a problem for
real time graphics. High evaluation cost and cost of commgutiormals require careful use.

2http://en.wikipedia.org/wiki/Beziecurve
3http://wapedia.mobi/en/Bezigriangle
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Figure 8: Mesh refinement by ti@@atmull-Clark algorithm.

1.6 Subdivision surfaces

We sketch here only the basics of subdivision surfdcasfficient to explain their evaluation and approximation. A
full account of the mathematical structure of subdivisiorfaces can be found if?[R0g. The SIGGRAPH course
notes S0 of Schroder and Zorin, and the book ‘Subdivision Methods Geometric design’ by Warren and
Weimer [W\W02] complement the more formal analysis by a collection of Egilons and data structures. See also
the generic CGAL implementatiors AUK04].

Algorithmically, subdivision presents itself as a mesh refine-
ment procedure that applies rules to determine (a) theiposit
of new mesh points from old ones and (b) the new connectivity.
These rules are often represented graphically as weights- (s
ming to one) associated with a local graphstencilthat links

the old mesh points combined to form one new one: Form-
ing the weighted old mesh points yields the new point. On the
GPU, recursive subdivision naturally maps to several shade
passes (see e.gsJP05BuUN0Fd).

Alternatively, the weights can be arranged as a row sxiladi-
vision matrixA. This subdivision matrix maps a mesh of initial
pointsq, € R3 collected into a vectoq to an (n times) refined  Figure 9: Subdivision surfacesconsist of a
mesh nested sequence of surface rings.
q" = A"q. (6)

The mesh can hawextraordinary points An extraordinary point is one that has an unusual numbeire€tneigh-
borsn; n is often referred to as thealenceof the extraordinary point. For example,# 4 is unusual for Catmull-
Clark subdivision (see Figui®.

Mathematically however, a subdivision surface is a spline surface witlaied singularities. Each singularity is the
limit of one extraordinary point under subdivision. In peutar, the neighborhood of any such singularity consists
of a nested sequence of surface rings as illustrated in &&yur

In the case of Catmull-Clark subdivision, the nested serfidiags consist o L-shapedsectorswith three hi-3
polynomial pieces each. L&t := [0..1]? be the unit square. Then each sector ofitth ring can be associated
with a parameter rang§; (D — %D) (see Figures 4.2, 4.3, 4.4, 4.5 ¢iR09 for a nice illustration of this natural
parameterization and the fact that the union of rings themsca spline with a central singularity). An alternative
parameterization associatﬁSL(D — )\nD) with an L-segment, wherg,, is the subdominant eigenvalue dffor
valencen.

4subdivision surfacegttp://en.wikipedia.org/wiki/Subdivisiasurface)
Shttp://http.developer.nvidia.com/GPUGems2/gpugemis@pter07.html
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1.7 Evaluation of subdivision surfaces

Since subdivision surfaces are splines with singularitiese are a number of evaluation methods that also work
near extraordinary points. We list four methods below.

1.7.1 Standard Evaluation

(i) determine the ringn (by taking the logarithm base 2);

(i) apply m subdivision steps (either by matrix or stencil applicasipn

(iii) interpret the resulting control net at level as those of the L-shaped sectors in B-spline form; and
(iv) evaluate the bi-3 spline (by de Boor’s algorithm).

While step (ii) seems to require recursion, it can be regpldmyethe Gon-recursive matrix multiplication ).

This is typically themost efficient strategy to evaluate a subdivision surfacel it can not be patented ;-) ). Itis
particularly efficient when many points on a regular grid @rée evaluated, for example when, for even coverage,
we want to evaluate 4 times more points in ringhan in ringm — 1. It is also most efficient when the surfaces have
adjustable crease®[T98], i.e. where Catmull-Clark refinement rules are averagdt wirve refinement rules.

Some special scenarios, however, invite different evaloattrategies. Before settling for a strategy, it is good to
verify the conditions under which they are appropriate dfidient.

1.7.2 Tabulation of Generating Functions

If the crease ratios are restricted to a few cemed the depth of the subdivision is restricted, then we can trade
storage for speed by pre-tabulating the evaluation. The isldo write the subdivision surface locally, in the
neighborhood of an extraordinary point, as

L
X(uav’j) = qubf(uav’j)a (7)
l

where theq, € R? are the subdivision input mesh points; edghe R is a generating spline, i.e. a function that
we may think of as obtained by applying the rules of subdivistonsidering one coordinaig of q; and setting

all ¢; = 0 except forg,; and the summation b§is over allb, that are nonzero at the poifit, v, j) of evaluation;

j €{1,2,...,n} denotes one of the sectors of the spline (ring). If, for each valence sepayatet pre-tabulate the
be(u,v,j) for ¢ = 1,..., L then we can look up and combine these values with the sulmivisput mesh points
q¢ at run-time. When stored as textures, approximate ‘in-betwvalues can be obtained by bi-linear averaging.
[BS0]

1.7.3 Patch selection (ii) in eigenspace

If several but irregularly distributed parameters are tebaluatedand if they lie very close to the extraordinary
point, it is worth converting the subdivision input meshrgsiq, to eigencoefficientp, € R3. For this, we need
to form the Jordan decompositioti” = V.J™V ! (just once for any given subdivision matrikof valencen) and
setp := V~!qso that

A"q=VJ"p. (8)



If the Jordan matrix/™ is diagonal then the computational effort at run time of i@peduces to takingnth powers

of its diagonal entriesjS74. In step (iii) we need to apply” to p and can then proceed as before with step (iv) to
evaluate a bi-3 splinegia9g. Note that this method is no more exact than any of the ottuation methods and
that exact evaluation at individual points does not meahah@olyhedron based on the values exactly matches the
non-linear subdivision limit surface.

1.7.4 Eigensystem evaluation

For parameters on a grid, Cavaretta et al. showed that, fictiins satisfying refinement relations, the exact values
on a lattice can be computed by solving an eigenvalue propierni/ 91, page 18],ile 93 page 11]. Schaefer and
Warren [5\WO07 apply this approach to irregular settings.

We note that neither the standard evaluation us@®)@ér any of the three approaches just listed require remursi
or uniform refinement (with its concomitant high use of meynand possibly of CPU-GPU bandwidth). However,
they do not provide convenient short formulas.

1.8 Can it be done simpler? Efficient Substitutes

A surface construction can provide a substitute for the sigidn algorithm if the resulting surfaces have similar
properties.

1.8.1 Control polyhedra and proxy splines

The classic substitute is to render, at a finite level of wggm, either the refined control polyhedron or a polyhedron
obtained by projecting the refined control vertices to th@tl{using the left eigenvectors of the subdivision matrix
A). This is based on the fact that the distance between cqmiiphedron and limit surfaces decreases fast. One of
the challenges here is to correctly estimate the distantieedfprojected) control polyhedron to the surface in order
to determine the (adaptive) subdivision level that givefigant resolution for the application. By characterizing
control polyhedra as (the images of) proxy splines with #maes structure as subdivision surfacesrg Chapter

8] gives general bounds on this distance for all subdivisicilemes. Tighter bounds, specifically for Catmull-Clark
subdivision surfaces can be found iA\[/0g. Also available is a plug-in by Wu for (pov-)ray tracing lealson

the bounds in\[VP04 WPO09. This class of substitutes is only efficient, if it can be kgyb adaptively (see, e.g.
[Bun0g).

1.8.2 Separate geometry and normal channels

A second class of substitutes takes advantage of the siepashthe position and the normal channel in the graphics
pipeline. That is, the entries in the normal channel are aproximately ‘normal’ to the (geometry of the) surface.

— original geometry, refined normalsTo create a denser field for the normal channel then would éé g
Gouraud shading, we can apply subdivision (averaging)dgtiyhedral normals/B0g].

— refined geometry, refined normalsReplacing an input triangle with normals specified at itdiges, PN
triangles[VVPBMO1] consist of a total degree 3 geometry patch that joins cantisly with its neighbor and
has a common normal at the vertices. To convey the impresgismoothness, a separate quadratic normal
patch interpolates the vertex normals (Figi® By reducing the patch degree to quadratics, trades flayibi
of the geometry for faster evaluatiofi408] (see alsoBS07]). Since the quadratic pieces have no inflections



Figure 10: Control point structure &N triangles (from [VPBMO1]). (left) the positional channel;right) the
normal channel.
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Figure 11: Mesh-to-patch conversion.(from [MNP0€) The input meshtpp) is converted to patchebdgtton) as
follows. (a) An ordinary facet is converted to a bi-cubicqtawith 16 control points;;. (b) Every triangle in polar
configuration becomes a singular bi-cubic patch repreddmtel 3 control points. (¢) An extra-ordinary facet with
n sides is converted to B,-patch defined byn + 1 control points shown as. The P,-patch is equivalent ta
C'-connected degree-4 triangular patchigs = 0. ..n—1, having cubic outer boundaries.

this is particularly useful when the triangulation is attganore refined.

For four-sided facets, the corresponding (familyBR quadsvas known but not published at the time of PN
triangles. Just like the triangles, its bi-3 patches arestanted based solely on the poirtand normals at

the patch vertices so that a patch need not look up the neighizals.

Better shape can be achieved, when the neighbor patch(ed)ecaccessed. For example, the inner BB
coefficientsb;; can be derived from a bi-3 splin€{t0g. One can use Equatiorisfor the inner coefficients
of type b11 and seth;; on an edge between two patches as an average of their closestpoints. A good
heuristic is to set the corner control points to the Catr@ldirk limit point (with ¢ the central control point
and for/ = 0,...,n — 1 g9p_1 the direct neighbor points angd, the face neighbor points):

n—1
n(n+5)bG" =Y _ (nqoo + 4gae—1 + g2) - 9)
1=0

Up to perturbation of interior control points near extranady points,
(n+5) b7 == ngi1 + 2(q12 + 2¢21) + ga2, (10)

this is how ACC patches [5084 are derived (see also the Section 2.3 of these lecture)notes
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Figure 12: Quad/tri/pent polar models (from [MNPO{) (a) Axe handle; using a triangle and a pentagon to
transition between detailed and coarser areas. The axe(leéqdeatures a sharp crease. (b) Polar configurations
naturally terminate parallel feature lines along elormaj like fingers. (c) smooth surface consisting of bi-cubic
patchesyellow), polar patchesarange, and p-patches with = 3 (green, n = 4 (red), n = 5 (gray).

1.8.3 (' surface constructions

A third class of substitutes are prop@* surfaces, i.e. their normals can be computed everywheri (g pixel
shader) as the cross product of tangents (derivativesnglatais a byproduct of de Casteljau’s evaluation) without
recourse to a separate normal channel.

These patches are typically polynomial, although a ratiooastruction like Gregory’s patch and its triangular
equivalent could be used just as well. The patch corners andais can moreover be adjusted to approximate
Catmull-Clark limit surfaces.

Just as the second class, c-patchéslfl '] and themany-sided pf:)-patches [{NP0¢] (Figures1land12) can be
constructed and displayed in real timé/|P0g comes with shader code, allows for (rounded) creases aladl po
configurations (see Figu(d)) ® The third class of surface constructions is related to sarfplines Pet93 and
Loop’s constructionl[oo97] and localized hierarchical surface splinés4{99.

1.9 Efficiency
Whether a particular representation or evaluation stydatsime and space efficient depends on the software/haedwar
setup. However, we can observe the following in the conté&RU rendering.

Fixed, fine triangulationsre expensive to transfer to the GPU and require animatieadf vertex. They lack re-
finability. Subdivision surfaces approximatedregursive refinemenpossibly followed by projection of the control

® One concern is that such creases and polar configurationi$ ireparametric distortion’ when texture mapping. Apjslg the same
crease or polar mapping (i2%) when looking up texture coordinates, however, shows thigern to be unfounded.
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points to their limit, require multiple passes with incriegsbandwidth and intermediate memory storage. Subdivi-
sion surfaces approximated hgn-recursive evaluatioas listed in Sectiod.7requires the inversion of (moderately
sized) matrices. These matrices need to be adapted forediffypes of creases. Subdivision surfaces approximated
by tabulation require storage that limits the representable crease cwafigns. The (efficient) substitutes listed
in Sectionl.8 allow for creases, adaptive evaluation (by instancing ertéssellation engine) and, as low degree
polynomials, have been created to be both space-efficiehtime-efficient, in their construction as well as in their
evaluation.

efficiency space time comment
triangulation - - fixed resolution
recursive subD - adaptivity?
non-recursive subD - creases?
tabulation - + creases?
efficient substitutes  + + crease adapt’

1.10 Higher-quality surfaces?

For high-end design(’' continuity is not sufficient. One can feel (and sometime$ #e=lack of curvature con-
tinuity. In fact, Catmull-Clark subdivision does not meké trequirements of high-end design: Generically, near
extraordinary points, the curvature lines diverge, andstitaces becomes hyperboli€¢fR04. Guided surfacing
[KPO7, KPN1], Loop and Schaefei po04, L S08H and most recently a bi-82 polar subdivision [/P09 promise
better shape. Yet, it is not clear that real-time or movidiappons can benefit from such high-quality surfaces.

Curiously, at least formally, displacement mapping, whiftlen increase roughness of the surfaces, formally regjuire
derivatives of normals and therefore higher-order coitynu

1.11 Summary

Besides the classical rendering of the control polyhedpossibly projected onto the surface, there are two classes
of surface constructions that can be used as efficient sutlestiof subdivision surfaces or as primitives in their own
right. Both triangular patches and quad patches are al&i(ab well as polar configurations) to give the designer
broad-ranging options and mimic both Catmull-Clark anairgle-based subdivision. The next chapters will explain
the use of these constructions in more detail and may ingplidéional short-cuts and innovations (see for example
), made all the more relevant by the imminent availabilityesfsellation hardware.

"http://castano.ludicon.com/blog/2009/01/07/appr@tiErsubdivision-shading/
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