
Efficient substitutes for subdivision surfaces
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Abstract

This course provides an introduction to Approximate Subdivision Surfaces, an overview of the most recent
theoretical results and their implementations on the current and next-generation GPUs, and a demonstration of
these techniques and their applications in the game and movie industries.
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1 Fundamentals of efficient substitutes for Catmull-Clark subdivision surfaces
(Jörg Peters)

As real time graphics aspire to movie-quality rendering,higher-order, smooth surface representationstake center
stage. Besides tensor-product splines, Catmull-Clark subdivision has become a widely accepted standard – whose
advantages we now want to replicate in real-time environments.

Recently, efficient substitutes for recursive subdivisionhave been embraced by the industry. These notes discuss the
theory justifying the use of efficient substitutes for recursive subdivision. (Three other sections discuss their current
and future support in the graphics pipeline, in the movie production pipeline and for gaming implementations.)

Below we therefore explore the motivation and the properties that surfaces and representations should satisfy to be
used alongside or in place of Catmull-Clark subdivision.

1.1 Why do we want smooth surfaces?

Figure 1: Smoothness and creases
(from [PK09]).

The ability to have continuously changing normals (complemented by
creases where we choose to have them) is important both artistically and
to avoid errors in downstream algorithms.

Artistic shape considerations require the ability to create smooth surfaces
and transitions: sharp turns and sharply changing normals do not match our
experience of, say, faces and limbs. On the other hand, wherethe curvature
is high compared to the surroundings, smoothed outcreasesare often crucial
to bring to life an object or an animation character.

Downstream algorithms convey realism via lighting, silhouettes, and various
forms of texturing. In particular, the diffuse and specularcomponents of the
lighting computation rely on well-defined directions (normals)n associated
with pointsv of the object. This is evident in the OpenGL lighting model.1 Downstream algorithms relying onn
andv include (click on thehyperrefsif you have the electronic version of the notes) are for example

– Gouraud shading(http://en.wikipedia.org/wiki/Gouraudshading)

– Phong shading(http://en.wikipedia.org/wiki/Phongshading)

– Bump mapping(http://en.wikipedia.org/wiki/Bumpmapping)

– higher resultion near thesilhouette(http://en.wikipedia.org/wiki/Silhouette)

– Normal mapping(http://en.wikipedia.org/wiki/Normalmapping)

– Displacement mapping(http://en.wikipedia.org/wiki/Displacementmapping)

1The red, green or blue intensity of OpenGL lighting is

intensity :=emissionm + ambientl · ambientm
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1.2 Surface smoothness

Surfaces that can locally be parameterized over their tangent plane are called regularC1 surfaces (or manifolds).
Such surfaces provide a unique normaln at every point computable as the cross product of two independent direc-
tions t1 andt2 in the tangent plane:n||t1 × t2. To characterize smoothness of piecewise surfaces, as theyoccur
in graphics applications, the area ofgeometric modeling(http://www.siam.org/activity/gd) has developed the notion
of ‘geometric continuity’. Essentially, two patchesa andb join G1 to form a part of aC1 surface if their (partial)
derivatives match along a common curveafter a change of variables.

Formally (see e.g. [Pet02]), the patchesa andb map a subset� of R2 to R3. That isa,b : � ( R2 → R3. Let ρ be
a map that suitably connects the domains, i.e. changes the variables. We call such aρ a (regular) reparameterization
ρ : R2 → R2. Let E = [0..1]× 0 be an edge of� andZ the non-negative integers and let◦ denote composition, i.e.
the image of the function on its right provides the parameters of the function to its left.
Patchesa andb join Gk if there exists a (regular) reparameterizationρ so that for the parameter restricted toE

for i, j ∈ Z, i + j ≤ k, ∂i
1∂

j
2
a ◦ ρ = ∂i

1∂
j
2
b. (1)

Smooth surfaces must in particular satisfyG1 continuity, i.e. (1) for k = 1. That is the surfaces need continuity
along the common curve and matching transversal derivatives (across the edge):

a ◦ ρ(E) = b(E), ∂j
2
a ◦ ρ(E) = ∂j

2
b(E). (2)

(Matching derivatives along the boundary curve,∂j
1
a ◦ ρ(E) = ∂j

1
b(E) already follow froma ◦ ρ(E) = b(E).)

Proofs are therefore usually concerned with establishing∂j
2

a ◦ ρ(E) = ∂j
2

b(E) for patches with a common
boundary curve (segment).) Whena andb are polynomial patches, (2) amounts to enforcing linear equations on the
coefficientswhenρ has been selected.

To join n patchesGk at a vertex, two additional constraints come into play: (a) thevertex enclosure constraintmust
hold for the normal component of the boundary curves; and (b)the reparameterizationsρ must satisfy aconsistency
constraint. Both constraints arise from the periodicity when visitingthe patches, respectively the reparameterizations
surrounding a vertex. For a detailed explanation of these constraints and an in-depth look at geometric continuity
see for example [Pet02].

Figure 2: Normal channel de-
fined separate from the geometry
(from [VPBM01]). Linear inter-
polation of the normals at the end-
points (top) ignores inflections in
the curve while the quadratic nor-
mal construction (bottom) can pick
up such shape variations.

A complex ofG1-connected patches admits aC1 manifold structure.G1

constructions differ from the approach of classical differential geometry in
that they do not require fully defined charts.G1 continuity only regulates
differential quantities along an interface, whereas charts require overlapping
domains.

1.3 Filling the normal channel

The separation of the position and the normal channel in the graphics
pipeline makes it possible to substitute for the true normalfield of the sur-
face, a field not necessarily orthogonal to the surface. This‘field of direc-
tions’ can be used, as in bump mapping, to make a surface less smooth or to
make it appear smoother (under lighting but not its silhouette) than it truly
is.

Of course, the geometry and the shape implied by lighting with the ‘field of
directions’ declared to be the ‘normal field’ will be (slightly) inconsistent.
But we may hope that this does not attract attention (see PN triangles and
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(a) interpolation (b) approximation

Figure 3: Which polygon represents the circle better?

ACC patches below). The visual impact of the ‘field of directions’ in the
normal channel may be so good that a careful designer will have to check
surface quality partly by examining silhouettes.

For polyhedral models, determining vertex normals is an underconstrained
problem and various heuristics, such as averaging face normals, can be used
to fill the normal channel (for a comparison see e.g. [JLW05]). Figure2 illustrates that some level of consistency
of the normal channel with the true surface geometry is important. Substitutes of subdivision surfaces (Section1.8)
therefore typically use more sophisticated approaches to fill the normal channel.

1.4 Evaluation or approximation?

Due to the pixel resolution, we ultimately render an averaged, linearizedapproximationof surfaces. As Figure3
illustrates, exact evaluation followed by piecewise linear completion need not be superior to any other approximation
where no point lies exactly on the circle. For another example in 2D consider the U-shapey := x2 for x ∈ [−1..1].
The line segment that connects(−1, y(−1)) to (1, y(1)) is based on exact evaluation at the parameters−1 and1 but
is a much poorer approximation (in the max-norm) to the parabola piece than the line segment(−1, 1/2) to (1, 1/2).

On a philosophical level, if one ultimately renders a triangulation of the surface, there is no reason to believe that
a triangulation with exact values at the vertices is a ‘best’approximation to the true surface. All we know is that
the maximal error does not occur at the vertices but in the interior of the approximating triangles. The error in the
interior of the triangle may be far more than the distance between a control point and the surface or a control triangle
and the surface.

So, while ‘exact’ evaluation may sound better than ‘approximate’ evaluation, there is often no reason to prefer one
to the other. In fact, if we stay with the control net of a surface rather than projecting it to the limit, we preserve the
full information of the spline or subdivision representation.

One attempt at quantifying and minimizing this error aremid-structuresof Subdividable Linear Efficient Func-
tion Enclosures (slefes) [Pet04]. Mid-structures link the curved geometry of the surface toa two-sided (sandwich-
ing) piecewise linear approximation. For a subclass of surfaces the approximation is optimal in themax-norm
(http://en.wikipedia.org/wiki/Supremumnorm).

The main justification for positioning points as exactly as possible on a surface is that, when two abutting patches
are tessellated independently, it is good to agree on a rule that yields the same point inR3 so that the resulting
surface has no holes, i.e. iswatertight. Mandating the point to be exactly on the surface (and being careful in its
computation) is an easy-to-agree-on strategy for a consistent set of points. Of course, any other well-known rule of
approximation would do as well.
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1.5 Polynomial patches of degree bi-3 and bi-cubic splines
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Figure 4: Univariate uniform cubic spline (from [Myl08]). (A) Control pointsq := [1, 3, 1, 2,−1] (red) and knots
t := [−1, 0, 1, 2, 3, 4, 5, 6, 7] define a cubic splinex(t) as the sum of uniform B-spline basesfℓ scaled by their
respective control points (blue, green, magenta, cyan). (B) An equivalent definition of the spline is as the limit of
iterative control polygon refinement (subdivision).

A C

B

Figure 5: Commutativity oftensor-product spline subdivision(from [MKP07]). Bi-3 spline subdivision (A) in
one direction followed by (B) the other, or (C) simultaneousrefinement as in Catmull-Clark.

If we want to avoid linearization, we need to use quadratic patches at a minimum. Quadratics offer a rich source of
shapes – after allC2 surfaces can locally be well-approximated by them) but smoothly stitching pieces together is
generally only possible for regular partitions. Moreover,enforcingG1 continuity can force flat spots for higher-order
saddles, such as amonkey saddle(http://en.wikipedia.org/wiki/Monkeysaddle). [PR98] lists all classes of quadratic
shapes.

Many curved objects are therefore modeled with cubic splines x(t) :=
∑

ℓ qℓfℓ(t) as illustrated in Figure4. Cubic
spline curves in B-spline form are available in OpenGL asgluNurbsCurve. By tracing out cubic splines in two
independent variables(u, v), we obtain a tensor-product spline available in OpenGL asgluNurbsSurface. We
call the tensor of cubic splinesbi-3 splineor bi-cubic spline:

3
∑

i=0

3
∑

j=0

qi,jfi(u)fj(v). (3)

Bi-3 splines inB-spline formcan be evaluated efficiently, for example byde Boor’s algorithm
(http://en.wikipedia.org/wiki/DeBoor algorithm).
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Figure 7: Control point structure of (left) a polynomial bi-3 patch and (right) aGregory patch.

Just as for curves, each tensor-product spline can be split into its parts by averaging control points. This is theC2

bicubic subdivision as illustrated in Figure5 whose limit is the bi-3 spline patch.

b00

b33

b30

q00 q10 q20

q33

Figure 6: Bi-3 con-
version from B-spline
coefficientsqij to BB-
coefficientsbij

An alternative representation of a polynomial piece is theBernstein-Bezier formor,
shorter,BB-form 2. Cubic spline curves in B-spline form are available in OpenGL as
glMap1. It, too, can be tensored

3
∑

i=0

3
∑

j=0

bi,jhi(u)hj(v), hk(t) :=
3!

(3 − k)!k!
(1 − t)3−ktk. (4)

Bi-3 splines in BB-form are available in OpenGL asglMap2. Every surface in B-spline
form can be represented in BB-form using one patch in BB-formfor every quadrilateral
of the B-spline control net. Due to combinatorial symmetry in the positions, there are
three types of formulas in B-form to BB-form conversion:

9b11 := 4q11 + 2(q12 + 2q21) + q22, (5)

12b10 := 4(q11 + q21) + q10 + q20 + q12 + q22,

36b00 := 16q11 + 4(q21 + q12 + q01 + q10) + q22 + q02 + q00 + q20.

Conversely, if patches in BB-form are arranged in checkerboard form, they can be represented in B-spline form.
To obtain the simplest representation, we remove knots where the surface is sufficiently smooth. (If we do this
locally and carefully keep track of where we removed knots, we arrive at T-splines [SZBN03]). That is, the B-spline
form and the BB-form are equally powerful, but one may chooseB-splines to have fewer coefficients and built-in
smoothness, while the BB-form provides interpolation at the corners.

Additionally, the BB-form can be generalized to two variables so that the natural domain is a triangle, i.e. to
total degree BB-form3. Polynomials in BB-form can be evaluated byde Casteljau’s algorithm(http://en.wikipedia.org/wiki/De
As a byproduct of evaluation, De Casteljau’s algorithm provides the derivatives at the evaluation point from which
the normal direction can be obtained by a simple cross product. For a detailed exposition of these useful representa-
tions see the textbooks [Far97, PBP02].

There are a number of classic bi-3 surface constructions [Bez77, vW86, Pet91], but, due to fundamental lower
bounds, they work in general only if we split facets into several polynomial pieces.

TheC1 bi-3 Gregory patch[Gre74, BG75] is a rational surface patchx : [0..1]2 → R3 such that∂u∂vx 6= ∂v∂ux

can hold at the corners. This allows separate definition of first order derivatives along the two edges emanating from
a corner point; this can be viewed as splitting certain control points into two (see Figure7). The resulting lack of
higher-order smoothness contributed to it not being widelyused in geometric design but should not be a problem for
real time graphics. High evaluation cost and cost of computing normals require careful use.

2http://en.wikipedia.org/wiki/Beziercurve
3http://wapedia.mobi/en/Beziertriangle
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Figure 8: Mesh refinement by theCatmull-Clark algorithm.

1.6 Subdivision surfaces

We sketch here only the basics of subdivision surfaces4 sufficient to explain their evaluation and approximation. A
full account of the mathematical structure of subdivision surfaces can be found in [PR08]. The SIGGRAPH course
notes [ZS00] of Schröder and Zorin, and the book ‘Subdivision Methods for Geometric design’ by Warren and
Weimer [WW02] complement the more formal analysis by a collection of applications and data structures. See also
the generic CGAL implementation [SAUK04].

Figure 9: Subdivision surfacesconsist of a
nested sequence of surface rings.

Algorithmically, subdivision presents itself as a mesh refine-
ment procedure that applies rules to determine (a) the position
of new mesh points from old ones and (b) the new connectivity.
These rules are often represented graphically as weights (sum-
ming to one) associated with a local graph orstencilthat links
the old mesh points combined to form one new one: Form-
ing the weighted old mesh points yields the new point. On the
GPU, recursive subdivision naturally maps to several shader
passes (see e.g. [SJP05, Bun05]5).

Alternatively, the weights can be arranged as a row of asubdi-
vision matrixA. This subdivision matrix maps a mesh of initial
pointsqℓ ∈ R3 collected into a vectorq to an (m times) refined
mesh

qm = Amq. (6)

The mesh can haveextraordinary points. An extraordinary point is one that has an unusual number of direct neigh-
borsn; n is often referred to as thevalenceof the extraordinary point. For example,n 6= 4 is unusual for Catmull-
Clark subdivision (see Figure8).

Mathematically, however, a subdivision surface is a spline surface with isolated singularities. Each singularity is the
limit of one extraordinary point under subdivision. In particular, the neighborhood of any such singularity consists
of a nested sequence of surface rings as illustrated in Figure 9.

In the case of Catmull-Clark subdivision, the nested surface rings consist ofn L-shapedsectorswith three bi-3
polynomial pieces each. Let� := [0..1]2 be the unit square. Then each sector of themth ring can be associated
with a parameter range1

2m

(

� − 1

2
�

)

(see Figures 4.2, 4.3, 4.4, 4.5 of [PR08] for a nice illustration of this natural
parameterization and the fact that the union of rings then forms a spline with a central singularity). An alternative
parameterization associatesλm

n

(

� − λn�
)

with an L-segment, whereλn is the subdominant eigenvalue ofA for
valencen.

4subdivision surfaces(http://en.wikipedia.org/wiki/Subdivisionsurface)
5http://http.developer.nvidia.com/GPUGems2/gpugems2chapter07.html

7

http://en.wikipedia.org/wiki/Subdivision_surface
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter07.html


1.7 Evaluation of subdivision surfaces

Since subdivision surfaces are splines with singularitiesthere are a number of evaluation methods that also work
near extraordinary points. We list four methods below.

1.7.1 Standard Evaluation

(i) determine the ringm (by taking the logarithm base 2);
(ii) apply m subdivision steps (either by matrix or stencil applications);
(iii) interpret the resulting control net at levelm as those of then L-shaped sectors in B-spline form; and
(iv) evaluate the bi-3 spline (by de Boor’s algorithm).

While step (ii) seems to require recursion, it can be replaced by the (non-recursive) matrix multiplication (6).

This is typically themost efficient strategy to evaluate a subdivision surface(and it can not be patented ;-) ). It is
particularly efficient when many points on a regular grid areto be evaluated, for example when, for even coverage,
we want to evaluate 4 times more points in ringm than in ringm−1. It is also most efficient when the surfaces have
adjustable creases [DKT98], i.e. where Catmull-Clark refinement rules are averaged with curve refinement rules.

Some special scenarios, however, invite different evaluation strategies. Before settling for a strategy, it is good to
verify the conditions under which they are appropriate and efficient.

1.7.2 Tabulation of Generating Functions

If the crease ratios are restricted to a few casesand the depth of the subdivision is restricted, then we can trade
storage for speed by pre-tabulating the evaluation. The idea is to write the subdivision surfacex locally, in the
neighborhood of an extraordinary point, as

x(u, v, j) =
L

∑

ℓ

qℓbℓ(u, v, j), (7)

where theqℓ ∈ R3 are the subdivision input mesh points; eachbℓ ∈ R is a generating spline, i.e. a function that
we may think of as obtained by applying the rules of subdivision considering one coordinateqj of qj and setting
all qj = 0 except forqℓ; and the summation byℓ is over allbℓ that are nonzero at the point(u, v, j) of evaluation;
j ∈ {1, 2, . . . , n} denotes one of then sectors of the spline (ring). If, for each valence separately, we pre-tabulate the
bℓ(u, v, j) for ℓ = 1, . . . , L then we can look up and combine these values with the subdivision input mesh points
qℓ at run-time. When stored as textures, approximate ‘in-between’ values can be obtained by bi-linear averaging.
[BS02]

1.7.3 Patch selection (ii) in eigenspace

If several but irregularly distributed parameters are to beevaluatedand if they lie very close to the extraordinary
point, it is worth converting the subdivision input mesh pointsqℓ to eigencoefficientspℓ ∈ R3. For this, we need
to form the Jordan decompositionAm = V JmV −1 (just once for any given subdivision matrixA of valencen) and
setp := V −1q so that

Amq = V Jmp. (8)
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If the Jordan matrixJm is diagonal then the computational effort at run time of step(ii) reduces to takingmth powers
of its diagonal entries [DS78]. In step (iii) we need to applyV to p and can then proceed as before with step (iv) to
evaluate a bi-3 spline [Sta98]. Note that this method is no more exact than any of the other evaluation methods and
that exact evaluation at individual points does not mean that a polyhedron based on the values exactly matches the
non-linear subdivision limit surface.

1.7.4 Eigensystem evaluation

For parameters on a grid, Cavaretta et al. showed that, for functions satisfying refinement relations, the exact values
on a lattice can be computed by solving an eigenvalue problem[CDM91, page 18],[de 93, page 11]. Schaefer and
Warren [SW07] apply this approach to irregular settings.

We note that neither the standard evaluation using (6) nor any of the three approaches just listed require recursion
or uniform refinement (with its concomitant high use of memory and possibly of CPU–GPU bandwidth). However,
they do not provide convenient short formulas.

1.8 Can it be done simpler? Efficient Substitutes

A surface construction can provide a substitute for the subdivision algorithm if the resulting surfaces have similar
properties.

1.8.1 Control polyhedra and proxy splines

The classic substitute is to render, at a finite level of resolution, either the refined control polyhedron or a polyhedron
obtained by projecting the refined control vertices to the limit (using the left eigenvectors of the subdivision matrix
A). This is based on the fact that the distance between controlpolyhedron and limit surfaces decreases fast. One of
the challenges here is to correctly estimate the distance ofthe (projected) control polyhedron to the surface in order
to determine the (adaptive) subdivision level that gives sufficient resolution for the application. By characterizing
control polyhedra as (the images of) proxy splines with the same structure as subdivision surfaces, [PR08, Chapter
8] gives general bounds on this distance for all subdivisionschemes. Tighter bounds, specifically for Catmull-Clark
subdivision surfaces can be found in [PW08]. Also available is a plug-in by Wu for (pov-)ray tracing based on
the bounds in [WP04, WP05]. This class of substitutes is only efficient, if it can be applied adaptively (see, e.g.
[Bun05]).

1.8.2 Separate geometry and normal channels

A second class of substitutes takes advantage of the separation of the position and the normal channel in the graphics
pipeline. That is, the entries in the normal channel are onlyapproximately ‘normal’ to the (geometry of the) surface.

— original geometry, refined normalsTo create a denser field for the normal channel then would be used by
Gouraud shading, we can apply subdivision (averaging) to the polyhedral normals [AB08].

— refined geometry, refined normalsReplacing an input triangle with normals specified at its vertices, PN
triangles[VPBM01] consist of a total degree 3 geometry patch that joins continuously with its neighbor and
has a common normal at the vertices. To convey the impressionof smoothness, a separate quadratic normal
patch interpolates the vertex normals (Figure10). By reducing the patch degree to quadratics, trades flexibility
of the geometry for faster evaluation [BA08] (see also [BS07]). Since the quadratic pieces have no inflections
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Figure 10: Control point structure ofPN triangles (from [VPBM01]). (left) the positional channel; (right) the
normal channel.
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Figure 11: Mesh-to-patch conversion.(from [MNP08]) The input mesh (top) is converted to patches (bottom) as
follows. (a) An ordinary facet is converted to a bi-cubic patch with 16 control pointsfij. (b) Every triangle in polar
configuration becomes a singular bi-cubic patch represented by 13 control points◦. (c) An extra-ordinary facet with
n sides is converted to aPn-patch defined by6n + 1 control points shown as◦. ThePn-patch is equivalent ton
C1-connected degree-4 triangular patchesbi, i = 0 . . . n−1, having cubic outer boundaries.

this is particularly useful when the triangulation is already more refined.
For four-sided facets, the corresponding (family of)PN quadswas known but not published at the time of PN
triangles. Just like the triangles, its bi-3 patches are constructed based solely on the pointsv and normalsn at
the patch vertices so that a patch need not look up the neighbor quads.
Better shape can be achieved, when the neighbor patch(es) can be accessed. For example, the inner BB
coefficientsbij can be derived from a bi-3 spline [Pet08]. One can use Equations5 for the inner coefficients
of type b11 and setb10 on an edge between two patches as an average of their closest inner points. A good
heuristic is to set the corner control points to the Catmull-Clark limit point (with q0 the central control point
and forℓ = 0, . . . , n − 1 q2ℓ−1 the direct neighbor points andq2ℓ the face neighbor points):

n(n + 5)bCC
00 :=

n−1
∑

l=0

(nq00 + 4q2ℓ−1 + q2ℓ) . (9)

Up to perturbation of interior control points near extraordinary points,

(n + 5) bACC
11 := nq11 + 2(q12 + 2q21) + q22, (10)

this is how ACC patches [LS08a] are derived (see also the Section 2.3 of these lecture notes).
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(a) (b)

(c)

Figure 12: Quad/tri/pent polar models (from [MNP08]) (a) Axe handle; using a triangle and a pentagon to
transition between detailed and coarser areas. The axe head(left) features a sharp crease. (b) Polar configurations
naturally terminate parallel feature lines along elongations, like fingers. (c) smooth surface consisting of bi-cubic
patches (yellow), polar patches (orange), and p-patches withn = 3 (green), n = 4 (red), n = 5 (gray).

1.8.3 C1 surface constructions

A third class of substitutes are properC1 surfaces, i.e. their normals can be computed everywhere (egin the pixel
shader) as the cross product of tangents (derivatives obtained as a byproduct of de Casteljau’s evaluation) without
recourse to a separate normal channel.

These patches are typically polynomial, although a rational construction like Gregory’s patch and its triangular
equivalent could be used just as well. The patch corners and normals can moreover be adjusted to approximate
Catmull-Clark limit surfaces.

Just as the second class, c-patches [YNM+] and themany-sided p(m)-patches [MNP08] (Figures11and12) can be
constructed and displayed in real time. [MNP08] comes with shader code, allows for (rounded) creases and polar
configurations (see Figure12(d)) 6 The third class of surface constructions is related to surface splines [Pet95] and
Loop’s construction [Loo92] and localized hierarchical surface splines [GP99].

1.9 Efficiency

Whether a particular representation or evaluation strategy is time and space efficient depends on the software/hardware
setup. However, we can observe the following in the context of GPU rendering.

Fixed, fine triangulationsare expensive to transfer to the GPU and require animation ofeach vertex. They lack re-
finability. Subdivision surfaces approximated byrecursive refinement, possibly followed by projection of the control

6 One concern is that such creases and polar configurations result in ‘parametric distortion’ when texture mapping. Applying the same
crease or polar mapping (inR2) when looking up texture coordinates, however, shows this concern to be unfounded.
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points to their limit, require multiple passes with increasing bandwidth and intermediate memory storage. Subdivi-
sion surfaces approximated bynon-recursive evaluationas listed in Section1.7requires the inversion of (moderately
sized) matrices. These matrices need to be adapted for different types of creases. Subdivision surfaces approximated
by tabulation require storage that limits the representable crease configurations. The (efficient) substitutes listed
in Section1.8 allow for creases, adaptive evaluation (by instancing or the tessellation engine) and, as low degree
polynomials, have been created to be both space-efficient and time-efficient, in their construction as well as in their
evaluation.

efficiency space time comment

triangulation – – fixed resolution
recursive subD – adaptivity?
non-recursive subD – creases?
tabulation – + creases?
efficient substitutes + + creaseX, adaptX

1.10 Higher-quality surfaces?

For high-end design,C1 continuity is not sufficient. One can feel (and sometimes see) the lack of curvature con-
tinuity. In fact, Catmull-Clark subdivision does not meet the requirements of high-end design: Generically, near
extraordinary points, the curvature lines diverge, and thesurfaces becomes hyperbolic [KPR04]. Guided surfacing
[KP07, KPN1], Loop and Schaefer [Loo04, LS08b] and most recently a bi-3C2 polar subdivision [MP09] promise
better shape. Yet, it is not clear that real-time or movie applications can benefit from such high-quality surfaces.

Curiously, at least formally, displacement mapping, whichoften increase roughness of the surfaces, formally requires
derivatives of normals and therefore higher-order continuity.

1.11 Summary

Besides the classical rendering of the control polyhedron,possibly projected onto the surface, there are two classes
of surface constructions that can be used as efficient substitutes of subdivision surfaces or as primitives in their own
right. Both triangular patches and quad patches are available (as well as polar configurations) to give the designer
broad-ranging options and mimic both Catmull-Clark and triangle-based subdivision. The next chapters will explain
the use of these constructions in more detail and may inspireadditional short-cuts and innovations (see for example
7), made all the more relevant by the imminent availability oftessellation hardware.

7http://castano.ludicon.com/blog/2009/01/07/approximate-subdivision-shading/
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[KPN1] K. Karčiauskas and J. Peters. Guided spline surfaces. Computer Aided Geometric Design, pages 1–20,
2009 N1.

[KPR04] K. Karciauskas, J. Peters, and U. Reif. Shape characterization of subdivision surfaces – case studies.
Computer-Aided Geometric Design, 21(6):601–614, july 2004.

13



[Loo92] Charles Teorell Loop.Generalized B-spline surfaces of arbitrary topological type. PhD thesis, Univer-
sity of Washington, 1992.

[Loo04] C. Loop. Second order smoothness over extraordinary vertices. InSymposium on Geometry Processing,
pages 169–178, 2004.

[LS08a] Charles Loop and Scott Schaefer. Approximating Catmull-Clark Subdivision Surfaces with Bicubic
Patches.ACM Trans. Graph., 27(1):1–11, 2008.

[LS08b] Charles T. Loop and Scott Schaefer. G2 tensor product splines over extraordinary vertices.Comput.
Graph. Forum, 27(5):1373–1382, 2008.
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